2016-08-30 03:42:52 +08:00
|
|
|
//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
/// \file
|
|
|
|
/// This contains a MachineSchedStrategy implementation for maximizing wave
|
|
|
|
/// occupancy on GCN hardware.
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "GCNSchedStrategy.h"
|
|
|
|
#include "AMDGPUSubtarget.h"
|
|
|
|
#include "SIInstrInfo.h"
|
|
|
|
#include "SIMachineFunctionInfo.h"
|
|
|
|
#include "SIRegisterInfo.h"
|
|
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
2017-03-01 01:22:39 +08:00
|
|
|
#include "llvm/Support/MathExtras.h"
|
2016-08-30 03:42:52 +08:00
|
|
|
|
|
|
|
#define DEBUG_TYPE "misched"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
|
|
|
|
const MachineSchedContext *C) :
|
2017-03-01 03:20:33 +08:00
|
|
|
GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
|
2016-08-30 03:42:52 +08:00
|
|
|
|
|
|
|
static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
|
|
|
|
const MachineFunction &MF) {
|
|
|
|
|
|
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
|
|
|
|
ST.getOccupancyWithNumVGPRs(VGPRs));
|
|
|
|
return std::min(MinRegOccupancy,
|
2017-02-02 06:59:50 +08:00
|
|
|
ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
|
|
|
|
*MF.getFunction()));
|
2016-08-30 03:42:52 +08:00
|
|
|
}
|
|
|
|
|
2017-02-16 01:19:50 +08:00
|
|
|
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
|
|
|
|
GenericScheduler::initialize(DAG);
|
|
|
|
|
|
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
|
|
|
2017-03-01 03:20:33 +08:00
|
|
|
if (MF != &DAG->MF)
|
|
|
|
TargetOccupancy = 0;
|
|
|
|
MF = &DAG->MF;
|
|
|
|
|
|
|
|
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
|
|
|
|
|
2017-02-16 01:19:50 +08:00
|
|
|
// FIXME: This is also necessary, because some passes that run after
|
|
|
|
// scheduling and before regalloc increase register pressure.
|
|
|
|
const int ErrorMargin = 3;
|
|
|
|
|
|
|
|
SGPRExcessLimit = Context->RegClassInfo
|
|
|
|
->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
|
|
|
|
VGPRExcessLimit = Context->RegClassInfo
|
|
|
|
->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
|
2017-03-01 03:20:33 +08:00
|
|
|
if (TargetOccupancy) {
|
|
|
|
SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
|
|
|
|
VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
|
|
|
|
} else {
|
|
|
|
SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
|
|
|
|
SRI->getSGPRPressureSet());
|
|
|
|
VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
|
|
|
|
SRI->getVGPRPressureSet());
|
|
|
|
}
|
|
|
|
|
|
|
|
SGPRCriticalLimit -= ErrorMargin;
|
|
|
|
VGPRCriticalLimit -= ErrorMargin;
|
2017-02-16 01:19:50 +08:00
|
|
|
}
|
|
|
|
|
2016-08-30 03:42:52 +08:00
|
|
|
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
|
|
|
|
bool AtTop, const RegPressureTracker &RPTracker,
|
|
|
|
const SIRegisterInfo *SRI,
|
2017-02-16 01:19:50 +08:00
|
|
|
unsigned SGPRPressure,
|
|
|
|
unsigned VGPRPressure) {
|
2016-08-30 03:42:52 +08:00
|
|
|
|
|
|
|
Cand.SU = SU;
|
|
|
|
Cand.AtTop = AtTop;
|
|
|
|
|
|
|
|
// getDownwardPressure() and getUpwardPressure() make temporary changes to
|
|
|
|
// the the tracker, so we need to pass those function a non-const copy.
|
|
|
|
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
|
|
|
|
|
|
|
|
std::vector<unsigned> Pressure;
|
|
|
|
std::vector<unsigned> MaxPressure;
|
|
|
|
|
|
|
|
if (AtTop)
|
|
|
|
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
|
|
else {
|
|
|
|
// FIXME: I think for bottom up scheduling, the register pressure is cached
|
|
|
|
// and can be retrieved by DAG->getPressureDif(SU).
|
|
|
|
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
|
|
|
|
}
|
2016-11-01 08:55:14 +08:00
|
|
|
|
2017-02-16 01:19:50 +08:00
|
|
|
unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
|
|
|
|
unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
|
2016-08-30 03:42:52 +08:00
|
|
|
|
|
|
|
// If two instructions increase the pressure of different register sets
|
|
|
|
// by the same amount, the generic scheduler will prefer to schedule the
|
|
|
|
// instruction that increases the set with the least amount of registers,
|
|
|
|
// which in our case would be SGPRs. This is rarely what we want, so
|
|
|
|
// when we report excess/critical register pressure, we do it either
|
|
|
|
// only for VGPRs or only for SGPRs.
|
|
|
|
|
|
|
|
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
|
2017-02-16 01:19:50 +08:00
|
|
|
const unsigned MaxVGPRPressureInc = 16;
|
2016-08-30 03:42:52 +08:00
|
|
|
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
|
|
|
|
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
|
|
|
|
|
|
|
|
|
|
|
|
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
|
|
|
|
// to increase the likelihood we don't go over the limits. We should improve
|
|
|
|
// the analysis to look through dependencies to find the path with the least
|
|
|
|
// register pressure.
|
|
|
|
|
|
|
|
// We only need to update the RPDelata for instructions that increase
|
|
|
|
// register pressure. Instructions that decrease or keep reg pressure
|
|
|
|
// the same will be marked as RegExcess in tryCandidate() when they
|
|
|
|
// are compared with instructions that increase the register pressure.
|
|
|
|
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
|
|
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
|
|
|
|
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
|
|
|
|
Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
|
2017-01-26 18:51:47 +08:00
|
|
|
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
|
2016-08-30 03:42:52 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Register pressure is considered 'CRITICAL' if it is approaching a value
|
|
|
|
// that would reduce the wave occupancy for the execution unit. When
|
|
|
|
// register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
|
|
|
|
// has the same cost, so we don't need to prefer one over the other.
|
|
|
|
|
|
|
|
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
|
|
|
|
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
|
|
|
|
|
|
|
|
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
|
|
|
|
if (SGPRDelta > VGPRDelta) {
|
|
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
|
|
|
|
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
|
|
|
|
} else {
|
|
|
|
Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
|
|
|
|
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// This function is mostly cut and pasted from
|
|
|
|
// GenericScheduler::pickNodeFromQueue()
|
|
|
|
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
|
|
|
|
const CandPolicy &ZonePolicy,
|
|
|
|
const RegPressureTracker &RPTracker,
|
|
|
|
SchedCandidate &Cand) {
|
|
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
|
|
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
|
|
|
|
unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
|
|
|
|
unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
|
|
|
|
ReadyQueue &Q = Zone.Available;
|
|
|
|
for (SUnit *SU : Q) {
|
|
|
|
|
|
|
|
SchedCandidate TryCand(ZonePolicy);
|
|
|
|
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
|
2017-02-16 01:19:50 +08:00
|
|
|
SGPRPressure, VGPRPressure);
|
2016-08-30 03:42:52 +08:00
|
|
|
// Pass SchedBoundary only when comparing nodes from the same boundary.
|
|
|
|
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
|
|
|
|
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
|
|
|
|
if (TryCand.Reason != NoCand) {
|
|
|
|
// Initialize resource delta if needed in case future heuristics query it.
|
|
|
|
if (TryCand.ResDelta == SchedResourceDelta())
|
|
|
|
TryCand.initResourceDelta(Zone.DAG, SchedModel);
|
|
|
|
Cand.setBest(TryCand);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) {
|
|
|
|
switch (Reason) {
|
|
|
|
default:
|
|
|
|
return Reason;
|
|
|
|
case GenericSchedulerBase::RegCritical:
|
|
|
|
case GenericSchedulerBase::RegExcess:
|
|
|
|
return -Reason;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// This function is mostly cut and pasted from
|
|
|
|
// GenericScheduler::pickNodeBidirectional()
|
|
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
|
|
|
|
// Schedule as far as possible in the direction of no choice. This is most
|
|
|
|
// efficient, but also provides the best heuristics for CriticalPSets.
|
|
|
|
if (SUnit *SU = Bot.pickOnlyChoice()) {
|
|
|
|
IsTopNode = false;
|
|
|
|
return SU;
|
|
|
|
}
|
|
|
|
if (SUnit *SU = Top.pickOnlyChoice()) {
|
|
|
|
IsTopNode = true;
|
|
|
|
return SU;
|
|
|
|
}
|
|
|
|
// Set the bottom-up policy based on the state of the current bottom zone and
|
|
|
|
// the instructions outside the zone, including the top zone.
|
|
|
|
CandPolicy BotPolicy;
|
|
|
|
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
|
|
|
|
// Set the top-down policy based on the state of the current top zone and
|
|
|
|
// the instructions outside the zone, including the bottom zone.
|
|
|
|
CandPolicy TopPolicy;
|
|
|
|
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
|
|
|
|
|
|
|
|
// See if BotCand is still valid (because we previously scheduled from Top).
|
|
|
|
DEBUG(dbgs() << "Picking from Bot:\n");
|
|
|
|
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
|
|
|
|
BotCand.Policy != BotPolicy) {
|
|
|
|
BotCand.reset(CandPolicy());
|
|
|
|
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
|
|
|
|
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
|
|
|
|
} else {
|
|
|
|
DEBUG(traceCandidate(BotCand));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the top Q has a better candidate.
|
|
|
|
DEBUG(dbgs() << "Picking from Top:\n");
|
|
|
|
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
|
|
|
|
TopCand.Policy != TopPolicy) {
|
|
|
|
TopCand.reset(CandPolicy());
|
|
|
|
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
|
|
|
|
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
|
|
|
|
} else {
|
|
|
|
DEBUG(traceCandidate(TopCand));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pick best from BotCand and TopCand.
|
|
|
|
DEBUG(
|
|
|
|
dbgs() << "Top Cand: ";
|
|
|
|
traceCandidate(TopCand);
|
2017-02-07 07:16:51 +08:00
|
|
|
dbgs() << "Bot Cand: ";
|
|
|
|
traceCandidate(BotCand);
|
2016-08-30 03:42:52 +08:00
|
|
|
);
|
|
|
|
SchedCandidate Cand;
|
|
|
|
if (TopCand.Reason == BotCand.Reason) {
|
|
|
|
Cand = BotCand;
|
|
|
|
GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
|
|
|
|
TopCand.Reason = NoCand;
|
|
|
|
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
|
|
|
|
if (TopCand.Reason != NoCand) {
|
2016-11-01 08:55:14 +08:00
|
|
|
Cand.setBest(TopCand);
|
2016-08-30 03:42:52 +08:00
|
|
|
} else {
|
|
|
|
TopCand.Reason = TopReason;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
|
|
|
|
Cand = TopCand;
|
|
|
|
} else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
|
|
|
|
Cand = BotCand;
|
|
|
|
} else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
|
|
|
|
Cand = TopCand;
|
|
|
|
} else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
|
|
|
|
Cand = BotCand;
|
|
|
|
} else {
|
|
|
|
int TopRank = getBidirectionalReasonRank(TopCand.Reason);
|
|
|
|
int BotRank = getBidirectionalReasonRank(BotCand.Reason);
|
|
|
|
if (TopRank > BotRank) {
|
|
|
|
Cand = TopCand;
|
|
|
|
} else {
|
|
|
|
Cand = BotCand;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DEBUG(
|
|
|
|
dbgs() << "Picking: ";
|
|
|
|
traceCandidate(Cand);
|
|
|
|
);
|
|
|
|
|
|
|
|
IsTopNode = Cand.AtTop;
|
|
|
|
return Cand.SU;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This function is mostly cut and pasted from
|
|
|
|
// GenericScheduler::pickNode()
|
|
|
|
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
|
|
|
|
if (DAG->top() == DAG->bottom()) {
|
|
|
|
assert(Top.Available.empty() && Top.Pending.empty() &&
|
|
|
|
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
SUnit *SU;
|
|
|
|
do {
|
|
|
|
if (RegionPolicy.OnlyTopDown) {
|
|
|
|
SU = Top.pickOnlyChoice();
|
|
|
|
if (!SU) {
|
|
|
|
CandPolicy NoPolicy;
|
|
|
|
TopCand.reset(NoPolicy);
|
|
|
|
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
|
|
|
|
assert(TopCand.Reason != NoCand && "failed to find a candidate");
|
|
|
|
SU = TopCand.SU;
|
|
|
|
}
|
|
|
|
IsTopNode = true;
|
|
|
|
} else if (RegionPolicy.OnlyBottomUp) {
|
|
|
|
SU = Bot.pickOnlyChoice();
|
|
|
|
if (!SU) {
|
|
|
|
CandPolicy NoPolicy;
|
|
|
|
BotCand.reset(NoPolicy);
|
|
|
|
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
|
|
|
|
assert(BotCand.Reason != NoCand && "failed to find a candidate");
|
|
|
|
SU = BotCand.SU;
|
|
|
|
}
|
|
|
|
IsTopNode = false;
|
|
|
|
} else {
|
|
|
|
SU = pickNodeBidirectional(IsTopNode);
|
|
|
|
}
|
|
|
|
} while (SU->isScheduled);
|
|
|
|
|
|
|
|
if (SU->isTopReady())
|
|
|
|
Top.removeReady(SU);
|
|
|
|
if (SU->isBottomReady())
|
|
|
|
Bot.removeReady(SU);
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
|
|
|
|
return SU;
|
|
|
|
}
|
2017-02-16 01:19:50 +08:00
|
|
|
|
2017-03-01 03:20:33 +08:00
|
|
|
GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
|
|
|
|
std::unique_ptr<MachineSchedStrategy> S) :
|
|
|
|
ScheduleDAGMILive(C, std::move(S)),
|
|
|
|
ST(MF.getSubtarget<SISubtarget>()),
|
|
|
|
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
|
|
|
|
StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(),
|
|
|
|
*MF.getFunction())),
|
|
|
|
MinOccupancy(StartingOccupancy), Stage(0) {
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCNScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
|
|
|
|
MachineBasicBlock::iterator begin,
|
|
|
|
MachineBasicBlock::iterator end,
|
|
|
|
unsigned regioninstrs) {
|
|
|
|
ScheduleDAGMILive::enterRegion(bb, begin, end, regioninstrs);
|
|
|
|
|
|
|
|
if (Stage == 0)
|
|
|
|
Regions.push_back(std::make_pair(begin, end));
|
|
|
|
}
|
|
|
|
|
2017-02-16 01:19:50 +08:00
|
|
|
void GCNScheduleDAGMILive::schedule() {
|
|
|
|
std::vector<MachineInstr*> Unsched;
|
|
|
|
Unsched.reserve(NumRegionInstrs);
|
|
|
|
for (auto &I : *this)
|
|
|
|
Unsched.push_back(&I);
|
|
|
|
|
2017-03-01 01:22:39 +08:00
|
|
|
std::pair<unsigned, unsigned> PressureBefore;
|
|
|
|
if (LIS) {
|
|
|
|
DEBUG(dbgs() << "Pressure before scheduling:\n");
|
|
|
|
discoverLiveIns();
|
|
|
|
PressureBefore = getRealRegPressure();
|
|
|
|
}
|
|
|
|
|
2017-02-16 01:19:50 +08:00
|
|
|
ScheduleDAGMILive::schedule();
|
2017-03-01 01:22:39 +08:00
|
|
|
if (!LIS)
|
|
|
|
return;
|
2017-02-16 01:19:50 +08:00
|
|
|
|
|
|
|
// Check the results of scheduling.
|
|
|
|
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
|
2017-03-01 01:22:39 +08:00
|
|
|
DEBUG(dbgs() << "Pressure after scheduling:\n");
|
|
|
|
auto PressureAfter = getRealRegPressure();
|
|
|
|
LiveIns.clear();
|
|
|
|
|
|
|
|
if (PressureAfter.first <= S.SGPRCriticalLimit &&
|
|
|
|
PressureAfter.second <= S.VGPRCriticalLimit) {
|
2017-02-16 01:19:50 +08:00
|
|
|
DEBUG(dbgs() << "Pressure in desired limits, done.\n");
|
|
|
|
return;
|
|
|
|
}
|
2017-03-01 01:22:39 +08:00
|
|
|
unsigned WavesAfter = getMaxWaves(PressureAfter.first,
|
|
|
|
PressureAfter.second, MF);
|
|
|
|
unsigned WavesBefore = getMaxWaves(PressureBefore.first,
|
|
|
|
PressureBefore.second, MF);
|
|
|
|
DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore <<
|
|
|
|
", after " << WavesAfter << ".\n");
|
|
|
|
|
2017-03-01 03:20:33 +08:00
|
|
|
// We could not keep current target occupancy because of the just scheduled
|
|
|
|
// region. Record new occupancy for next scheduling cycle.
|
|
|
|
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
|
|
|
|
if (NewOccupancy < MinOccupancy) {
|
|
|
|
MinOccupancy = NewOccupancy;
|
|
|
|
DEBUG(dbgs() << "Occupancy lowered for the function to "
|
|
|
|
<< MinOccupancy << ".\n");
|
|
|
|
}
|
|
|
|
|
2017-03-01 01:22:39 +08:00
|
|
|
if (WavesAfter >= WavesBefore)
|
2017-02-16 01:19:50 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "Attempting to revert scheduling.\n");
|
|
|
|
RegionEnd = RegionBegin;
|
|
|
|
for (MachineInstr *MI : Unsched) {
|
|
|
|
if (MI->getIterator() != RegionEnd) {
|
|
|
|
BB->remove(MI);
|
|
|
|
BB->insert(RegionEnd, MI);
|
2017-03-01 01:22:39 +08:00
|
|
|
LIS->handleMove(*MI, true);
|
2017-03-01 00:26:27 +08:00
|
|
|
}
|
|
|
|
// Reset read-undef flags and update them later.
|
|
|
|
for (auto &Op : MI->operands())
|
|
|
|
if (Op.isReg() && Op.isDef())
|
|
|
|
Op.setIsUndef(false);
|
|
|
|
RegisterOperands RegOpers;
|
|
|
|
RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
|
|
|
|
if (ShouldTrackLaneMasks) {
|
|
|
|
// Adjust liveness and add missing dead+read-undef flags.
|
|
|
|
SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
|
|
|
|
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
|
|
|
|
} else {
|
|
|
|
// Adjust for missing dead-def flags.
|
|
|
|
RegOpers.detectDeadDefs(*MI, *LIS);
|
2017-02-16 01:19:50 +08:00
|
|
|
}
|
|
|
|
RegionEnd = MI->getIterator();
|
|
|
|
++RegionEnd;
|
|
|
|
DEBUG(dbgs() << "Scheduling " << *MI);
|
|
|
|
}
|
|
|
|
RegionBegin = Unsched.front()->getIterator();
|
|
|
|
|
|
|
|
placeDebugValues();
|
|
|
|
}
|
2017-03-01 01:22:39 +08:00
|
|
|
|
|
|
|
static inline void setMask(const MachineRegisterInfo &MRI,
|
|
|
|
const SIRegisterInfo *SRI, unsigned Reg,
|
|
|
|
LaneBitmask &PrevMask, LaneBitmask NewMask,
|
|
|
|
unsigned &SGPRs, unsigned &VGPRs) {
|
|
|
|
int NewRegs = countPopulation(NewMask.getAsInteger()) -
|
|
|
|
countPopulation(PrevMask.getAsInteger());
|
|
|
|
if (SRI->isSGPRReg(MRI, Reg))
|
|
|
|
SGPRs += NewRegs;
|
|
|
|
if (SRI->isVGPR(MRI, Reg))
|
|
|
|
VGPRs += NewRegs;
|
|
|
|
assert ((int)SGPRs >= 0 && (int)VGPRs >= 0);
|
|
|
|
PrevMask = NewMask;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCNScheduleDAGMILive::discoverLiveIns() {
|
|
|
|
unsigned SGPRs = 0;
|
|
|
|
unsigned VGPRs = 0;
|
|
|
|
|
|
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
|
|
SlotIndex SI = LIS->getInstructionIndex(*begin()).getBaseIndex();
|
|
|
|
assert (SI.isValid());
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "Region live-ins:");
|
|
|
|
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
|
|
|
|
unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
|
|
|
|
if (MRI.reg_nodbg_empty(Reg))
|
|
|
|
continue;
|
|
|
|
const LiveInterval &LI = LIS->getInterval(Reg);
|
|
|
|
LaneBitmask LaneMask = LaneBitmask::getNone();
|
|
|
|
if (LI.hasSubRanges()) {
|
|
|
|
for (const auto &S : LI.subranges())
|
|
|
|
if (S.liveAt(SI))
|
|
|
|
LaneMask |= S.LaneMask;
|
|
|
|
} else if (LI.liveAt(SI)) {
|
|
|
|
LaneMask = MRI.getMaxLaneMaskForVReg(Reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (LaneMask.any()) {
|
|
|
|
setMask(MRI, SRI, Reg, LiveIns[Reg], LaneMask, SGPRs, VGPRs);
|
|
|
|
|
|
|
|
DEBUG(dbgs() << ' ' << PrintVRegOrUnit(Reg, SRI) << ':'
|
|
|
|
<< PrintLaneMask(LiveIns[Reg]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
LiveInPressure = std::make_pair(SGPRs, VGPRs);
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "\nLive-in pressure:\nSGPR = " << SGPRs
|
|
|
|
<< "\nVGPR = " << VGPRs << '\n');
|
|
|
|
}
|
|
|
|
|
|
|
|
std::pair<unsigned, unsigned>
|
|
|
|
GCNScheduleDAGMILive::getRealRegPressure() const {
|
|
|
|
unsigned SGPRs, MaxSGPRs, VGPRs, MaxVGPRs;
|
|
|
|
SGPRs = MaxSGPRs = LiveInPressure.first;
|
|
|
|
VGPRs = MaxVGPRs = LiveInPressure.second;
|
|
|
|
|
|
|
|
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
|
|
|
|
DenseMap<unsigned, LaneBitmask> LiveRegs(LiveIns);
|
|
|
|
|
|
|
|
for (const MachineInstr &MI : *this) {
|
|
|
|
if (MI.isDebugValue())
|
|
|
|
continue;
|
|
|
|
SlotIndex SI = LIS->getInstructionIndex(MI).getBaseIndex();
|
|
|
|
assert (SI.isValid());
|
|
|
|
|
|
|
|
// Remove dead registers or mask bits.
|
|
|
|
for (auto &It : LiveRegs) {
|
|
|
|
if (It.second.none())
|
|
|
|
continue;
|
|
|
|
const LiveInterval &LI = LIS->getInterval(It.first);
|
|
|
|
if (LI.hasSubRanges()) {
|
|
|
|
for (const auto &S : LI.subranges())
|
|
|
|
if (!S.liveAt(SI))
|
|
|
|
setMask(MRI, SRI, It.first, It.second, It.second & ~S.LaneMask,
|
|
|
|
SGPRs, VGPRs);
|
|
|
|
} else if (!LI.liveAt(SI)) {
|
|
|
|
setMask(MRI, SRI, It.first, It.second, LaneBitmask::getNone(),
|
|
|
|
SGPRs, VGPRs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add new registers or mask bits.
|
|
|
|
for (const auto &MO : MI.defs()) {
|
|
|
|
if (!MO.isReg())
|
|
|
|
continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg))
|
|
|
|
continue;
|
|
|
|
unsigned SubRegIdx = MO.getSubReg();
|
|
|
|
LaneBitmask LaneMask = SubRegIdx != 0
|
|
|
|
? TRI->getSubRegIndexLaneMask(SubRegIdx)
|
|
|
|
: MRI.getMaxLaneMaskForVReg(Reg);
|
|
|
|
LaneBitmask &LM = LiveRegs[Reg];
|
|
|
|
setMask(MRI, SRI, Reg, LM, LM | LaneMask, SGPRs, VGPRs);
|
|
|
|
}
|
|
|
|
MaxSGPRs = std::max(MaxSGPRs, SGPRs);
|
|
|
|
MaxVGPRs = std::max(MaxVGPRs, VGPRs);
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "Real region's register pressure:\nSGPR = " << MaxSGPRs
|
|
|
|
<< "\nVGPR = " << MaxVGPRs << '\n');
|
|
|
|
|
|
|
|
return std::make_pair(MaxSGPRs, MaxVGPRs);
|
|
|
|
}
|
|
|
|
|
|
|
|
void GCNScheduleDAGMILive::finalizeSchedule() {
|
2017-03-01 03:20:33 +08:00
|
|
|
// Retry function scheduling if we found resulting occupancy and it is
|
|
|
|
// lower than used for first pass scheduling. This will give more freedom
|
|
|
|
// to schedule low register pressure blocks.
|
|
|
|
// Code is partially copied from MachineSchedulerBase::scheduleRegions().
|
|
|
|
|
|
|
|
if (!LIS || StartingOccupancy <= MinOccupancy)
|
|
|
|
return;
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "Retrying function scheduling with lowest recorded occupancy "
|
|
|
|
<< MinOccupancy << ".\n");
|
|
|
|
|
|
|
|
Stage++;
|
|
|
|
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
|
|
|
|
S.TargetOccupancy = MinOccupancy;
|
|
|
|
|
|
|
|
MachineBasicBlock *MBB = nullptr;
|
|
|
|
for (auto Region : Regions) {
|
|
|
|
RegionBegin = Region.first;
|
|
|
|
RegionEnd = Region.second;
|
|
|
|
|
|
|
|
if (RegionBegin->getParent() != MBB) {
|
|
|
|
if (MBB) finishBlock();
|
|
|
|
MBB = RegionBegin->getParent();
|
|
|
|
startBlock(MBB);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned NumRegionInstrs = std::distance(begin(), end());
|
|
|
|
enterRegion(MBB, begin(), end(), NumRegionInstrs);
|
|
|
|
|
|
|
|
// Skip empty scheduling regions (0 or 1 schedulable instructions).
|
|
|
|
if (begin() == end() || begin() == std::prev(end())) {
|
|
|
|
exitRegion();
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
DEBUG(dbgs() << "********** MI Scheduling **********\n");
|
|
|
|
DEBUG(dbgs() << MF.getName()
|
|
|
|
<< ":BB#" << MBB->getNumber() << " " << MBB->getName()
|
|
|
|
<< "\n From: " << *begin() << " To: ";
|
|
|
|
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
|
|
|
|
else dbgs() << "End";
|
|
|
|
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
|
|
|
|
|
|
|
|
schedule();
|
|
|
|
|
|
|
|
exitRegion();
|
|
|
|
}
|
|
|
|
finishBlock();
|
2017-03-01 01:22:39 +08:00
|
|
|
LiveIns.shrink_and_clear();
|
|
|
|
}
|