llvm-project/libc/benchmarks/LibcBenchmark.h

330 lines
12 KiB
C
Raw Normal View History

//===-- Benchmark function --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file mainly defines a `Benchmark` function.
//
// The benchmarking process is as follows:
// - We start by measuring the time it takes to run the function
// `InitialIterations` times. This is called a Sample. From this we can derive
// the time it took to run a single iteration.
//
// - We repeat the previous step with a greater number of iterations to lower
// the impact of the measurement. We can derive a more precise estimation of the
// runtime for a single iteration.
//
// - Each sample gives a more accurate estimation of the runtime for a single
// iteration but also takes more time to run. We stop the process when:
// * The measure stabilize under a certain precision (Epsilon),
// * The overall benchmarking time is greater than MaxDuration,
// * The overall sample count is greater than MaxSamples,
// * The last sample used more than MaxIterations iterations.
//
// - We also makes sure that the benchmark doesn't run for a too short period of
// time by defining MinDuration and MinSamples.
#ifndef LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
#define LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H
#include "benchmark/benchmark.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include <array>
#include <chrono>
#include <cmath>
#include <cstdint>
namespace llvm {
namespace libc_benchmarks {
using Duration = std::chrono::duration<double>;
enum class BenchmarkLog {
None, // Don't keep the internal state of the benchmark.
Last, // Keep only the last batch.
Full // Keep all iterations states, useful for testing or debugging.
};
// An object to configure the benchmark stopping conditions.
// See documentation at the beginning of the file for the overall algorithm and
// meaning of each field.
struct BenchmarkOptions {
// The minimum time for which the benchmark is running.
Duration MinDuration = std::chrono::seconds(0);
// The maximum time for which the benchmark is running.
Duration MaxDuration = std::chrono::seconds(10);
// The number of iterations in the first sample.
uint32_t InitialIterations = 1;
// The maximum number of iterations for any given sample.
uint32_t MaxIterations = 10000000;
// The minimum number of samples.
uint32_t MinSamples = 4;
// The maximum number of samples.
uint32_t MaxSamples = 1000;
// The benchmark will stop if the relative difference between the current and
// the last estimation is less than epsilon. This is 1% by default.
double Epsilon = 0.01;
// The number of iterations grows exponentially between each sample.
// Must be greater or equal to 1.
double ScalingFactor = 1.4;
BenchmarkLog Log = BenchmarkLog::None;
};
// The state of a benchmark.
enum class BenchmarkStatus {
Running,
MaxDurationReached,
MaxIterationsReached,
MaxSamplesReached,
PrecisionReached,
};
// The internal state of the benchmark, useful to debug, test or report
// statistics.
struct BenchmarkState {
size_t LastSampleIterations;
Duration LastBatchElapsed;
BenchmarkStatus CurrentStatus;
Duration CurrentBestGuess; // The time estimation for a single run of `foo`.
double ChangeRatio; // The change in time estimation between previous and
// current samples.
};
// A lightweight result for a benchmark.
struct BenchmarkResult {
BenchmarkStatus TerminationStatus = BenchmarkStatus::Running;
Duration BestGuess = {};
llvm::Optional<llvm::SmallVector<BenchmarkState, 16>> MaybeBenchmarkLog;
};
// Stores information about a cache in the host memory system.
struct CacheInfo {
std::string Type; // e.g. "Instruction", "Data", "Unified".
int Level; // 0 is closest to processing unit.
int Size; // In bytes.
int NumSharing; // The number of processing units (Hyper-Threading Thread)
// with which this cache is shared.
};
// Stores information about the host.
struct HostState {
std::string CpuName; // returns a string compatible with the -march option.
double CpuFrequency; // in Hertz.
std::vector<CacheInfo> Caches;
static HostState get();
};
namespace internal {
struct Measurement {
size_t Iterations = 0;
Duration Elapsed = {};
};
// Updates the estimation of the elapsed time for a single iteration.
class RefinableRuntimeEstimation {
Duration TotalTime = {};
size_t TotalIterations = 0;
public:
Duration update(const Measurement &M) {
assert(M.Iterations > 0);
// Duration is encoded as a double (see definition).
// `TotalTime` and `M.Elapsed` are of the same magnitude so we don't expect
// loss of precision due to radically different scales.
TotalTime += M.Elapsed;
TotalIterations += M.Iterations;
return TotalTime / TotalIterations;
}
};
// This class tracks the progression of the runtime estimation.
class RuntimeEstimationProgression {
RefinableRuntimeEstimation RRE;
public:
Duration CurrentEstimation = {};
// Returns the change ratio between our best guess so far and the one from the
// new measurement.
double computeImprovement(const Measurement &M) {
const Duration NewEstimation = RRE.update(M);
const double Ratio = fabs(((CurrentEstimation / NewEstimation) - 1.0));
CurrentEstimation = NewEstimation;
return Ratio;
}
};
} // namespace internal
// Measures the runtime of `foo` until conditions defined by `Options` are met.
//
// To avoid measurement's imprecisions we measure batches of `foo`.
// The batch size is growing by `ScalingFactor` to minimize the effect of
// measuring.
//
// Note: The benchmark is not responsible for serializing the executions of
// `foo`. It is not suitable for measuring, very small & side effect free
// functions, as the processor is free to execute several executions in
// parallel.
//
// - Options: A set of parameters controlling the stopping conditions for the
// benchmark.
// - foo: The function under test. It takes one value and returns one value.
// The input value is used to randomize the execution of `foo` as part of a
// batch to mitigate the effect of the branch predictor. Signature:
// `ProductType foo(ParameterProvider::value_type value);`
// The output value is a product of the execution of `foo` and prevents the
// compiler from optimizing out foo's body.
// - ParameterProvider: An object responsible for providing a range of
// `Iterations` values to use as input for `foo`. The `value_type` of the
// returned container has to be compatible with `foo` argument.
// Must implement one of:
// `Container<ParameterType> generateBatch(size_t Iterations);`
// `const Container<ParameterType>& generateBatch(size_t Iterations);`
// - Clock: An object providing the current time. Must implement:
// `std::chrono::time_point now();`
template <typename Function, typename ParameterProvider,
typename BenchmarkClock = const std::chrono::high_resolution_clock>
BenchmarkResult benchmark(const BenchmarkOptions &Options,
ParameterProvider &PP, Function foo,
BenchmarkClock &Clock = BenchmarkClock()) {
BenchmarkResult Result;
internal::RuntimeEstimationProgression REP;
Duration TotalBenchmarkDuration = {};
size_t Iterations = std::max(Options.InitialIterations, uint32_t(1));
size_t Samples = 0;
if (Options.ScalingFactor < 1.0)
report_fatal_error("ScalingFactor should be >= 1");
if (Options.Log != BenchmarkLog::None)
Result.MaybeBenchmarkLog.emplace();
for (;;) {
// Request a new Batch of size `Iterations`.
const auto &Batch = PP.generateBatch(Iterations);
// Measuring this Batch.
const auto StartTime = Clock.now();
for (const auto Parameter : Batch) {
const auto Production = foo(Parameter);
benchmark::DoNotOptimize(Production);
}
const auto EndTime = Clock.now();
const Duration Elapsed = EndTime - StartTime;
// Updating statistics.
++Samples;
TotalBenchmarkDuration += Elapsed;
const double ChangeRatio = REP.computeImprovement({Iterations, Elapsed});
Result.BestGuess = REP.CurrentEstimation;
// Stopping condition.
if (TotalBenchmarkDuration >= Options.MinDuration &&
Samples >= Options.MinSamples && ChangeRatio < Options.Epsilon)
Result.TerminationStatus = BenchmarkStatus::PrecisionReached;
else if (Samples >= Options.MaxSamples)
Result.TerminationStatus = BenchmarkStatus::MaxSamplesReached;
else if (TotalBenchmarkDuration >= Options.MaxDuration)
Result.TerminationStatus = BenchmarkStatus::MaxDurationReached;
else if (Iterations >= Options.MaxIterations)
Result.TerminationStatus = BenchmarkStatus::MaxIterationsReached;
if (Result.MaybeBenchmarkLog) {
auto &BenchmarkLog = *Result.MaybeBenchmarkLog;
if (Options.Log == BenchmarkLog::Last && !BenchmarkLog.empty())
BenchmarkLog.pop_back();
BenchmarkState BS;
BS.LastSampleIterations = Iterations;
BS.LastBatchElapsed = Elapsed;
BS.CurrentStatus = Result.TerminationStatus;
BS.CurrentBestGuess = Result.BestGuess;
BS.ChangeRatio = ChangeRatio;
BenchmarkLog.push_back(BS);
}
if (Result.TerminationStatus != BenchmarkStatus::Running)
return Result;
if (Options.ScalingFactor > 1 &&
Iterations * Options.ScalingFactor == Iterations)
report_fatal_error(
"`Iterations *= ScalingFactor` is idempotent, increase ScalingFactor "
"or InitialIterations.");
Iterations *= Options.ScalingFactor;
}
}
// Interprets `Array` as a circular buffer of `Size` elements.
template <typename T> class CircularArrayRef {
llvm::ArrayRef<T> Array;
size_t Size;
public:
using value_type = T;
using reference = T &;
using const_reference = const T &;
using difference_type = ssize_t;
using size_type = size_t;
class const_iterator
: public std::iterator<std::input_iterator_tag, T, ssize_t> {
llvm::ArrayRef<T> Array;
size_t Index;
size_t Offset;
public:
explicit const_iterator(llvm::ArrayRef<T> Array, size_t Index = 0)
: Array(Array), Index(Index), Offset(Index % Array.size()) {}
const_iterator &operator++() {
++Index;
++Offset;
if (Offset == Array.size())
Offset = 0;
return *this;
}
bool operator==(const_iterator Other) const { return Index == Other.Index; }
bool operator!=(const_iterator Other) const { return !(*this == Other); }
const T &operator*() const { return Array[Offset]; }
};
CircularArrayRef(llvm::ArrayRef<T> Array, size_t Size)
: Array(Array), Size(Size) {
assert(Array.size() > 0);
}
const_iterator begin() const { return const_iterator(Array); }
const_iterator end() const { return const_iterator(Array, Size); }
};
// A convenient helper to produce a CircularArrayRef from an ArrayRef.
template <typename T>
CircularArrayRef<T> cycle(llvm::ArrayRef<T> Array, size_t Size) {
return {Array, Size};
}
// Creates an std::array which storage size is constrained under `Bytes`.
template <typename T, size_t Bytes>
using ByteConstrainedArray = std::array<T, Bytes / sizeof(T)>;
// A convenient helper to produce a CircularArrayRef from a
// ByteConstrainedArray.
template <typename T, size_t N>
CircularArrayRef<T> cycle(const std::array<T, N> &Container, size_t Size) {
return {llvm::ArrayRef<T>(Container.cbegin(), Container.cend()), Size};
}
// Makes sure the binary was compiled in release mode and that frequency
// governor is set on performance.
void checkRequirements();
} // namespace libc_benchmarks
} // namespace llvm
#endif // LLVM_LIBC_UTILS_BENCHMARK_BENCHMARK_H