llvm-project/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp

582 lines
21 KiB
C++
Raw Normal View History

//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
//===----------------------------------------------------------------------===//
#include "GCNSchedStrategy.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/Support/MathExtras.h"
#define DEBUG_TYPE "misched"
using namespace llvm;
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
const MachineSchedContext *C) :
GenericScheduler(C), TargetOccupancy(0), MF(nullptr) { }
static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
const MachineFunction &MF) {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
ST.getOccupancyWithNumVGPRs(VGPRs));
return std::min(MinRegOccupancy,
ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
*MF.getFunction()));
}
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
GenericScheduler::initialize(DAG);
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
if (MF != &DAG->MF)
TargetOccupancy = 0;
MF = &DAG->MF;
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
// FIXME: This is also necessary, because some passes that run after
// scheduling and before regalloc increase register pressure.
const int ErrorMargin = 3;
SGPRExcessLimit = Context->RegClassInfo
->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
VGPRExcessLimit = Context->RegClassInfo
->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
if (TargetOccupancy) {
SGPRCriticalLimit = ST.getMaxNumSGPRs(TargetOccupancy, true);
VGPRCriticalLimit = ST.getMaxNumVGPRs(TargetOccupancy);
} else {
SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
SRI->getSGPRPressureSet());
VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
SRI->getVGPRPressureSet());
}
SGPRCriticalLimit -= ErrorMargin;
VGPRCriticalLimit -= ErrorMargin;
}
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
bool AtTop, const RegPressureTracker &RPTracker,
const SIRegisterInfo *SRI,
unsigned SGPRPressure,
unsigned VGPRPressure) {
Cand.SU = SU;
Cand.AtTop = AtTop;
// getDownwardPressure() and getUpwardPressure() make temporary changes to
// the the tracker, so we need to pass those function a non-const copy.
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
std::vector<unsigned> Pressure;
std::vector<unsigned> MaxPressure;
if (AtTop)
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
else {
// FIXME: I think for bottom up scheduling, the register pressure is cached
// and can be retrieved by DAG->getPressureDif(SU).
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
}
unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
// If two instructions increase the pressure of different register sets
// by the same amount, the generic scheduler will prefer to schedule the
// instruction that increases the set with the least amount of registers,
// which in our case would be SGPRs. This is rarely what we want, so
// when we report excess/critical register pressure, we do it either
// only for VGPRs or only for SGPRs.
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
const unsigned MaxVGPRPressureInc = 16;
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
// to increase the likelihood we don't go over the limits. We should improve
// the analysis to look through dependencies to find the path with the least
// register pressure.
// We only need to update the RPDelata for instructions that increase
// register pressure. Instructions that decrease or keep reg pressure
// the same will be marked as RegExcess in tryCandidate() when they
// are compared with instructions that increase the register pressure.
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
}
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
}
// Register pressure is considered 'CRITICAL' if it is approaching a value
// that would reduce the wave occupancy for the execution unit. When
// register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
// has the same cost, so we don't need to prefer one over the other.
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
if (SGPRDelta > VGPRDelta) {
Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
} else {
Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
const CandPolicy &ZonePolicy,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand) {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
ReadyQueue &Q = Zone.Available;
for (SUnit *SU : Q) {
SchedCandidate TryCand(ZonePolicy);
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
SGPRPressure, VGPRPressure);
// Pass SchedBoundary only when comparing nodes from the same boundary.
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
if (TryCand.Reason != NoCand) {
// Initialize resource delta if needed in case future heuristics query it.
if (TryCand.ResDelta == SchedResourceDelta())
TryCand.initResourceDelta(Zone.DAG, SchedModel);
Cand.setBest(TryCand);
}
}
}
static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) {
switch (Reason) {
default:
return Reason;
case GenericSchedulerBase::RegCritical:
case GenericSchedulerBase::RegExcess:
return -Reason;
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
IsTopNode = false;
return SU;
}
if (SUnit *SU = Top.pickOnlyChoice()) {
IsTopNode = true;
return SU;
}
// Set the bottom-up policy based on the state of the current bottom zone and
// the instructions outside the zone, including the top zone.
CandPolicy BotPolicy;
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
// Set the top-down policy based on the state of the current top zone and
// the instructions outside the zone, including the bottom zone.
CandPolicy TopPolicy;
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
// See if BotCand is still valid (because we previously scheduled from Top).
DEBUG(dbgs() << "Picking from Bot:\n");
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
BotCand.Policy != BotPolicy) {
BotCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
} else {
DEBUG(traceCandidate(BotCand));
}
// Check if the top Q has a better candidate.
DEBUG(dbgs() << "Picking from Top:\n");
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
TopCand.Policy != TopPolicy) {
TopCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
} else {
DEBUG(traceCandidate(TopCand));
}
// Pick best from BotCand and TopCand.
DEBUG(
dbgs() << "Top Cand: ";
traceCandidate(TopCand);
dbgs() << "Bot Cand: ";
traceCandidate(BotCand);
);
SchedCandidate Cand;
if (TopCand.Reason == BotCand.Reason) {
Cand = BotCand;
GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
TopCand.Reason = NoCand;
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
if (TopCand.Reason != NoCand) {
Cand.setBest(TopCand);
} else {
TopCand.Reason = TopReason;
}
} else {
if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
Cand = TopCand;
} else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
Cand = BotCand;
} else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
Cand = TopCand;
} else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
Cand = BotCand;
} else {
int TopRank = getBidirectionalReasonRank(TopCand.Reason);
int BotRank = getBidirectionalReasonRank(BotCand.Reason);
if (TopRank > BotRank) {
Cand = TopCand;
} else {
Cand = BotCand;
}
}
}
DEBUG(
dbgs() << "Picking: ";
traceCandidate(Cand);
);
IsTopNode = Cand.AtTop;
return Cand.SU;
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
return nullptr;
}
SUnit *SU;
do {
if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
TopCand.reset(NoPolicy);
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find a candidate");
SU = TopCand.SU;
}
IsTopNode = true;
} else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
BotCand.reset(NoPolicy);
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find a candidate");
SU = BotCand.SU;
}
IsTopNode = false;
} else {
SU = pickNodeBidirectional(IsTopNode);
}
} while (SU->isScheduled);
if (SU->isTopReady())
Top.removeReady(SU);
if (SU->isBottomReady())
Bot.removeReady(SU);
DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
return SU;
}
GCNScheduleDAGMILive::GCNScheduleDAGMILive(MachineSchedContext *C,
std::unique_ptr<MachineSchedStrategy> S) :
ScheduleDAGMILive(C, std::move(S)),
ST(MF.getSubtarget<SISubtarget>()),
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
StartingOccupancy(ST.getOccupancyWithLocalMemSize(MFI.getLDSSize(),
*MF.getFunction())),
MinOccupancy(StartingOccupancy), Stage(0) {
DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
}
void GCNScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
MachineBasicBlock::iterator begin,
MachineBasicBlock::iterator end,
unsigned regioninstrs) {
ScheduleDAGMILive::enterRegion(bb, begin, end, regioninstrs);
if (Stage == 0)
Regions.push_back(std::make_pair(begin, end));
}
void GCNScheduleDAGMILive::schedule() {
std::vector<MachineInstr*> Unsched;
Unsched.reserve(NumRegionInstrs);
for (auto &I : *this)
Unsched.push_back(&I);
std::pair<unsigned, unsigned> PressureBefore;
if (LIS) {
DEBUG(dbgs() << "Pressure before scheduling:\n");
discoverLiveIns();
PressureBefore = getRealRegPressure();
}
ScheduleDAGMILive::schedule();
if (!LIS)
return;
// Check the results of scheduling.
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
DEBUG(dbgs() << "Pressure after scheduling:\n");
auto PressureAfter = getRealRegPressure();
LiveIns.clear();
if (PressureAfter.first <= S.SGPRCriticalLimit &&
PressureAfter.second <= S.VGPRCriticalLimit) {
DEBUG(dbgs() << "Pressure in desired limits, done.\n");
return;
}
unsigned WavesAfter = getMaxWaves(PressureAfter.first,
PressureAfter.second, MF);
unsigned WavesBefore = getMaxWaves(PressureBefore.first,
PressureBefore.second, MF);
DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore <<
", after " << WavesAfter << ".\n");
// We could not keep current target occupancy because of the just scheduled
// region. Record new occupancy for next scheduling cycle.
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
if (NewOccupancy < MinOccupancy) {
MinOccupancy = NewOccupancy;
DEBUG(dbgs() << "Occupancy lowered for the function to "
<< MinOccupancy << ".\n");
}
if (WavesAfter >= WavesBefore)
return;
DEBUG(dbgs() << "Attempting to revert scheduling.\n");
RegionEnd = RegionBegin;
for (MachineInstr *MI : Unsched) {
if (MI->getIterator() != RegionEnd) {
BB->remove(MI);
BB->insert(RegionEnd, MI);
LIS->handleMove(*MI, true);
}
// Reset read-undef flags and update them later.
for (auto &Op : MI->operands())
if (Op.isReg() && Op.isDef())
Op.setIsUndef(false);
RegisterOperands RegOpers;
RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
if (ShouldTrackLaneMasks) {
// Adjust liveness and add missing dead+read-undef flags.
SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
} else {
// Adjust for missing dead-def flags.
RegOpers.detectDeadDefs(*MI, *LIS);
}
RegionEnd = MI->getIterator();
++RegionEnd;
DEBUG(dbgs() << "Scheduling " << *MI);
}
RegionBegin = Unsched.front()->getIterator();
placeDebugValues();
}
static inline void setMask(const MachineRegisterInfo &MRI,
const SIRegisterInfo *SRI, unsigned Reg,
LaneBitmask &PrevMask, LaneBitmask NewMask,
unsigned &SGPRs, unsigned &VGPRs) {
int NewRegs = countPopulation(NewMask.getAsInteger()) -
countPopulation(PrevMask.getAsInteger());
if (SRI->isSGPRReg(MRI, Reg))
SGPRs += NewRegs;
if (SRI->isVGPR(MRI, Reg))
VGPRs += NewRegs;
assert ((int)SGPRs >= 0 && (int)VGPRs >= 0);
PrevMask = NewMask;
}
void GCNScheduleDAGMILive::discoverLiveIns() {
unsigned SGPRs = 0;
unsigned VGPRs = 0;
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
SlotIndex SI = LIS->getInstructionIndex(*begin()).getBaseIndex();
assert (SI.isValid());
DEBUG(dbgs() << "Region live-ins:");
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
if (MRI.reg_nodbg_empty(Reg))
continue;
const LiveInterval &LI = LIS->getInterval(Reg);
LaneBitmask LaneMask = LaneBitmask::getNone();
if (LI.hasSubRanges()) {
for (const auto &S : LI.subranges())
if (S.liveAt(SI))
LaneMask |= S.LaneMask;
} else if (LI.liveAt(SI)) {
LaneMask = MRI.getMaxLaneMaskForVReg(Reg);
}
if (LaneMask.any()) {
setMask(MRI, SRI, Reg, LiveIns[Reg], LaneMask, SGPRs, VGPRs);
DEBUG(dbgs() << ' ' << PrintVRegOrUnit(Reg, SRI) << ':'
<< PrintLaneMask(LiveIns[Reg]));
}
}
LiveInPressure = std::make_pair(SGPRs, VGPRs);
DEBUG(dbgs() << "\nLive-in pressure:\nSGPR = " << SGPRs
<< "\nVGPR = " << VGPRs << '\n');
}
std::pair<unsigned, unsigned>
GCNScheduleDAGMILive::getRealRegPressure() const {
unsigned SGPRs, MaxSGPRs, VGPRs, MaxVGPRs;
SGPRs = MaxSGPRs = LiveInPressure.first;
VGPRs = MaxVGPRs = LiveInPressure.second;
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
DenseMap<unsigned, LaneBitmask> LiveRegs(LiveIns);
for (const MachineInstr &MI : *this) {
if (MI.isDebugValue())
continue;
SlotIndex SI = LIS->getInstructionIndex(MI).getBaseIndex();
assert (SI.isValid());
// Remove dead registers or mask bits.
for (auto &It : LiveRegs) {
if (It.second.none())
continue;
const LiveInterval &LI = LIS->getInterval(It.first);
if (LI.hasSubRanges()) {
for (const auto &S : LI.subranges())
if (!S.liveAt(SI))
setMask(MRI, SRI, It.first, It.second, It.second & ~S.LaneMask,
SGPRs, VGPRs);
} else if (!LI.liveAt(SI)) {
setMask(MRI, SRI, It.first, It.second, LaneBitmask::getNone(),
SGPRs, VGPRs);
}
}
// Add new registers or mask bits.
for (const auto &MO : MI.defs()) {
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
unsigned SubRegIdx = MO.getSubReg();
LaneBitmask LaneMask = SubRegIdx != 0
? TRI->getSubRegIndexLaneMask(SubRegIdx)
: MRI.getMaxLaneMaskForVReg(Reg);
LaneBitmask &LM = LiveRegs[Reg];
setMask(MRI, SRI, Reg, LM, LM | LaneMask, SGPRs, VGPRs);
}
MaxSGPRs = std::max(MaxSGPRs, SGPRs);
MaxVGPRs = std::max(MaxVGPRs, VGPRs);
}
DEBUG(dbgs() << "Real region's register pressure:\nSGPR = " << MaxSGPRs
<< "\nVGPR = " << MaxVGPRs << '\n');
return std::make_pair(MaxSGPRs, MaxVGPRs);
}
void GCNScheduleDAGMILive::finalizeSchedule() {
// Retry function scheduling if we found resulting occupancy and it is
// lower than used for first pass scheduling. This will give more freedom
// to schedule low register pressure blocks.
// Code is partially copied from MachineSchedulerBase::scheduleRegions().
if (!LIS || StartingOccupancy <= MinOccupancy)
return;
DEBUG(dbgs() << "Retrying function scheduling with lowest recorded occupancy "
<< MinOccupancy << ".\n");
Stage++;
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
S.TargetOccupancy = MinOccupancy;
MachineBasicBlock *MBB = nullptr;
for (auto Region : Regions) {
RegionBegin = Region.first;
RegionEnd = Region.second;
if (RegionBegin->getParent() != MBB) {
if (MBB) finishBlock();
MBB = RegionBegin->getParent();
startBlock(MBB);
}
unsigned NumRegionInstrs = std::distance(begin(), end());
enterRegion(MBB, begin(), end(), NumRegionInstrs);
// Skip empty scheduling regions (0 or 1 schedulable instructions).
if (begin() == end() || begin() == std::prev(end())) {
exitRegion();
continue;
}
DEBUG(dbgs() << "********** MI Scheduling **********\n");
DEBUG(dbgs() << MF.getName()
<< ":BB#" << MBB->getNumber() << " " << MBB->getName()
<< "\n From: " << *begin() << " To: ";
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
else dbgs() << "End";
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
schedule();
exitRegion();
}
finishBlock();
LiveIns.shrink_and_clear();
}