Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
//===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===//
|
|
|
|
//
|
2019-01-19 16:50:56 +08:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Main algorithm of the FlattenSchedulePass. This is a separate file to avoid
|
|
|
|
// the unittest for this requiring linking against LLVM.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "polly/FlattenAlgo.h"
|
2017-05-21 21:16:05 +08:00
|
|
|
#include "polly/Support/ISLOStream.h"
|
2017-09-29 23:45:40 +08:00
|
|
|
#include "polly/Support/ISLTools.h"
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "polly-flatten-algo"
|
|
|
|
|
|
|
|
using namespace polly;
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// Whether a dimension of a set is bounded (lower and upper) by a constant,
|
|
|
|
/// i.e. there are two constants Min and Max, such that every value x of the
|
|
|
|
/// chosen dimensions is Min <= x <= Max.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
|
2017-03-10 22:55:58 +08:00
|
|
|
auto ParamDims = Set.dim(isl::dim::param);
|
|
|
|
Set = Set.project_out(isl::dim::param, 0, ParamDims);
|
|
|
|
Set = Set.project_out(isl::dim::set, 0, dim);
|
|
|
|
auto SetDims = Set.dim(isl::dim::set);
|
|
|
|
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
|
|
|
|
return bool(Set.is_bounded());
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Whether a dimension of a set is (lower and upper) bounded by a constant or
|
|
|
|
/// parameters, i.e. there are two expressions Min_p and Max_p of the parameters
|
|
|
|
/// p, such that every value x of the chosen dimensions is
|
|
|
|
/// Min_p <= x <= Max_p.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
bool isDimBoundedByParameter(isl::set Set, unsigned dim) {
|
2017-03-10 22:55:58 +08:00
|
|
|
Set = Set.project_out(isl::dim::set, 0, dim);
|
|
|
|
auto SetDims = Set.dim(isl::dim::set);
|
|
|
|
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
|
|
|
|
return bool(Set.is_bounded());
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Whether BMap's first out-dimension is not a constant.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
bool isVariableDim(const isl::basic_map &BMap) {
|
2017-03-10 22:55:58 +08:00
|
|
|
auto FixedVal = BMap.plain_get_val_if_fixed(isl::dim::out, 0);
|
|
|
|
return !FixedVal || FixedVal.is_nan();
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Whether Map's first out dimension is no constant nor piecewise constant.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
bool isVariableDim(const isl::map &Map) {
|
2018-07-17 14:16:58 +08:00
|
|
|
for (isl::basic_map BMap : Map.get_basic_map_list())
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
if (isVariableDim(BMap))
|
2018-07-17 14:16:58 +08:00
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Whether UMap's first out dimension is no (piecewise) constant.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
bool isVariableDim(const isl::union_map &UMap) {
|
2018-07-17 14:16:58 +08:00
|
|
|
for (isl::map Map : UMap.get_map_list())
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
if (isVariableDim(Map))
|
2018-07-17 14:16:58 +08:00
|
|
|
return false;
|
|
|
|
return true;
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Compute @p UPwAff - @p Val.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
isl::union_pw_aff subtract(isl::union_pw_aff UPwAff, isl::val Val) {
|
2017-03-10 22:55:58 +08:00
|
|
|
if (Val.is_zero())
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return UPwAff;
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
|
2018-08-01 17:57:10 +08:00
|
|
|
isl::stat Stat =
|
|
|
|
UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
|
|
|
|
auto ValAff =
|
|
|
|
isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
|
|
|
|
auto Subtracted = PwAff.sub(ValAff);
|
|
|
|
Result = Result.union_add(isl::union_pw_aff(Subtracted));
|
|
|
|
return isl::stat::ok();
|
|
|
|
});
|
|
|
|
if (Stat.is_error())
|
|
|
|
return {};
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Compute @UPwAff * @p Val.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
isl::union_pw_aff multiply(isl::union_pw_aff UPwAff, isl::val Val) {
|
2017-03-10 22:55:58 +08:00
|
|
|
if (Val.is_one())
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return UPwAff;
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
|
2018-08-01 17:57:10 +08:00
|
|
|
isl::stat Stat =
|
|
|
|
UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
|
|
|
|
auto ValAff =
|
|
|
|
isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
|
|
|
|
auto Multiplied = PwAff.mul(ValAff);
|
|
|
|
Result = Result.union_add(Multiplied);
|
|
|
|
return isl::stat::ok();
|
|
|
|
});
|
|
|
|
if (Stat.is_error())
|
|
|
|
return {};
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Remove @p n dimensions from @p UMap's range, starting at @p first.
|
|
|
|
///
|
|
|
|
/// It is assumed that all maps in the maps have at least the necessary number
|
|
|
|
/// of out dimensions.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
isl::union_map scheduleProjectOut(const isl::union_map &UMap, unsigned first,
|
|
|
|
unsigned n) {
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
if (n == 0)
|
|
|
|
return UMap; /* isl_map_project_out would also reset the tuple, which should
|
|
|
|
have no effect on schedule ranges */
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto Result = isl::union_map::empty(UMap.get_space());
|
2018-07-17 14:11:53 +08:00
|
|
|
for (isl::map Map : UMap.get_map_list()) {
|
2017-03-10 22:55:58 +08:00
|
|
|
auto Outprojected = Map.project_out(isl::dim::out, first, n);
|
|
|
|
Result = Result.add_map(Outprojected);
|
2018-07-17 14:11:53 +08:00
|
|
|
}
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return the number of dimensions in the input map's range.
|
|
|
|
///
|
|
|
|
/// Because this function takes an isl_union_map, the out dimensions could be
|
|
|
|
/// different. We return the maximum number in this case. However, a different
|
|
|
|
/// number of dimensions is not supported by the other code in this file.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
size_t scheduleScatterDims(const isl::union_map &Schedule) {
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
unsigned Dims = 0;
|
2018-07-17 14:11:53 +08:00
|
|
|
for (isl::map Map : Schedule.get_map_list())
|
2017-03-10 22:55:58 +08:00
|
|
|
Dims = std::max(Dims, Map.dim(isl::dim::out));
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return Dims;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Return the @p pos' range dimension, converted to an isl_union_pw_aff.
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
isl::union_pw_aff scheduleExtractDimAff(isl::union_map UMap, unsigned pos) {
|
2017-03-10 22:55:58 +08:00
|
|
|
auto SingleUMap = isl::union_map::empty(UMap.get_space());
|
2018-07-17 14:11:53 +08:00
|
|
|
for (isl::map Map : UMap.get_map_list()) {
|
|
|
|
unsigned MapDims = Map.dim(isl::dim::out);
|
|
|
|
isl::map SingleMap = Map.project_out(isl::dim::out, 0, pos);
|
2017-03-10 22:55:58 +08:00
|
|
|
SingleMap = SingleMap.project_out(isl::dim::out, 1, MapDims - pos - 1);
|
|
|
|
SingleUMap = SingleUMap.add_map(SingleMap);
|
2018-07-17 14:11:53 +08:00
|
|
|
};
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto UAff = isl::union_pw_multi_aff(SingleUMap);
|
|
|
|
auto FirstMAff = isl::multi_union_pw_aff(UAff);
|
|
|
|
return FirstMAff.get_union_pw_aff(0);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/// Flatten a sequence-like first dimension.
|
|
|
|
///
|
|
|
|
/// A sequence-like scatter dimension is constant, or at least only small
|
|
|
|
/// variation, typically the result of ordering a sequence of different
|
|
|
|
/// statements. An example would be:
|
|
|
|
/// { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] }
|
|
|
|
/// to schedule all instances of Stmt_A before any instance of Stmt_B.
|
|
|
|
///
|
|
|
|
/// To flatten, first begin with an offset of zero. Then determine the lowest
|
|
|
|
/// possible value of the dimension, call it "i" [In the example we start at 0].
|
|
|
|
/// Considering only schedules with that value, consider only instances with
|
|
|
|
/// that value and determine the extent of the next dimension. Let l_X(i) and
|
|
|
|
/// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them
|
|
|
|
/// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1"
|
|
|
|
/// to Offset and remove all i-instances from the old schedule. Repeat with the
|
|
|
|
/// remaining lowest value i' until there are no instances in the old schedule
|
|
|
|
/// left.
|
|
|
|
/// The example schedule would be transformed to:
|
|
|
|
/// { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] }
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
isl::union_map tryFlattenSequence(isl::union_map Schedule) {
|
|
|
|
auto IslCtx = Schedule.get_ctx();
|
2017-03-10 22:55:58 +08:00
|
|
|
auto ScatterSet = isl::set(Schedule.range());
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto ParamSpace = Schedule.get_space().params();
|
|
|
|
auto Dims = ScatterSet.dim(isl::dim::set);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
assert(Dims >= 2);
|
|
|
|
|
|
|
|
// Would cause an infinite loop.
|
|
|
|
if (!isDimBoundedByConstant(ScatterSet, 0)) {
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Abort; dimension is not of fixed size\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto AllDomains = Schedule.domain();
|
|
|
|
auto AllDomainsToNull = isl::union_pw_multi_aff(AllDomains);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto NewSchedule = isl::union_map::empty(ParamSpace);
|
|
|
|
auto Counter = isl::pw_aff(isl::local_space(ParamSpace.set_from_params()));
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
while (!ScatterSet.is_empty()) {
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Next counter:\n " << Counter << "\n");
|
|
|
|
LLVM_DEBUG(dbgs() << "Remaining scatter set:\n " << ScatterSet << "\n");
|
2017-03-10 22:55:58 +08:00
|
|
|
auto ThisSet = ScatterSet.project_out(isl::dim::set, 1, Dims - 1);
|
|
|
|
auto ThisFirst = ThisSet.lexmin();
|
|
|
|
auto ScatterFirst = ThisFirst.add_dims(isl::dim::set, Dims - 1);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto SubSchedule = Schedule.intersect_range(ScatterFirst);
|
|
|
|
SubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
|
|
|
|
SubSchedule = flattenSchedule(SubSchedule);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
|
|
|
auto SubDims = scheduleScatterDims(SubSchedule);
|
|
|
|
auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1);
|
|
|
|
auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0);
|
2017-03-10 22:55:58 +08:00
|
|
|
auto RemainingSubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto FirstSubScatter = isl::set(FirstSubSchedule.range());
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Next step in sequence is:\n " << FirstSubScatter
|
|
|
|
<< "\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
|
|
|
if (!isDimBoundedByParameter(FirstSubScatter, 0)) {
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Abort; sequence step is not bounded\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto FirstSubScatterMap = isl::map::from_range(FirstSubScatter);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
|
|
|
// isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of
|
|
|
|
// 'none'. It doesn't match with any space including a 0-dimensional
|
|
|
|
// anonymous tuple.
|
|
|
|
// Interesting, one can create such a set using
|
|
|
|
// isl_set_universe(ParamSpace). Bug?
|
2017-03-10 22:55:58 +08:00
|
|
|
auto PartMin = FirstSubScatterMap.dim_min(0);
|
|
|
|
auto PartMax = FirstSubScatterMap.dim_max(0);
|
|
|
|
auto One = isl::pw_aff(isl::set::universe(ParamSpace.set_from_params()),
|
|
|
|
isl::val::one(IslCtx));
|
|
|
|
auto PartLen = PartMax.add(PartMin.neg()).add(One);
|
|
|
|
|
|
|
|
auto AllPartMin = isl::union_pw_aff(PartMin).pullback(AllDomainsToNull);
|
|
|
|
auto FirstScheduleAffNormalized = FirstScheduleAff.sub(AllPartMin);
|
|
|
|
auto AllCounter = isl::union_pw_aff(Counter).pullback(AllDomainsToNull);
|
|
|
|
auto FirstScheduleAffWithOffset =
|
|
|
|
FirstScheduleAffNormalized.add(AllCounter);
|
|
|
|
|
|
|
|
auto ScheduleWithOffset = isl::union_map(FirstScheduleAffWithOffset)
|
|
|
|
.flat_range_product(RemainingSubSchedule);
|
|
|
|
NewSchedule = NewSchedule.unite(ScheduleWithOffset);
|
|
|
|
|
|
|
|
ScatterSet = ScatterSet.subtract(ScatterFirst);
|
|
|
|
Counter = Counter.add(PartLen);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
}
|
|
|
|
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Sequence-flatten result is:\n " << NewSchedule
|
|
|
|
<< "\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return NewSchedule;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Flatten a loop-like first dimension.
|
|
|
|
///
|
|
|
|
/// A loop-like dimension is one that depends on a variable (usually a loop's
|
|
|
|
/// induction variable). Let the input schedule look like this:
|
|
|
|
/// { Stmt[i] -> [i, X, ...] }
|
|
|
|
///
|
|
|
|
/// To flatten, we determine the largest extent of X which may not depend on the
|
|
|
|
/// actual value of i. Let l_X() the smallest possible value of X and u_X() its
|
|
|
|
/// largest value. Then, construct a new schedule
|
|
|
|
/// { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] }
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
isl::union_map tryFlattenLoop(isl::union_map Schedule) {
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
assert(scheduleScatterDims(Schedule) >= 2);
|
|
|
|
|
|
|
|
auto Remaining = scheduleProjectOut(Schedule, 0, 1);
|
|
|
|
auto SubSchedule = flattenSchedule(Remaining);
|
|
|
|
auto SubDims = scheduleScatterDims(SubSchedule);
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto SubExtent = isl::set(SubSchedule.range());
|
|
|
|
auto SubExtentDims = SubExtent.dim(isl::dim::param);
|
|
|
|
SubExtent = SubExtent.project_out(isl::dim::param, 0, SubExtentDims);
|
|
|
|
SubExtent = SubExtent.project_out(isl::dim::set, 1, SubDims - 1);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
|
|
|
if (!isDimBoundedByConstant(SubExtent, 0)) {
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Abort; dimension not bounded by constant\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto Min = SubExtent.dim_min(0);
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Min bound:\n " << Min << "\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
auto MinVal = getConstant(Min, false, true);
|
2017-03-10 22:55:58 +08:00
|
|
|
auto Max = SubExtent.dim_max(0);
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Max bound:\n " << Max << "\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
auto MaxVal = getConstant(Max, true, false);
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
if (!MinVal || !MaxVal || MinVal.is_nan() || MaxVal.is_nan()) {
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0);
|
|
|
|
auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);
|
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto LenVal = MaxVal.sub(MinVal).add_ui(1);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal);
|
|
|
|
|
|
|
|
// TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum,
|
|
|
|
// subtract it)
|
|
|
|
auto FirstAff = scheduleExtractDimAff(Schedule, 0);
|
|
|
|
auto Offset = multiply(FirstAff, LenVal);
|
2017-03-10 22:55:58 +08:00
|
|
|
auto Index = FirstSubScheduleNormalized.add(Offset);
|
|
|
|
auto IndexMap = isl::union_map(Index);
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
2017-03-10 22:55:58 +08:00
|
|
|
auto Result = IndexMap.flat_range_product(RemainingSubSchedule);
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Loop-flatten result is:\n " << Result << "\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
|
Introduce isl C++ bindings, Part 1: value_ptr style interface
Over the last couple of months several authors of independent isl C++ bindings
worked together to jointly design an official set of isl C++ bindings which
combines their experience in developing isl C++ bindings. The new bindings have
been designed around a value pointer style interface and remove the need for
explicit pointer managenent and instead use C++ language features to manage isl
objects.
This commit introduces the smart-pointer part of the isl C++ bindings and
replaces the current IslPtr<T> classes, which served the very same purpose, but
had to be manually maintained. Instead, we now rely on automatically generated
classes for each isl object, which provide value_ptr semantics.
An isl object has the following smart pointer interface:
inline set manage(__isl_take isl_set *ptr);
class set {
friend inline set manage(__isl_take isl_set *ptr);
isl_set *ptr = nullptr;
inline explicit set(__isl_take isl_set *ptr);
public:
inline set();
inline set(const set &obj);
inline set &operator=(set obj);
inline ~set();
inline __isl_give isl_set *copy() const &;
inline __isl_give isl_set *copy() && = delete;
inline __isl_keep isl_set *get() const;
inline __isl_give isl_set *release();
inline bool is_null() const;
}
The interface and behavior of the new value pointer style classes is inspired
by http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf, which
proposes a std::value_ptr, a smart pointer that applies value semantics to its
pointee.
We currently only provide a limited set of public constructors and instead
require provide a global overloaded type constructor method "isl::obj
isl::manage(isl_obj *)", which allows to convert an isl_set* to an isl::set by
calling 'S = isl::manage(s)'. This pattern models the make_unique() constructor
for unique pointers.
The next two functions isl::obj::get() and isl::obj::release() are taken
directly from the std::value_ptr proposal:
S.get() extracts the raw pointer of the object managed by S.
S.release() extracts the raw pointer of the object managed by S and sets the
object in S to null.
We additionally add std::obj::copy(). S.copy() returns a raw pointer refering
to a copy of S, which is a shortcut for "isl::obj(oldobj).release()", a
functionality commonly needed when interacting directly with the isl C
interface where all methods marked with __isl_take require consumable raw
pointers.
S.is_null() checks if S manages a pointer or if the managed object is currently
null. We add this function to provide a more explicit way to check if the
pointer is empty compared to a direct conversion to bool.
This commit also introduces a couple of polly-specific extensions that cover
features currently not handled by the official isl C++ bindings draft, but
which have been provided by IslPtr<T> and are consequently added to avoid code
churn. These extensions include:
- operator bool() : Conversion from objects to bool
- construction from nullptr_t
- get_ctx() method
- take/keep/give methods, which match the currently used naming
convention of IslPtr<T> in Polly. They just forward to
(release/get/manage).
- raw_ostream printers
We expect that these extensions are over time either removed or upstreamed to
the official isl bindings.
We also export a couple of classes that have not yet been exported in isl (e.g.,
isl::space)
As part of the code review, the following two questions were asked:
- Why do we not use a standard smart pointer?
std::value_ptr was a proposal that has not been accepted. It is consequently
not available in the standard library. Even if it would be available, we want
to expand this interface with a complete method interface that is conveniently
available from each managed pointer. The most direct way to achieve this is to
generate a specialiced value style pointer class for each isl object type and
add any additional methods to this class. The relevant changes follow in
subsequent commits.
- Why do we not use templates or macros to avoid code duplication?
It is certainly possible to use templates or macros, but as this code is
auto-generated there is no need to make writing this code more efficient. Also,
most of these classes will be specialized with individual member functions in
subsequent commits, such that there will be little code reuse to exploit. Hence,
we decided to do so at the moment.
These bindings are not yet officially part of isl, but the draft is already very
stable. The smart pointer interface itself did not change since serveral months.
Adding this code to Polly is against our normal policy of only importing
official isl code. In this case however, we make an exception to showcase a
non-trivial use case of these bindings which should increase confidence in these
bindings and will help upstreaming them to isl.
Tags: #polly
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D30325
llvm-svn: 297452
2017-03-10 19:41:03 +08:00
|
|
|
isl::union_map polly::flattenSchedule(isl::union_map Schedule) {
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
auto Dims = scheduleScatterDims(Schedule);
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Recursive schedule to process:\n " << Schedule
|
|
|
|
<< "\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
|
|
|
|
// Base case; no dimensions left
|
|
|
|
if (Dims == 0) {
|
|
|
|
// TODO: Add one dimension?
|
|
|
|
return Schedule;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Base case; already one-dimensional
|
|
|
|
if (Dims == 1)
|
|
|
|
return Schedule;
|
|
|
|
|
|
|
|
// Fixed dimension; no need to preserve variabledness.
|
|
|
|
if (!isVariableDim(Schedule)) {
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
auto NewScheduleSequence = tryFlattenSequence(Schedule);
|
|
|
|
if (NewScheduleSequence)
|
|
|
|
return NewScheduleSequence;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Constant stride
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Try loop flattening\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
auto NewScheduleLoop = tryFlattenLoop(Schedule);
|
|
|
|
if (NewScheduleLoop)
|
|
|
|
return NewScheduleLoop;
|
|
|
|
|
|
|
|
// Try again without loop condition (may blow up the number of pieces!!)
|
2018-05-15 21:37:17 +08:00
|
|
|
LLVM_DEBUG(dbgs() << "Try sequence flattening again\n");
|
Add -polly-flatten-schedule pass.
The -polly-flatten-schedule pass reduces the number of scattering
dimensions in its isl_union_map form to make them easier to understand.
It is not meant to be used in production, only for debugging and
regression tests.
To illustrate, how it can make sets simpler, here is a lifetime set
used computed by the porposed DeLICM pass without flattening:
{ Stmt_reduction_for[0, 4] -> [0, 2, o2, o3] : o2 < 0;
Stmt_reduction_for[0, 4] -> [0, 1, o2, o3] : o2 >= 5;
Stmt_reduction_for[0, 4] -> [0, 1, 4, o3] : o3 > 0;
Stmt_reduction_for[0, i1] -> [0, 1, i1, 1] : 0 <= i1 <= 3;
Stmt_reduction_for[0, 4] -> [0, 2, 0, o3] : o3 <= 0 }
And here the same lifetime for a semantically identical one-dimensional
schedule:
{ Stmt_reduction_for[0, i1] -> [2 + 3i1] : 0 <= i1 <= 4 }
Differential Revision: https://reviews.llvm.org/D24310
llvm-svn: 280948
2016-09-08 23:02:36 +08:00
|
|
|
auto NewScheduleSequence = tryFlattenSequence(Schedule);
|
|
|
|
if (NewScheduleSequence)
|
|
|
|
return NewScheduleSequence;
|
|
|
|
|
|
|
|
// Cannot flatten
|
|
|
|
return Schedule;
|
|
|
|
}
|