llvm-project/lldb/source/Symbol/Block.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

527 lines
17 KiB
C++
Raw Normal View History

//===-- Block.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/Block.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/Section.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/SymbolFile.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Utility/Log.h"
#include <memory>
using namespace lldb;
using namespace lldb_private;
Block::Block(lldb::user_id_t uid)
: UserID(uid), m_parent_scope(nullptr), m_children(), m_ranges(),
m_inlineInfoSP(), m_variable_list_sp(), m_parsed_block_info(false),
m_parsed_block_variables(false), m_parsed_child_blocks(false) {}
Block::~Block() = default;
void Block::GetDescription(Stream *s, Function *function,
lldb::DescriptionLevel level, Target *target) const {
*s << "id = " << ((const UserID &)*this);
size_t num_ranges = m_ranges.GetSize();
if (num_ranges > 0) {
Added function name types to allow us to set breakpoints by name more intelligently. The four name types we currently have are: eFunctionNameTypeFull = (1 << 1), // The function name. // For C this is the same as just the name of the function // For C++ this is the demangled version of the mangled name. // For ObjC this is the full function signature with the + or // - and the square brackets and the class and selector eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class // methods or selectors will be searched. eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names this allows much more flexibility when setting breakoints: (lldb) breakpoint set --name main --basename (lldb) breakpoint set --name main --fullname (lldb) breakpoint set --name main --method (lldb) breakpoint set --name main --selector The default: (lldb) breakpoint set --name main will inspect the name "main" and look for any parens, or if the name starts with "-[" or "+[" and if any are found then a full name search will happen. Else a basename search will be the default. Fixed some command option structures so not all options are required when they shouldn't be. Cleaned up the breakpoint output summary. Made the "image lookup --address <addr>" output much more verbose so it shows all the important symbol context results. Added a GetDescription method to many of the SymbolContext objects for the more verbose output. llvm-svn: 107075
2010-06-29 05:30:43 +08:00
addr_t base_addr = LLDB_INVALID_ADDRESS;
if (target)
base_addr =
function->GetAddressRange().GetBaseAddress().GetLoadAddress(target);
Added function name types to allow us to set breakpoints by name more intelligently. The four name types we currently have are: eFunctionNameTypeFull = (1 << 1), // The function name. // For C this is the same as just the name of the function // For C++ this is the demangled version of the mangled name. // For ObjC this is the full function signature with the + or // - and the square brackets and the class and selector eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class // methods or selectors will be searched. eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names this allows much more flexibility when setting breakoints: (lldb) breakpoint set --name main --basename (lldb) breakpoint set --name main --fullname (lldb) breakpoint set --name main --method (lldb) breakpoint set --name main --selector The default: (lldb) breakpoint set --name main will inspect the name "main" and look for any parens, or if the name starts with "-[" or "+[" and if any are found then a full name search will happen. Else a basename search will be the default. Fixed some command option structures so not all options are required when they shouldn't be. Cleaned up the breakpoint output summary. Made the "image lookup --address <addr>" output much more verbose so it shows all the important symbol context results. Added a GetDescription method to many of the SymbolContext objects for the more verbose output. llvm-svn: 107075
2010-06-29 05:30:43 +08:00
if (base_addr == LLDB_INVALID_ADDRESS)
base_addr = function->GetAddressRange().GetBaseAddress().GetFileAddress();
s->Printf(", range%s = ", num_ranges > 1 ? "s" : "");
for (size_t i = 0; i < num_ranges; ++i) {
const Range &range = m_ranges.GetEntryRef(i);
DumpAddressRange(s->AsRawOstream(), base_addr + range.GetRangeBase(),
base_addr + range.GetRangeEnd(), 4);
}
Added function name types to allow us to set breakpoints by name more intelligently. The four name types we currently have are: eFunctionNameTypeFull = (1 << 1), // The function name. // For C this is the same as just the name of the function // For C++ this is the demangled version of the mangled name. // For ObjC this is the full function signature with the + or // - and the square brackets and the class and selector eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class // methods or selectors will be searched. eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names this allows much more flexibility when setting breakoints: (lldb) breakpoint set --name main --basename (lldb) breakpoint set --name main --fullname (lldb) breakpoint set --name main --method (lldb) breakpoint set --name main --selector The default: (lldb) breakpoint set --name main will inspect the name "main" and look for any parens, or if the name starts with "-[" or "+[" and if any are found then a full name search will happen. Else a basename search will be the default. Fixed some command option structures so not all options are required when they shouldn't be. Cleaned up the breakpoint output summary. Made the "image lookup --address <addr>" output much more verbose so it shows all the important symbol context results. Added a GetDescription method to many of the SymbolContext objects for the more verbose output. llvm-svn: 107075
2010-06-29 05:30:43 +08:00
}
if (m_inlineInfoSP.get() != nullptr) {
bool show_fullpaths = (level == eDescriptionLevelVerbose);
m_inlineInfoSP->Dump(s, show_fullpaths);
}
}
void Block::Dump(Stream *s, addr_t base_addr, int32_t depth,
bool show_context) const {
if (depth < 0) {
Block *parent = GetParent();
if (parent) {
// We have a depth that is less than zero, print our parent blocks first
parent->Dump(s, base_addr, depth + 1, show_context);
}
}
s->Printf("%p: ", static_cast<const void *>(this));
s->Indent();
*s << "Block" << static_cast<const UserID &>(*this);
Added function name types to allow us to set breakpoints by name more intelligently. The four name types we currently have are: eFunctionNameTypeFull = (1 << 1), // The function name. // For C this is the same as just the name of the function // For C++ this is the demangled version of the mangled name. // For ObjC this is the full function signature with the + or // - and the square brackets and the class and selector eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class // methods or selectors will be searched. eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names this allows much more flexibility when setting breakoints: (lldb) breakpoint set --name main --basename (lldb) breakpoint set --name main --fullname (lldb) breakpoint set --name main --method (lldb) breakpoint set --name main --selector The default: (lldb) breakpoint set --name main will inspect the name "main" and look for any parens, or if the name starts with "-[" or "+[" and if any are found then a full name search will happen. Else a basename search will be the default. Fixed some command option structures so not all options are required when they shouldn't be. Cleaned up the breakpoint output summary. Made the "image lookup --address <addr>" output much more verbose so it shows all the important symbol context results. Added a GetDescription method to many of the SymbolContext objects for the more verbose output. llvm-svn: 107075
2010-06-29 05:30:43 +08:00
const Block *parent_block = GetParent();
if (parent_block) {
s->Printf(", parent = {0x%8.8" PRIx64 "}", parent_block->GetID());
}
if (m_inlineInfoSP.get() != nullptr) {
bool show_fullpaths = false;
m_inlineInfoSP->Dump(s, show_fullpaths);
}
if (!m_ranges.IsEmpty()) {
*s << ", ranges =";
size_t num_ranges = m_ranges.GetSize();
for (size_t i = 0; i < num_ranges; ++i) {
const Range &range = m_ranges.GetEntryRef(i);
if (parent_block != nullptr && !parent_block->Contains(range))
*s << '!';
else
*s << ' ';
DumpAddressRange(s->AsRawOstream(), base_addr + range.GetRangeBase(),
base_addr + range.GetRangeEnd(), 4);
}
}
s->EOL();
if (depth > 0) {
s->IndentMore();
if (m_variable_list_sp.get()) {
m_variable_list_sp->Dump(s, show_context);
}
collection::const_iterator pos, end = m_children.end();
for (pos = m_children.begin(); pos != end; ++pos)
(*pos)->Dump(s, base_addr, depth - 1, show_context);
s->IndentLess();
}
}
Block *Block::FindBlockByID(user_id_t block_id) {
if (block_id == GetID())
return this;
Block *matching_block = nullptr;
collection::const_iterator pos, end = m_children.end();
for (pos = m_children.begin(); pos != end; ++pos) {
matching_block = (*pos)->FindBlockByID(block_id);
if (matching_block)
break;
}
return matching_block;
}
Block *Block::FindInnermostBlockByOffset(const lldb::addr_t offset) {
if (!Contains(offset))
return nullptr;
for (const BlockSP &block_sp : m_children) {
if (Block *block = block_sp->FindInnermostBlockByOffset(offset))
return block;
}
return this;
}
void Block::CalculateSymbolContext(SymbolContext *sc) {
if (m_parent_scope)
m_parent_scope->CalculateSymbolContext(sc);
sc->block = this;
}
lldb::ModuleSP Block::CalculateSymbolContextModule() {
if (m_parent_scope)
return m_parent_scope->CalculateSymbolContextModule();
return lldb::ModuleSP();
}
CompileUnit *Block::CalculateSymbolContextCompileUnit() {
if (m_parent_scope)
return m_parent_scope->CalculateSymbolContextCompileUnit();
return nullptr;
}
Function *Block::CalculateSymbolContextFunction() {
if (m_parent_scope)
return m_parent_scope->CalculateSymbolContextFunction();
return nullptr;
}
Block *Block::CalculateSymbolContextBlock() { return this; }
void Block::DumpSymbolContext(Stream *s) {
Function *function = CalculateSymbolContextFunction();
if (function)
function->DumpSymbolContext(s);
s->Printf(", Block{0x%8.8" PRIx64 "}", GetID());
}
void Block::DumpAddressRanges(Stream *s, lldb::addr_t base_addr) {
if (!m_ranges.IsEmpty()) {
size_t num_ranges = m_ranges.GetSize();
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
for (size_t i = 0; i < num_ranges; ++i) {
const Range &range = m_ranges.GetEntryRef(i);
DumpAddressRange(s->AsRawOstream(), base_addr + range.GetRangeBase(),
base_addr + range.GetRangeEnd(), 4);
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
}
}
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
}
bool Block::Contains(addr_t range_offset) const {
return m_ranges.FindEntryThatContains(range_offset) != nullptr;
}
bool Block::Contains(const Block *block) const {
if (this == block)
return false; // This block doesn't contain itself...
// Walk the parent chain for "block" and see if any if them match this block
const Block *block_parent;
for (block_parent = block->GetParent(); block_parent != nullptr;
block_parent = block_parent->GetParent()) {
if (this == block_parent)
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
return true; // One of the parents of "block" is this object!
}
return false;
}
bool Block::Contains(const Range &range) const {
return m_ranges.FindEntryThatContains(range) != nullptr;
}
Block *Block::GetParent() const {
if (m_parent_scope)
return m_parent_scope->CalculateSymbolContextBlock();
return nullptr;
}
Block *Block::GetContainingInlinedBlock() {
if (GetInlinedFunctionInfo())
return this;
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
return GetInlinedParent();
}
Block *Block::GetInlinedParent() {
Block *parent_block = GetParent();
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
if (parent_block) {
if (parent_block->GetInlinedFunctionInfo())
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
return parent_block;
else
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
return parent_block->GetInlinedParent();
}
return nullptr;
}
Include inlined functions when figuring out a contiguous address range Checking this in for Antonio Afonso: This diff changes the function LineEntry::GetSameLineContiguousAddressRange so that it also includes function calls that were inlined at the same line of code. My motivation is to decrease the step over time of lines that heavly rely on inlined functions. I have multiple examples in the code base I work that makes a step over stop 20 or mote times internally. This can easly had up to step overs that take >500ms which I was able to lower to 25ms with this new strategy. The reason the current code is not extending the address range beyond an inlined function is because when we resolve the symbol at the next address of the line entry we will get the entry line corresponding to where the original code for the inline function lives, making us barely extend the range. This then will end up on a step over having to stop multiple times everytime there's an inlined function. To check if the range is an inlined function at that line I also get the block associated with the next address and check if there is a parent block with a call site at the line we're trying to extend. To check this I created a new function in Block called GetContainingInlinedBlockWithCallSite that does exactly that. I also added a new function to Declaration for convinence of checking file/line named CompareFileAndLine. To avoid potential issues when extending an address range I added an Extend function that extends the range by the AddressRange given as an argument. This function returns true to indicate sucess when the rage was agumented, false otherwise (e.g.: the ranges are not connected). The reason I do is to make sure that we're not just blindly extending complete_line_range by whatever GetByteSize() we got. If for some reason the ranges are not connected or overlap, or even 0, this could be an issue. I also added a unit tests for this change and include the instructions on the test itself on how to generate the yaml file I use for testing. Differential Revision: https://reviews.llvm.org/D61292 llvm-svn: 360071
2019-05-07 04:01:21 +08:00
Block *Block::GetContainingInlinedBlockWithCallSite(
const Declaration &find_call_site) {
2019-06-29 08:55:13 +08:00
Block *inlined_block = GetContainingInlinedBlock();
Include inlined functions when figuring out a contiguous address range Checking this in for Antonio Afonso: This diff changes the function LineEntry::GetSameLineContiguousAddressRange so that it also includes function calls that were inlined at the same line of code. My motivation is to decrease the step over time of lines that heavly rely on inlined functions. I have multiple examples in the code base I work that makes a step over stop 20 or mote times internally. This can easly had up to step overs that take >500ms which I was able to lower to 25ms with this new strategy. The reason the current code is not extending the address range beyond an inlined function is because when we resolve the symbol at the next address of the line entry we will get the entry line corresponding to where the original code for the inline function lives, making us barely extend the range. This then will end up on a step over having to stop multiple times everytime there's an inlined function. To check if the range is an inlined function at that line I also get the block associated with the next address and check if there is a parent block with a call site at the line we're trying to extend. To check this I created a new function in Block called GetContainingInlinedBlockWithCallSite that does exactly that. I also added a new function to Declaration for convinence of checking file/line named CompareFileAndLine. To avoid potential issues when extending an address range I added an Extend function that extends the range by the AddressRange given as an argument. This function returns true to indicate sucess when the rage was agumented, false otherwise (e.g.: the ranges are not connected). The reason I do is to make sure that we're not just blindly extending complete_line_range by whatever GetByteSize() we got. If for some reason the ranges are not connected or overlap, or even 0, this could be an issue. I also added a unit tests for this change and include the instructions on the test itself on how to generate the yaml file I use for testing. Differential Revision: https://reviews.llvm.org/D61292 llvm-svn: 360071
2019-05-07 04:01:21 +08:00
while (inlined_block) {
2019-06-29 08:55:13 +08:00
const auto *function_info = inlined_block->GetInlinedFunctionInfo();
Include inlined functions when figuring out a contiguous address range Checking this in for Antonio Afonso: This diff changes the function LineEntry::GetSameLineContiguousAddressRange so that it also includes function calls that were inlined at the same line of code. My motivation is to decrease the step over time of lines that heavly rely on inlined functions. I have multiple examples in the code base I work that makes a step over stop 20 or mote times internally. This can easly had up to step overs that take >500ms which I was able to lower to 25ms with this new strategy. The reason the current code is not extending the address range beyond an inlined function is because when we resolve the symbol at the next address of the line entry we will get the entry line corresponding to where the original code for the inline function lives, making us barely extend the range. This then will end up on a step over having to stop multiple times everytime there's an inlined function. To check if the range is an inlined function at that line I also get the block associated with the next address and check if there is a parent block with a call site at the line we're trying to extend. To check this I created a new function in Block called GetContainingInlinedBlockWithCallSite that does exactly that. I also added a new function to Declaration for convinence of checking file/line named CompareFileAndLine. To avoid potential issues when extending an address range I added an Extend function that extends the range by the AddressRange given as an argument. This function returns true to indicate sucess when the rage was agumented, false otherwise (e.g.: the ranges are not connected). The reason I do is to make sure that we're not just blindly extending complete_line_range by whatever GetByteSize() we got. If for some reason the ranges are not connected or overlap, or even 0, this could be an issue. I also added a unit tests for this change and include the instructions on the test itself on how to generate the yaml file I use for testing. Differential Revision: https://reviews.llvm.org/D61292 llvm-svn: 360071
2019-05-07 04:01:21 +08:00
if (function_info &&
function_info->GetCallSite().FileAndLineEqual(find_call_site))
return inlined_block;
inlined_block = inlined_block->GetInlinedParent();
}
return nullptr;
}
bool Block::GetRangeContainingOffset(const addr_t offset, Range &range) {
const Range *range_ptr = m_ranges.FindEntryThatContains(offset);
if (range_ptr) {
range = *range_ptr;
return true;
}
range.Clear();
return false;
}
bool Block::GetRangeContainingAddress(const Address &addr,
AddressRange &range) {
Function *function = CalculateSymbolContextFunction();
if (function) {
const AddressRange &func_range = function->GetAddressRange();
if (addr.GetSection() == func_range.GetBaseAddress().GetSection()) {
const addr_t addr_offset = addr.GetOffset();
const addr_t func_offset = func_range.GetBaseAddress().GetOffset();
if (addr_offset >= func_offset &&
addr_offset < func_offset + func_range.GetByteSize()) {
addr_t offset = addr_offset - func_offset;
const Range *range_ptr = m_ranges.FindEntryThatContains(offset);
if (range_ptr) {
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
range.GetBaseAddress() = func_range.GetBaseAddress();
range.GetBaseAddress().SetOffset(func_offset +
range_ptr->GetRangeBase());
range.SetByteSize(range_ptr->GetByteSize());
return true;
}
}
}
}
range.Clear();
return false;
}
bool Block::GetRangeContainingLoadAddress(lldb::addr_t load_addr,
Target &target, AddressRange &range) {
Address load_address;
load_address.SetLoadAddress(load_addr, &target);
AddressRange containing_range;
return GetRangeContainingAddress(load_address, containing_range);
}
uint32_t Block::GetRangeIndexContainingAddress(const Address &addr) {
Function *function = CalculateSymbolContextFunction();
if (function) {
const AddressRange &func_range = function->GetAddressRange();
if (addr.GetSection() == func_range.GetBaseAddress().GetSection()) {
const addr_t addr_offset = addr.GetOffset();
const addr_t func_offset = func_range.GetBaseAddress().GetOffset();
if (addr_offset >= func_offset &&
addr_offset < func_offset + func_range.GetByteSize()) {
addr_t offset = addr_offset - func_offset;
return m_ranges.FindEntryIndexThatContains(offset);
}
}
}
return UINT32_MAX;
}
bool Block::GetRangeAtIndex(uint32_t range_idx, AddressRange &range) {
if (range_idx < m_ranges.GetSize()) {
Function *function = CalculateSymbolContextFunction();
if (function) {
const Range &vm_range = m_ranges.GetEntryRef(range_idx);
range.GetBaseAddress() = function->GetAddressRange().GetBaseAddress();
range.GetBaseAddress().Slide(vm_range.GetRangeBase());
range.SetByteSize(vm_range.GetByteSize());
return true;
}
}
return false;
}
bool Block::GetStartAddress(Address &addr) {
if (m_ranges.IsEmpty())
return false;
Function *function = CalculateSymbolContextFunction();
if (function) {
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
addr = function->GetAddressRange().GetBaseAddress();
addr.Slide(m_ranges.GetEntryRef(0).GetRangeBase());
return true;
}
return false;
}
void Block::FinalizeRanges() {
m_ranges.Sort();
m_ranges.CombineConsecutiveRanges();
}
void Block::AddRange(const Range &range) {
Block *parent_block = GetParent();
if (parent_block && !parent_block->Contains(range)) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
if (log) {
ModuleSP module_sp(m_parent_scope->CalculateSymbolContextModule());
Function *function = m_parent_scope->CalculateSymbolContextFunction();
const addr_t function_file_addr =
function->GetAddressRange().GetBaseAddress().GetFileAddress();
const addr_t block_start_addr = function_file_addr + range.GetRangeBase();
const addr_t block_end_addr = function_file_addr + range.GetRangeEnd();
Type *func_type = function->GetType();
const Declaration &func_decl = func_type->GetDeclaration();
if (func_decl.GetLine()) {
LLDB_LOGF(log,
"warning: %s:%u block {0x%8.8" PRIx64
"} has range[%u] [0x%" PRIx64 " - 0x%" PRIx64
") which is not contained in parent block {0x%8.8" PRIx64
"} in function {0x%8.8" PRIx64 "} from %s",
func_decl.GetFile().GetPath().c_str(), func_decl.GetLine(),
GetID(), (uint32_t)m_ranges.GetSize(), block_start_addr,
block_end_addr, parent_block->GetID(), function->GetID(),
module_sp->GetFileSpec().GetPath().c_str());
} else {
LLDB_LOGF(log,
"warning: block {0x%8.8" PRIx64 "} has range[%u] [0x%" PRIx64
" - 0x%" PRIx64
") which is not contained in parent block {0x%8.8" PRIx64
"} in function {0x%8.8" PRIx64 "} from %s",
GetID(), (uint32_t)m_ranges.GetSize(), block_start_addr,
block_end_addr, parent_block->GetID(), function->GetID(),
module_sp->GetFileSpec().GetPath().c_str());
}
}
parent_block->AddRange(range);
}
m_ranges.Append(range);
}
// Return the current number of bytes that this object occupies in memory
size_t Block::MemorySize() const {
size_t mem_size = sizeof(Block) + m_ranges.GetSize() * sizeof(Range);
if (m_inlineInfoSP.get())
mem_size += m_inlineInfoSP->MemorySize();
if (m_variable_list_sp.get())
mem_size += m_variable_list_sp->MemorySize();
return mem_size;
}
void Block::AddChild(const BlockSP &child_block_sp) {
if (child_block_sp) {
child_block_sp->SetParentScope(this);
m_children.push_back(child_block_sp);
}
}
void Block::SetInlinedFunctionInfo(const char *name, const char *mangled,
const Declaration *decl_ptr,
const Declaration *call_decl_ptr) {
m_inlineInfoSP = std::make_shared<InlineFunctionInfo>(name, mangled, decl_ptr,
call_decl_ptr);
}
VariableListSP Block::GetBlockVariableList(bool can_create) {
if (!m_parsed_block_variables) {
if (m_variable_list_sp.get() == nullptr && can_create) {
m_parsed_block_variables = true;
SymbolContext sc;
CalculateSymbolContext(&sc);
assert(sc.module_sp);
sc.module_sp->GetSymbolFile()->ParseVariablesForContext(sc);
}
}
return m_variable_list_sp;
}
uint32_t
Block::AppendBlockVariables(bool can_create, bool get_child_block_variables,
bool stop_if_child_block_is_inlined_function,
const std::function<bool(Variable *)> &filter,
VariableList *variable_list) {
uint32_t num_variables_added = 0;
VariableList *block_var_list = GetBlockVariableList(can_create).get();
if (block_var_list) {
for (const VariableSP &var_sp : *block_var_list) {
if (filter(var_sp.get())) {
num_variables_added++;
variable_list->AddVariable(var_sp);
}
}
}
if (get_child_block_variables) {
collection::const_iterator pos, end = m_children.end();
for (pos = m_children.begin(); pos != end; ++pos) {
Block *child_block = pos->get();
if (!stop_if_child_block_is_inlined_function ||
child_block->GetInlinedFunctionInfo() == nullptr) {
num_variables_added += child_block->AppendBlockVariables(
can_create, get_child_block_variables,
stop_if_child_block_is_inlined_function, filter, variable_list);
}
}
}
return num_variables_added;
}
uint32_t Block::AppendVariables(bool can_create, bool get_parent_variables,
bool stop_if_block_is_inlined_function,
const std::function<bool(Variable *)> &filter,
VariableList *variable_list) {
uint32_t num_variables_added = 0;
VariableListSP variable_list_sp(GetBlockVariableList(can_create));
bool is_inlined_function = GetInlinedFunctionInfo() != nullptr;
if (variable_list_sp) {
for (size_t i = 0; i < variable_list_sp->GetSize(); ++i) {
VariableSP variable = variable_list_sp->GetVariableAtIndex(i);
if (filter(variable.get())) {
num_variables_added++;
variable_list->AddVariable(variable);
}
}
}
if (get_parent_variables) {
Added support for inlined stack frames being represented as real stack frames which is now on by default. Frames are gotten from the unwinder as concrete frames, then if inline frames are to be shown, extra information to track and reconstruct these frames is cached with each Thread and exanded as needed. I added an inline height as part of the lldb_private::StackID class, the class that helps us uniquely identify stack frames. This allows for two frames to shared the same call frame address, yet differ only in inline height. Fixed setting breakpoint by address to not require addresses to resolve. A quick example: % cat main.cpp % ./build/Debug/lldb test/stl/a.out Current executable set to 'test/stl/a.out' (x86_64). (lldb) breakpoint set --address 0x0000000100000d31 Breakpoint created: 1: address = 0x0000000100000d31, locations = 1 (lldb) r Launching 'a.out' (x86_64) (lldb) Process 38031 Stopped * thread #1: tid = 0x2e03, pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280, stop reason = breakpoint 1.1, queue = com.apple.main-thread 277 278 _CharT* 279 _M_data() const 280 -> { return _M_dataplus._M_p; } 281 282 _CharT* 283 _M_data(_CharT* __p) (lldb) bt thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread frame #0: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_data() const at /usr/include/c++/4.2.1/bits/basic_string.h:280 frame #1: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::_M_rep() const at /usr/include/c++/4.2.1/bits/basic_string.h:288 frame #2: pc = 0x0000000100000d31, where = a.out`main [inlined] std::string::size() const at /usr/include/c++/4.2.1/bits/basic_string.h:606 frame #3: pc = 0x0000000100000d31, where = a.out`main [inlined] operator<< <char, std::char_traits<char>, std::allocator<char> > at /usr/include/c++/4.2.1/bits/basic_string.h:2414 frame #4: pc = 0x0000000100000d31, where = a.out`main + 33 at /Volumes/work/gclayton/Documents/src/lldb/test/stl/main.cpp:14 frame #5: pc = 0x0000000100000d08, where = a.out`start + 52 Each inline frame contains only the variables that they contain and each inlined stack frame is treated as a single entity. llvm-svn: 111877
2010-08-24 08:45:41 +08:00
if (stop_if_block_is_inlined_function && is_inlined_function)
return num_variables_added;
Block *parent_block = GetParent();
if (parent_block)
num_variables_added += parent_block->AppendVariables(
can_create, get_parent_variables, stop_if_block_is_inlined_function,
filter, variable_list);
}
return num_variables_added;
}
SymbolFile *Block::GetSymbolFile() {
if (ModuleSP module_sp = CalculateSymbolContextModule())
return module_sp->GetSymbolFile();
return nullptr;
}
CompilerDeclContext Block::GetDeclContext() {
if (SymbolFile *sym_file = GetSymbolFile())
return sym_file->GetDeclContextForUID(GetID());
Final bit of type system cleanup that abstracts declaration contexts into lldb_private::CompilerDeclContext and renames ClangType to CompilerType in many accessors and functions. Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files. Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types. Bulk renames for things that used to return a ClangASTType which is now CompilerType: "Type::GetClangFullType()" to "Type::GetFullCompilerType()" "Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()" "Type::GetClangForwardType()" to "Type::GetForwardCompilerType()" "Value::GetClangType()" to "Value::GetCompilerType()" "Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)" "ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()" many more renames that are similar. llvm-svn: 245905
2015-08-25 07:46:31 +08:00
return CompilerDeclContext();
}
void Block::SetBlockInfoHasBeenParsed(bool b, bool set_children) {
m_parsed_block_info = b;
if (set_children) {
m_parsed_child_blocks = true;
collection::const_iterator pos, end = m_children.end();
for (pos = m_children.begin(); pos != end; ++pos)
(*pos)->SetBlockInfoHasBeenParsed(b, true);
}
}
void Block::SetDidParseVariables(bool b, bool set_children) {
m_parsed_block_variables = b;
if (set_children) {
collection::const_iterator pos, end = m_children.end();
for (pos = m_children.begin(); pos != end; ++pos)
(*pos)->SetDidParseVariables(b, true);
}
}
Block *Block::GetSibling() const {
if (m_parent_scope) {
Block *parent_block = GetParent();
if (parent_block)
return parent_block->GetSiblingForChild(this);
}
return nullptr;
}
// A parent of child blocks can be asked to find a sibling block given
// one of its child blocks
Block *Block::GetSiblingForChild(const Block *child_block) const {
if (!m_children.empty()) {
collection::const_iterator pos, end = m_children.end();
for (pos = m_children.begin(); pos != end; ++pos) {
if (pos->get() == child_block) {
if (++pos != end)
return pos->get();
break;
}
}
}
return nullptr;
}