llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

553 lines
19 KiB
C
Raw Normal View History

//===-- AMDGPUISelLowering.h - AMDGPU Lowering Interface --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Interface definition of the TargetLowering class that is common
/// to all AMD GPUs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_AMDGPUISELLOWERING_H
#define LLVM_LIB_TARGET_AMDGPU_AMDGPUISELLOWERING_H
#include "AMDGPU.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/TargetLowering.h"
namespace llvm {
class AMDGPUMachineFunction;
class AMDGPUSubtarget;
struct ArgDescriptor;
class AMDGPUTargetLowering : public TargetLowering {
private:
const AMDGPUSubtarget *Subtarget;
/// \returns AMDGPUISD::FFBH_U32 node if the incoming \p Op may have been
/// legalized from a smaller type VT. Need to match pre-legalized type because
/// the generic legalization inserts the add/sub between the select and
/// compare.
SDValue getFFBX_U32(SelectionDAG &DAG, SDValue Op, const SDLoc &DL, unsigned Opc) const;
public:
static unsigned numBitsUnsigned(SDValue Op, SelectionDAG &DAG);
static unsigned numBitsSigned(SDValue Op, SelectionDAG &DAG);
static bool hasDefinedInitializer(const GlobalValue *GV);
protected:
SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
/// Split a vector store into multiple scalar stores.
/// \returns The resulting chain.
SDValue LowerFREM(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFCEIL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFROUND64(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFROUND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLOG(SDValue Op, SelectionDAG &DAG,
double Log2BaseInverted) const;
SDValue lowerFEXP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, bool Signed) const;
SDValue LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, bool Signed) const;
SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, bool Signed) const;
SDValue LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
protected:
bool shouldCombineMemoryType(EVT VT) const;
SDValue performLoadCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performStoreCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performAssertSZExtCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performIntrinsicWOChainCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue splitBinaryBitConstantOpImpl(DAGCombinerInfo &DCI, const SDLoc &SL,
unsigned Opc, SDValue LHS,
uint32_t ValLo, uint32_t ValHi) const;
SDValue performShlCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performSraCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performSrlCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performTruncateCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performMulCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performMulhsCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performMulhuCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performMulLoHi24Combine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, SDValue LHS,
SDValue RHS, DAGCombinerInfo &DCI) const;
SDValue performSelectCombine(SDNode *N, DAGCombinerInfo &DCI) const;
bool isConstantCostlierToNegate(SDValue N) const;
SDValue performFNegCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performFAbsCombine(SDNode *N, DAGCombinerInfo &DCI) const;
SDValue performRcpCombine(SDNode *N, DAGCombinerInfo &DCI) const;
static EVT getEquivalentMemType(LLVMContext &Context, EVT VT);
virtual SDValue LowerGlobalAddress(AMDGPUMachineFunction *MFI, SDValue Op,
SelectionDAG &DAG) const;
/// Return 64-bit value Op as two 32-bit integers.
std::pair<SDValue, SDValue> split64BitValue(SDValue Op,
SelectionDAG &DAG) const;
SDValue getLoHalf64(SDValue Op, SelectionDAG &DAG) const;
SDValue getHiHalf64(SDValue Op, SelectionDAG &DAG) const;
/// Split a vector type into two parts. The first part is a power of two
/// vector. The second part is whatever is left over, and is a scalar if it
/// would otherwise be a 1-vector.
std::pair<EVT, EVT> getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const;
/// Split a vector value into two parts of types LoVT and HiVT. HiVT could be
/// scalar.
std::pair<SDValue, SDValue> splitVector(const SDValue &N, const SDLoc &DL,
const EVT &LoVT, const EVT &HighVT,
SelectionDAG &DAG) const;
/// Split a vector load into 2 loads of half the vector.
SDValue SplitVectorLoad(SDValue Op, SelectionDAG &DAG) const;
/// Widen a vector load from vec3 to vec4.
SDValue WidenVectorLoad(SDValue Op, SelectionDAG &DAG) const;
/// Split a vector store into 2 stores of half the vector.
SDValue SplitVectorStore(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const;
void LowerUDIVREM64(SDValue Op, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &Results) const;
void analyzeFormalArgumentsCompute(
CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const;
public:
AMDGPUTargetLowering(const TargetMachine &TM, const AMDGPUSubtarget &STI);
bool mayIgnoreSignedZero(SDValue Op) const {
if (getTargetMachine().Options.NoSignedZerosFPMath)
return true;
const auto Flags = Op.getNode()->getFlags();
if (Flags.isDefined())
return Flags.hasNoSignedZeros();
return false;
}
static inline SDValue stripBitcast(SDValue Val) {
return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
}
static bool allUsesHaveSourceMods(const SDNode *N,
unsigned CostThreshold = 4);
bool isFAbsFree(EVT VT) const override;
bool isFNegFree(EVT VT) const override;
bool isTruncateFree(EVT Src, EVT Dest) const override;
bool isTruncateFree(Type *Src, Type *Dest) const override;
bool isZExtFree(Type *Src, Type *Dest) const override;
bool isZExtFree(EVT Src, EVT Dest) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
MVT getVectorIdxTy(const DataLayout &) const override;
bool isSelectSupported(SelectSupportKind) const override;
bool isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const override;
bool ShouldShrinkFPConstant(EVT VT) const override;
bool shouldReduceLoadWidth(SDNode *Load,
ISD::LoadExtType ExtType,
EVT ExtVT) const override;
bool isLoadBitCastBeneficial(EVT, EVT, const SelectionDAG &DAG,
const MachineMemOperand &MMO) const final;
bool storeOfVectorConstantIsCheap(EVT MemVT,
unsigned NumElem,
unsigned AS) const override;
bool aggressivelyPreferBuildVectorSources(EVT VecVT) const override;
bool isCheapToSpeculateCttz() const override;
bool isCheapToSpeculateCtlz() const override;
bool isSDNodeAlwaysUniform(const SDNode *N) const override;
static CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg);
static CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC, bool IsVarArg);
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
SelectionDAG &DAG) const override;
SDValue addTokenForArgument(SDValue Chain,
SelectionDAG &DAG,
MachineFrameInfo &MFI,
int ClobberedFI) const;
SDValue lowerUnhandledCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals,
StringRef Reason) const;
SDValue LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
void ReplaceNodeResults(SDNode * N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
SDValue combineFMinMaxLegacy(const SDLoc &DL, EVT VT, SDValue LHS,
SDValue RHS, SDValue True, SDValue False,
SDValue CC, DAGCombinerInfo &DCI) const;
const char* getTargetNodeName(unsigned Opcode) const override;
// FIXME: Turn off MergeConsecutiveStores() before Instruction Selection for
// AMDGPU. Commit r319036,
// (https://github.com/llvm/llvm-project/commit/db77e57ea86d941a4262ef60261692f4cb6893e6)
// turned on MergeConsecutiveStores() before Instruction Selection for all
// targets. Enough AMDGPU compiles go into an infinite loop (
// MergeConsecutiveStores() merges two stores; LegalizeStoreOps() un-merges;
// MergeConsecutiveStores() re-merges, etc. ) to warrant turning it off for
// now.
bool mergeStoresAfterLegalization(EVT) const override { return false; }
bool isFsqrtCheap(SDValue Operand, SelectionDAG &DAG) const override {
return true;
}
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &RefinementSteps, bool &UseOneConstNR,
bool Reciprocal) const override;
[Target] remove TargetRecip class; 2nd try This is a retry of r284495 which was reverted at r284513 due to use-after-scope bugs caused by faulty usage of StringRef. This version also renames a pair of functions: getRecipEstimateDivEnabled() getRecipEstimateSqrtEnabled() as suggested by Eric Christopher. original commit msg: [Target] remove TargetRecip class; move reciprocal estimate isel functionality to TargetLowering This is a follow-up to https://reviews.llvm.org/D24816 - where we changed reciprocal estimates to be function attributes rather than TargetOptions. This patch is intended to be a structural, but not functional change. By moving all of the TargetRecip functionality into TargetLowering, we can remove all of the reciprocal estimate state, shield the callers from the string format implementation, and simplify/localize the logic needed for a target to enable this. If a function has a "reciprocal-estimates" attribute, those settings may override the target's default reciprocal preferences for whatever operation and data type we're trying to optimize. If there's no attribute string or specific setting for the op/type pair, just use the target default settings. As noted earlier, a better solution would be to move the reciprocal estimate settings to IR instructions and SDNodes rather than function attributes, but that's a multi-step job that requires infrastructure improvements. I intend to work on that, but it's not clear how long it will take to get all the pieces in place. Differential Revision: https://reviews.llvm.org/D25440 llvm-svn: 284746
2016-10-21 00:55:45 +08:00
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &RefinementSteps) const override;
virtual SDNode *PostISelFolding(MachineSDNode *N,
SelectionDAG &DAG) const = 0;
/// Determine which of the bits specified in \p Mask are known to be
/// either zero or one and return them in the \p KnownZero and \p KnownOne
/// bitsets.
void computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
bool isKnownNeverNaNForTargetNode(SDValue Op,
const SelectionDAG &DAG,
bool SNaN = false,
unsigned Depth = 0) const override;
/// Helper function that adds Reg to the LiveIn list of the DAG's
/// MachineFunction.
///
/// \returns a RegisterSDNode representing Reg if \p RawReg is true, otherwise
/// a copy from the register.
SDValue CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT,
const SDLoc &SL,
bool RawReg = false) const;
SDValue CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
return CreateLiveInRegister(DAG, RC, Reg, VT, SDLoc(DAG.getEntryNode()));
}
// Returns the raw live in register rather than a copy from it.
SDValue CreateLiveInRegisterRaw(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
return CreateLiveInRegister(DAG, RC, Reg, VT, SDLoc(DAG.getEntryNode()), true);
}
/// Similar to CreateLiveInRegister, except value maybe loaded from a stack
/// slot rather than passed in a register.
SDValue loadStackInputValue(SelectionDAG &DAG,
EVT VT,
const SDLoc &SL,
int64_t Offset) const;
SDValue storeStackInputValue(SelectionDAG &DAG,
const SDLoc &SL,
SDValue Chain,
SDValue ArgVal,
int64_t Offset) const;
SDValue loadInputValue(SelectionDAG &DAG,
const TargetRegisterClass *RC,
EVT VT, const SDLoc &SL,
const ArgDescriptor &Arg) const;
enum ImplicitParameter {
FIRST_IMPLICIT,
GRID_DIM = FIRST_IMPLICIT,
GRID_OFFSET,
};
/// Helper function that returns the byte offset of the given
/// type of implicit parameter.
uint32_t getImplicitParameterOffset(const MachineFunction &MF,
const ImplicitParameter Param) const;
MVT getFenceOperandTy(const DataLayout &DL) const override {
return MVT::i32;
}
AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const override;
bool SelectFlatOffset(bool IsSigned, SelectionDAG &DAG, SDNode *N,
SDValue Addr, SDValue &VAddr, SDValue &Offset,
SDValue &SLC) const;
};
namespace AMDGPUISD {
enum NodeType : unsigned {
// AMDIL ISD Opcodes
FIRST_NUMBER = ISD::BUILTIN_OP_END,
UMUL, // 32bit unsigned multiplication
BRANCH_COND,
// End AMDIL ISD Opcodes
// Function call.
CALL,
TC_RETURN,
TRAP,
// Masked control flow nodes.
IF,
ELSE,
LOOP,
// A uniform kernel return that terminates the wavefront.
ENDPGM,
// Return to a shader part's epilog code.
RETURN_TO_EPILOG,
// Return with values from a non-entry function.
RET_FLAG,
DWORDADDR,
FRACT,
/// CLAMP value between 0.0 and 1.0. NaN clamped to 0, following clamp output
/// modifier behavior with dx10_enable.
CLAMP,
// This is SETCC with the full mask result which is used for a compare with a
// result bit per item in the wavefront.
SETCC,
SETREG,
DENORM_MODE,
// FP ops with input and output chain.
FMA_W_CHAIN,
FMUL_W_CHAIN,
// SIN_HW, COS_HW - f32 for SI, 1 ULP max error, valid from -100 pi to 100 pi.
// Denormals handled on some parts.
COS_HW,
SIN_HW,
FMAX_LEGACY,
FMIN_LEGACY,
FMAX3,
SMAX3,
UMAX3,
FMIN3,
SMIN3,
UMIN3,
FMED3,
SMED3,
UMED3,
FDOT2,
URECIP,
DIV_SCALE,
DIV_FMAS,
DIV_FIXUP,
// For emitting ISD::FMAD when f32 denormals are enabled because mac/mad is
// treated as an illegal operation.
FMAD_FTZ,
TRIG_PREOP, // 1 ULP max error for f64
// RCP, RSQ - For f32, 1 ULP max error, no denormal handling.
// For f64, max error 2^29 ULP, handles denormals.
RCP,
RSQ,
RCP_LEGACY,
RSQ_LEGACY,
RCP_IFLAG,
FMUL_LEGACY,
RSQ_CLAMP,
LDEXP,
FP_CLASS,
DOT4,
CARRY,
BORROW,
BFE_U32, // Extract range of bits with zero extension to 32-bits.
BFE_I32, // Extract range of bits with sign extension to 32-bits.
BFI, // (src0 & src1) | (~src0 & src2)
BFM, // Insert a range of bits into a 32-bit word.
FFBH_U32, // ctlz with -1 if input is zero.
FFBH_I32,
FFBL_B32, // cttz with -1 if input is zero.
MUL_U24,
MUL_I24,
MULHI_U24,
MULHI_I24,
MAD_U24,
MAD_I24,
MAD_U64_U32,
MAD_I64_I32,
MUL_LOHI_I24,
MUL_LOHI_U24,
PERM,
TEXTURE_FETCH,
EXPORT, // exp on SI+
EXPORT_DONE, // exp on SI+ with done bit set
R600_EXPORT,
CONST_ADDRESS,
REGISTER_LOAD,
REGISTER_STORE,
SAMPLE,
SAMPLEB,
SAMPLED,
SAMPLEL,
// These cvt_f32_ubyte* nodes need to remain consecutive and in order.
CVT_F32_UBYTE0,
CVT_F32_UBYTE1,
CVT_F32_UBYTE2,
CVT_F32_UBYTE3,
// Convert two float 32 numbers into a single register holding two packed f16
// with round to zero.
CVT_PKRTZ_F16_F32,
CVT_PKNORM_I16_F32,
CVT_PKNORM_U16_F32,
CVT_PK_I16_I32,
CVT_PK_U16_U32,
// Same as the standard node, except the high bits of the resulting integer
// are known 0.
FP_TO_FP16,
// Wrapper around fp16 results that are known to zero the high bits.
FP16_ZEXT,
/// This node is for VLIW targets and it is used to represent a vector
/// that is stored in consecutive registers with the same channel.
/// For example:
/// |X |Y|Z|W|
/// T0|v.x| | | |
/// T1|v.y| | | |
/// T2|v.z| | | |
/// T3|v.w| | | |
BUILD_VERTICAL_VECTOR,
/// Pointer to the start of the shader's constant data.
CONST_DATA_PTR,
INTERP_MOV,
INTERP_P1,
INTERP_P2,
INTERP_P1LL_F16,
INTERP_P1LV_F16,
INTERP_P2_F16,
PC_ADD_REL_OFFSET,
LDS,
KILL,
DUMMY_CHAIN,
FIRST_MEM_OPCODE_NUMBER = ISD::FIRST_TARGET_MEMORY_OPCODE,
LOAD_D16_HI,
LOAD_D16_LO,
LOAD_D16_HI_I8,
LOAD_D16_HI_U8,
LOAD_D16_LO_I8,
LOAD_D16_LO_U8,
STORE_MSKOR,
LOAD_CONSTANT,
TBUFFER_STORE_FORMAT,
TBUFFER_STORE_FORMAT_D16,
TBUFFER_LOAD_FORMAT,
TBUFFER_LOAD_FORMAT_D16,
DS_ORDERED_COUNT,
ATOMIC_CMP_SWAP,
ATOMIC_INC,
ATOMIC_DEC,
ATOMIC_LOAD_FMIN,
ATOMIC_LOAD_FMAX,
BUFFER_LOAD,
BUFFER_LOAD_UBYTE,
BUFFER_LOAD_USHORT,
BUFFER_LOAD_BYTE,
BUFFER_LOAD_SHORT,
BUFFER_LOAD_FORMAT,
BUFFER_LOAD_FORMAT_D16,
SBUFFER_LOAD,
BUFFER_STORE,
BUFFER_STORE_BYTE,
BUFFER_STORE_SHORT,
BUFFER_STORE_FORMAT,
BUFFER_STORE_FORMAT_D16,
BUFFER_ATOMIC_SWAP,
BUFFER_ATOMIC_ADD,
BUFFER_ATOMIC_SUB,
BUFFER_ATOMIC_SMIN,
BUFFER_ATOMIC_UMIN,
BUFFER_ATOMIC_SMAX,
BUFFER_ATOMIC_UMAX,
BUFFER_ATOMIC_AND,
BUFFER_ATOMIC_OR,
BUFFER_ATOMIC_XOR,
BUFFER_ATOMIC_INC,
BUFFER_ATOMIC_DEC,
BUFFER_ATOMIC_CMPSWAP,
BUFFER_ATOMIC_FADD,
BUFFER_ATOMIC_PK_FADD,
ATOMIC_FADD,
ATOMIC_PK_FADD,
LAST_AMDGPU_ISD_NUMBER
};
} // End namespace AMDGPUISD
} // End namespace llvm
#endif