Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
//===---- CodeCompleteConsumer.h - Code Completion Interface ----*- C++ -*-===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the CodeCompleteConsumer class.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/CodeCompleteConsumer.h"
|
2009-09-19 01:54:00 +08:00
|
|
|
#include "clang/AST/DeclCXX.h"
|
2009-09-18 23:37:17 +08:00
|
|
|
#include "clang/Parse/Scope.h"
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
#include "clang/Lex/Preprocessor.h"
|
|
|
|
#include "Sema.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
#include "llvm/Support/Compiler.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include <string.h>
|
|
|
|
using namespace clang;
|
|
|
|
|
|
|
|
CodeCompleteConsumer::CodeCompleteConsumer(Sema &S) : SemaRef(S) {
|
|
|
|
SemaRef.setCodeCompleteConsumer(this);
|
|
|
|
}
|
|
|
|
|
|
|
|
CodeCompleteConsumer::~CodeCompleteConsumer() {
|
|
|
|
SemaRef.setCodeCompleteConsumer(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
CodeCompleteConsumer::CodeCompleteMemberReferenceExpr(Scope *S,
|
|
|
|
QualType BaseType,
|
|
|
|
bool IsArrow) {
|
|
|
|
if (IsArrow) {
|
|
|
|
if (const PointerType *Ptr = BaseType->getAs<PointerType>())
|
|
|
|
BaseType = Ptr->getPointeeType();
|
|
|
|
else if (BaseType->isObjCObjectPointerType())
|
|
|
|
/*Do nothing*/ ;
|
|
|
|
else
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2009-09-18 23:37:17 +08:00
|
|
|
ResultSet Results(*this);
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
unsigned NextRank = 0;
|
|
|
|
|
|
|
|
if (const RecordType *Record = BaseType->getAs<RecordType>()) {
|
2009-09-18 23:37:17 +08:00
|
|
|
NextRank = CollectMemberLookupResults(Record->getDecl(), NextRank, Results);
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
|
|
|
|
if (getSema().getLangOptions().CPlusPlus) {
|
|
|
|
if (!Results.empty())
|
|
|
|
// The "template" keyword can follow "->" or "." in the grammar.
|
|
|
|
Results.MaybeAddResult(Result("template", NextRank++));
|
|
|
|
|
2009-09-19 01:42:29 +08:00
|
|
|
// We could have the start of a nested-name-specifier. Add those
|
|
|
|
// results as well.
|
|
|
|
Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier);
|
|
|
|
CollectLookupResults(S, NextRank, Results);
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Hand off the results found for code completion.
|
|
|
|
ProcessCodeCompleteResults(Results.data(), Results.size());
|
|
|
|
|
|
|
|
// We're done!
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-09-18 23:37:17 +08:00
|
|
|
void CodeCompleteConsumer::CodeCompleteTag(Scope *S, ElaboratedType::TagKind TK) {
|
|
|
|
ResultSet::LookupFilter Filter = 0;
|
|
|
|
switch (TK) {
|
|
|
|
case ElaboratedType::TK_enum:
|
|
|
|
Filter = &CodeCompleteConsumer::IsEnum;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ElaboratedType::TK_class:
|
|
|
|
case ElaboratedType::TK_struct:
|
|
|
|
Filter = &CodeCompleteConsumer::IsClassOrStruct;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ElaboratedType::TK_union:
|
|
|
|
Filter = &CodeCompleteConsumer::IsUnion;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
ResultSet Results(*this, Filter);
|
2009-09-19 01:42:29 +08:00
|
|
|
unsigned NextRank = CollectLookupResults(S, 0, Results);
|
2009-09-18 23:37:17 +08:00
|
|
|
|
2009-09-19 01:42:29 +08:00
|
|
|
if (getSema().getLangOptions().CPlusPlus) {
|
|
|
|
// We could have the start of a nested-name-specifier. Add those
|
|
|
|
// results as well.
|
|
|
|
Results.setFilter(&CodeCompleteConsumer::IsNestedNameSpecifier);
|
|
|
|
CollectLookupResults(S, NextRank, Results);
|
|
|
|
}
|
2009-09-18 23:37:17 +08:00
|
|
|
|
|
|
|
ProcessCodeCompleteResults(Results.data(), Results.size());
|
|
|
|
}
|
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
void
|
|
|
|
CodeCompleteConsumer::CodeCompleteQualifiedId(Scope *S,
|
|
|
|
NestedNameSpecifier *NNS,
|
|
|
|
bool EnteringContext) {
|
|
|
|
CXXScopeSpec SS;
|
|
|
|
SS.setScopeRep(NNS);
|
|
|
|
DeclContext *Ctx = getSema().computeDeclContext(SS, EnteringContext);
|
|
|
|
if (!Ctx)
|
|
|
|
return;
|
|
|
|
|
2009-09-18 23:37:17 +08:00
|
|
|
ResultSet Results(*this);
|
|
|
|
unsigned NextRank = CollectMemberLookupResults(Ctx, 0, Results);
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
|
|
|
|
// The "template" keyword can follow "::" in the grammar
|
|
|
|
if (!Results.empty())
|
|
|
|
Results.MaybeAddResult(Result("template", NextRank));
|
|
|
|
|
|
|
|
ProcessCodeCompleteResults(Results.data(), Results.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
void CodeCompleteConsumer::ResultSet::MaybeAddResult(Result R) {
|
|
|
|
if (R.Kind != Result::RK_Declaration) {
|
|
|
|
// For non-declaration results, just add the result.
|
|
|
|
Results.push_back(R);
|
|
|
|
return;
|
|
|
|
}
|
2009-09-19 01:54:00 +08:00
|
|
|
|
|
|
|
// Look through using declarations.
|
|
|
|
if (UsingDecl *Using = dyn_cast<UsingDecl>(R.Declaration))
|
|
|
|
return MaybeAddResult(Result(Using->getTargetDecl(), R.Rank));
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
|
2009-09-19 01:54:00 +08:00
|
|
|
// Handle each declaration in an overload set separately.
|
|
|
|
if (OverloadedFunctionDecl *Ovl
|
|
|
|
= dyn_cast<OverloadedFunctionDecl>(R.Declaration)) {
|
|
|
|
for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
|
|
|
|
FEnd = Ovl->function_end();
|
|
|
|
F != FEnd; ++F)
|
|
|
|
MaybeAddResult(Result(*F, R.Rank));
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
2009-09-18 23:37:17 +08:00
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
Decl *CanonDecl = R.Declaration->getCanonicalDecl();
|
|
|
|
unsigned IDNS = CanonDecl->getIdentifierNamespace();
|
|
|
|
|
|
|
|
// Friend declarations and declarations introduced due to friends are never
|
|
|
|
// added as results.
|
|
|
|
if (isa<FriendDecl>(CanonDecl) ||
|
|
|
|
(IDNS & (Decl::IDNS_OrdinaryFriend | Decl::IDNS_TagFriend)))
|
|
|
|
return;
|
|
|
|
|
2009-09-19 01:42:29 +08:00
|
|
|
if (const IdentifierInfo *Id = R.Declaration->getIdentifier()) {
|
|
|
|
// __va_list_tag is a freak of nature. Find it and skip it.
|
|
|
|
if (Id->isStr("__va_list_tag"))
|
|
|
|
return;
|
|
|
|
|
|
|
|
// FIXME: Should we filter out other names in the implementation's
|
|
|
|
// namespace, e.g., those containing a __ or that start with _[A-Z]?
|
|
|
|
}
|
|
|
|
|
|
|
|
// C++ constructors are never found by name lookup.
|
|
|
|
if (isa<CXXConstructorDecl>(CanonDecl))
|
|
|
|
return;
|
|
|
|
|
|
|
|
// Filter out any unwanted results.
|
|
|
|
if (Filter && !(Completer.*Filter)(R.Declaration))
|
|
|
|
return;
|
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
ShadowMap &SMap = ShadowMaps.back();
|
|
|
|
ShadowMap::iterator I, IEnd;
|
|
|
|
for (llvm::tie(I, IEnd) = SMap.equal_range(R.Declaration->getDeclName());
|
|
|
|
I != IEnd; ++I) {
|
|
|
|
NamedDecl *ND = I->second.first;
|
|
|
|
unsigned Index = I->second.second;
|
|
|
|
if (ND->getCanonicalDecl() == CanonDecl) {
|
|
|
|
// This is a redeclaration. Always pick the newer declaration.
|
|
|
|
I->second.first = R.Declaration;
|
|
|
|
Results[Index].Declaration = R.Declaration;
|
|
|
|
|
|
|
|
// Pick the best rank of the two.
|
|
|
|
Results[Index].Rank = std::min(Results[Index].Rank, R.Rank);
|
|
|
|
|
|
|
|
// We're done.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is a new declaration in this scope. However, check whether this
|
|
|
|
// declaration name is hidden by a similarly-named declaration in an outer
|
|
|
|
// scope.
|
|
|
|
std::list<ShadowMap>::iterator SM, SMEnd = ShadowMaps.end();
|
|
|
|
--SMEnd;
|
|
|
|
for (SM = ShadowMaps.begin(); SM != SMEnd; ++SM) {
|
|
|
|
for (llvm::tie(I, IEnd) = SM->equal_range(R.Declaration->getDeclName());
|
|
|
|
I != IEnd; ++I) {
|
|
|
|
// A tag declaration does not hide a non-tag declaration.
|
|
|
|
if (I->second.first->getIdentifierNamespace() == Decl::IDNS_Tag &&
|
|
|
|
(IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
|
|
|
|
Decl::IDNS_ObjCProtocol)))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// Protocols are in distinct namespaces from everything else.
|
|
|
|
if (((I->second.first->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
|
|
|
|
|| (IDNS & Decl::IDNS_ObjCProtocol)) &&
|
|
|
|
I->second.first->getIdentifierNamespace() != IDNS)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// The newly-added result is hidden by an entry in the shadow map.
|
2009-09-18 23:51:54 +08:00
|
|
|
if (Completer.canHiddenResultBeFound(R.Declaration, I->second.first)) {
|
|
|
|
// Note that this result was hidden.
|
|
|
|
R.Hidden = true;
|
|
|
|
} else {
|
|
|
|
// This result was hidden and cannot be found; don't bother adding
|
|
|
|
// it.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-09-19 01:42:29 +08:00
|
|
|
// Make sure that any given declaration only shows up in the result set once.
|
|
|
|
if (!AllDeclsFound.insert(CanonDecl))
|
|
|
|
return;
|
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
// Insert this result into the set of results and into the current shadow
|
|
|
|
// map.
|
|
|
|
SMap.insert(std::make_pair(R.Declaration->getDeclName(),
|
|
|
|
std::make_pair(R.Declaration, Results.size())));
|
|
|
|
Results.push_back(R);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Enter into a new scope.
|
|
|
|
void CodeCompleteConsumer::ResultSet::EnterNewScope() {
|
|
|
|
ShadowMaps.push_back(ShadowMap());
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Exit from the current scope.
|
|
|
|
void CodeCompleteConsumer::ResultSet::ExitScope() {
|
|
|
|
ShadowMaps.pop_back();
|
|
|
|
}
|
|
|
|
|
2009-09-18 23:37:17 +08:00
|
|
|
// Find the next outer declaration context corresponding to this scope.
|
|
|
|
static DeclContext *findOuterContext(Scope *S) {
|
|
|
|
for (S = S->getParent(); S; S = S->getParent())
|
|
|
|
if (S->getEntity())
|
|
|
|
return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Collect the results of searching for declarations within the given
|
|
|
|
/// scope and its parent scopes.
|
|
|
|
///
|
|
|
|
/// \param S the scope in which we will start looking for declarations.
|
|
|
|
///
|
|
|
|
/// \param InitialRank the initial rank given to results in this scope.
|
|
|
|
/// Larger rank values will be used for results found in parent scopes.
|
|
|
|
unsigned CodeCompleteConsumer::CollectLookupResults(Scope *S,
|
|
|
|
unsigned InitialRank,
|
|
|
|
ResultSet &Results) {
|
|
|
|
if (!S)
|
|
|
|
return InitialRank;
|
|
|
|
|
|
|
|
// FIXME: Using directives!
|
|
|
|
|
|
|
|
unsigned NextRank = InitialRank;
|
|
|
|
Results.EnterNewScope();
|
|
|
|
if (S->getEntity() &&
|
|
|
|
!((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
|
|
|
|
// Look into this scope's declaration context, along with any of its
|
|
|
|
// parent lookup contexts (e.g., enclosing classes), up to the point
|
|
|
|
// where we hit the context stored in the next outer scope.
|
|
|
|
DeclContext *Ctx = (DeclContext *)S->getEntity();
|
|
|
|
DeclContext *OuterCtx = findOuterContext(S);
|
|
|
|
|
|
|
|
for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
|
|
|
|
Ctx = Ctx->getLookupParent()) {
|
|
|
|
if (Ctx->isFunctionOrMethod())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
NextRank = CollectMemberLookupResults(Ctx, NextRank + 1, Results);
|
|
|
|
}
|
|
|
|
} else if (!S->getParent()) {
|
|
|
|
// Look into the translation unit scope. We walk through the translation
|
|
|
|
// unit's declaration context, because the Scope itself won't have all of
|
|
|
|
// the declarations if
|
|
|
|
NextRank = CollectMemberLookupResults(
|
|
|
|
getSema().Context.getTranslationUnitDecl(),
|
|
|
|
NextRank + 1, Results);
|
|
|
|
} else {
|
|
|
|
// Walk through the declarations in this Scope.
|
|
|
|
for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
|
|
|
|
D != DEnd; ++D) {
|
|
|
|
if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
|
|
|
|
Results.MaybeAddResult(Result(ND, NextRank));
|
|
|
|
}
|
|
|
|
|
|
|
|
NextRank = NextRank + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Lookup names in the parent scope.
|
|
|
|
NextRank = CollectLookupResults(S->getParent(), NextRank, Results);
|
|
|
|
Results.ExitScope();
|
|
|
|
|
|
|
|
return NextRank;
|
|
|
|
}
|
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
/// \brief Collect the results of searching for members within the given
|
|
|
|
/// declaration context.
|
|
|
|
///
|
|
|
|
/// \param Ctx the declaration context from which we will gather results.
|
|
|
|
///
|
2009-09-18 23:37:17 +08:00
|
|
|
/// \param InitialRank the initial rank given to results in this declaration
|
|
|
|
/// context. Larger rank values will be used for, e.g., members found in
|
|
|
|
/// base classes.
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
///
|
|
|
|
/// \param Results the result set that will be extended with any results
|
|
|
|
/// found within this declaration context (and, for a C++ class, its bases).
|
|
|
|
///
|
|
|
|
/// \returns the next higher rank value, after considering all of the
|
|
|
|
/// names within this declaration context.
|
2009-09-19 02:07:23 +08:00
|
|
|
unsigned CodeCompleteConsumer::CollectMemberLookupResults(DeclContext *Ctx,
|
|
|
|
unsigned InitialRank,
|
|
|
|
ResultSet &Results) {
|
|
|
|
llvm::SmallPtrSet<DeclContext *, 16> Visited;
|
|
|
|
return CollectMemberLookupResults(Ctx, InitialRank, Visited, Results);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Collect the results of searching for members within the given
|
|
|
|
/// declaration context.
|
|
|
|
///
|
|
|
|
/// \param Ctx the declaration context from which we will gather results.
|
|
|
|
///
|
|
|
|
/// \param InitialRank the initial rank given to results in this declaration
|
|
|
|
/// context. Larger rank values will be used for, e.g., members found in
|
|
|
|
/// base classes.
|
|
|
|
///
|
|
|
|
/// \param Visited the set of declaration contexts that have already been
|
|
|
|
/// visited. Declaration contexts will only be visited once.
|
|
|
|
///
|
|
|
|
/// \param Results the result set that will be extended with any results
|
|
|
|
/// found within this declaration context (and, for a C++ class, its bases).
|
|
|
|
///
|
|
|
|
/// \returns the next higher rank value, after considering all of the
|
|
|
|
/// names within this declaration context.
|
2009-09-18 23:37:17 +08:00
|
|
|
unsigned CodeCompleteConsumer::CollectMemberLookupResults(DeclContext *Ctx,
|
|
|
|
unsigned InitialRank,
|
2009-09-19 02:07:23 +08:00
|
|
|
llvm::SmallPtrSet<DeclContext *, 16> &Visited,
|
2009-09-18 23:37:17 +08:00
|
|
|
ResultSet &Results) {
|
2009-09-19 02:07:23 +08:00
|
|
|
// Make sure we don't visit the same context twice.
|
|
|
|
if (!Visited.insert(Ctx->getPrimaryContext()))
|
|
|
|
return InitialRank;
|
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
// Enumerate all of the results in this context.
|
|
|
|
Results.EnterNewScope();
|
|
|
|
for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
|
|
|
|
CurCtx = CurCtx->getNextContext()) {
|
|
|
|
for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
|
|
|
|
DEnd = CurCtx->decls_end();
|
|
|
|
D != DEnd; ++D) {
|
2009-09-18 23:37:17 +08:00
|
|
|
if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
Results.MaybeAddResult(Result(ND, InitialRank));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Traverse the contexts of inherited classes.
|
|
|
|
unsigned NextRank = InitialRank;
|
|
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
|
|
|
|
for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
|
|
|
|
BEnd = Record->bases_end();
|
|
|
|
B != BEnd; ++B) {
|
|
|
|
QualType BaseType = B->getType();
|
|
|
|
|
|
|
|
// Don't look into dependent bases, because name lookup can't look
|
|
|
|
// there anyway.
|
|
|
|
if (BaseType->isDependentType())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
const RecordType *Record = BaseType->getAs<RecordType>();
|
|
|
|
if (!Record)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// FIXME: It would be nice to be able to determine whether referencing
|
|
|
|
// a particular member would be ambiguous. For example, given
|
|
|
|
//
|
|
|
|
// struct A { int member; };
|
|
|
|
// struct B { int member; };
|
|
|
|
// struct C : A, B { };
|
|
|
|
//
|
|
|
|
// void f(C *c) { c->### }
|
|
|
|
// accessing 'member' would result in an ambiguity. However, code
|
|
|
|
// completion could be smart enough to qualify the member with the
|
|
|
|
// base class, e.g.,
|
|
|
|
//
|
|
|
|
// c->B::member
|
|
|
|
//
|
|
|
|
// or
|
|
|
|
//
|
|
|
|
// c->A::member
|
|
|
|
|
|
|
|
// Collect results from this base class (and its bases).
|
|
|
|
NextRank = std::max(NextRank,
|
2009-09-18 23:37:17 +08:00
|
|
|
CollectMemberLookupResults(Record->getDecl(),
|
2009-09-19 02:07:23 +08:00
|
|
|
InitialRank + 1,
|
|
|
|
Visited,
|
2009-09-18 23:37:17 +08:00
|
|
|
Results));
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: Look into base classes in Objective-C!
|
|
|
|
|
|
|
|
Results.ExitScope();
|
|
|
|
return NextRank;
|
|
|
|
}
|
|
|
|
|
2009-09-18 23:37:17 +08:00
|
|
|
/// \brief Determines whether the given declaration is suitable as the
|
|
|
|
/// start of a C++ nested-name-specifier, e.g., a class or namespace.
|
|
|
|
bool CodeCompleteConsumer::IsNestedNameSpecifier(NamedDecl *ND) const {
|
|
|
|
// Allow us to find class templates, too.
|
|
|
|
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
|
|
|
|
ND = ClassTemplate->getTemplatedDecl();
|
|
|
|
|
|
|
|
return getSema().isAcceptableNestedNameSpecifier(ND);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Determines whether the given declaration is an enumeration.
|
|
|
|
bool CodeCompleteConsumer::IsEnum(NamedDecl *ND) const {
|
|
|
|
return isa<EnumDecl>(ND);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Determines whether the given declaration is a class or struct.
|
|
|
|
bool CodeCompleteConsumer::IsClassOrStruct(NamedDecl *ND) const {
|
|
|
|
// Allow us to find class templates, too.
|
|
|
|
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
|
|
|
|
ND = ClassTemplate->getTemplatedDecl();
|
|
|
|
|
|
|
|
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
|
|
|
|
return RD->getTagKind() == TagDecl::TK_class ||
|
|
|
|
RD->getTagKind() == TagDecl::TK_struct;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// \brief Determines whether the given declaration is a union.
|
|
|
|
bool CodeCompleteConsumer::IsUnion(NamedDecl *ND) const {
|
|
|
|
// Allow us to find class templates, too.
|
|
|
|
if (ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(ND))
|
|
|
|
ND = ClassTemplate->getTemplatedDecl();
|
|
|
|
|
|
|
|
if (RecordDecl *RD = dyn_cast<RecordDecl>(ND))
|
|
|
|
return RD->getTagKind() == TagDecl::TK_union;
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
namespace {
|
|
|
|
struct VISIBILITY_HIDDEN SortCodeCompleteResult {
|
|
|
|
typedef CodeCompleteConsumer::Result Result;
|
|
|
|
|
|
|
|
bool operator()(const Result &X, const Result &Y) const {
|
|
|
|
// Sort first by rank.
|
|
|
|
if (X.Rank < Y.Rank)
|
|
|
|
return true;
|
|
|
|
else if (X.Rank > Y.Rank)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Result kinds are ordered by decreasing importance.
|
|
|
|
if (X.Kind < Y.Kind)
|
|
|
|
return true;
|
|
|
|
else if (X.Kind > Y.Kind)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Non-hidden names precede hidden names.
|
|
|
|
if (X.Hidden != Y.Hidden)
|
|
|
|
return !X.Hidden;
|
|
|
|
|
|
|
|
// Ordering depends on the kind of result.
|
|
|
|
switch (X.Kind) {
|
|
|
|
case Result::RK_Declaration:
|
|
|
|
// Order based on the declaration names.
|
|
|
|
return X.Declaration->getDeclName() < Y.Declaration->getDeclName();
|
|
|
|
|
|
|
|
case Result::RK_Keyword:
|
|
|
|
return strcmp(X.Keyword, Y.Keyword) == -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If only our C++ compiler did control-flow warnings properly.
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2009-09-18 23:51:54 +08:00
|
|
|
/// \brief Determines whether the given hidden result could be found with
|
|
|
|
/// some extra work, e.g., by qualifying the name.
|
|
|
|
///
|
|
|
|
/// \param Hidden the declaration that is hidden by the currenly \p Visible
|
|
|
|
/// declaration.
|
|
|
|
///
|
|
|
|
/// \param Visible the declaration with the same name that is already visible.
|
|
|
|
///
|
|
|
|
/// \returns true if the hidden result can be found by some mechanism,
|
|
|
|
/// false otherwise.
|
|
|
|
bool CodeCompleteConsumer::canHiddenResultBeFound(NamedDecl *Hidden,
|
|
|
|
NamedDecl *Visible) {
|
|
|
|
// In C, there is no way to refer to a hidden name.
|
|
|
|
if (!getSema().getLangOptions().CPlusPlus)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
DeclContext *HiddenCtx = Hidden->getDeclContext()->getLookupContext();
|
|
|
|
|
|
|
|
// There is no way to qualify a name declared in a function or method.
|
|
|
|
if (HiddenCtx->isFunctionOrMethod())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// If the hidden and visible declarations are in different name-lookup
|
|
|
|
// contexts, then we can qualify the name of the hidden declaration.
|
|
|
|
// FIXME: Optionally compute the string needed to refer to the hidden
|
|
|
|
// name.
|
|
|
|
return HiddenCtx != Visible->getDeclContext()->getLookupContext();
|
|
|
|
}
|
|
|
|
|
Initial implementation of a code-completion interface in Clang. In
essence, code completion is triggered by a magic "code completion"
token produced by the lexer [*], which the parser recognizes at
certain points in the grammar. The parser then calls into the Action
object with the appropriate CodeCompletionXXX action.
Sema implements the CodeCompletionXXX callbacks by performing minimal
translation, then forwarding them to a CodeCompletionConsumer
subclass, which uses the results of semantic analysis to provide
code-completion results. At present, only a single, "printing" code
completion consumer is available, for regression testing and
debugging. However, the design is meant to permit other
code-completion consumers.
This initial commit contains two code-completion actions: one for
member access, e.g., "x." or "p->", and one for
nested-name-specifiers, e.g., "std::". More code-completion actions
will follow, along with improved gathering of code-completion results
for the various contexts.
[*] In the current -code-completion-dump testing/debugging mode, the
file is truncated at the completion point and EOF is translated into
"code completion".
llvm-svn: 82166
2009-09-18 05:32:03 +08:00
|
|
|
void
|
|
|
|
PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(Result *Results,
|
|
|
|
unsigned NumResults) {
|
|
|
|
// Sort the results by rank/kind/etc.
|
|
|
|
std::stable_sort(Results, Results + NumResults, SortCodeCompleteResult());
|
|
|
|
|
|
|
|
// Print the results.
|
|
|
|
for (unsigned I = 0; I != NumResults; ++I) {
|
|
|
|
switch (Results[I].Kind) {
|
|
|
|
case Result::RK_Declaration:
|
|
|
|
OS << Results[I].Declaration->getNameAsString() << " : "
|
|
|
|
<< Results[I].Rank;
|
|
|
|
if (Results[I].Hidden)
|
|
|
|
OS << " (Hidden)";
|
|
|
|
OS << '\n';
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Result::RK_Keyword:
|
|
|
|
OS << Results[I].Keyword << " : " << Results[I].Rank << '\n';
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Once we've printed the code-completion results, suppress remaining
|
|
|
|
// diagnostics.
|
|
|
|
// FIXME: Move this somewhere else!
|
|
|
|
getSema().PP.getDiagnostics().setSuppressAllDiagnostics();
|
|
|
|
}
|