2021-11-20 03:58:51 +08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
|
|
|
|
#define _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
|
|
|
|
|
|
|
|
#include <__config>
|
2021-12-08 05:34:13 +08:00
|
|
|
#include <__random/clamp_to_integral.h>
|
2021-11-20 03:58:51 +08:00
|
|
|
#include <__random/exponential_distribution.h>
|
2021-12-02 08:55:26 +08:00
|
|
|
#include <__random/is_valid.h>
|
2021-11-20 03:58:51 +08:00
|
|
|
#include <__random/normal_distribution.h>
|
|
|
|
#include <__random/uniform_real_distribution.h>
|
|
|
|
#include <cmath>
|
|
|
|
#include <iosfwd>
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
|
2022-02-02 09:16:40 +08:00
|
|
|
# pragma GCC system_header
|
2021-11-20 03:58:51 +08:00
|
|
|
#endif
|
|
|
|
|
|
|
|
_LIBCPP_PUSH_MACROS
|
|
|
|
#include <__undef_macros>
|
|
|
|
|
|
|
|
_LIBCPP_BEGIN_NAMESPACE_STD
|
|
|
|
|
|
|
|
template<class _IntType = int>
|
|
|
|
class _LIBCPP_TEMPLATE_VIS poisson_distribution
|
|
|
|
{
|
2021-12-02 08:55:26 +08:00
|
|
|
static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be an integer type larger than char");
|
2021-11-20 03:58:51 +08:00
|
|
|
public:
|
|
|
|
// types
|
|
|
|
typedef _IntType result_type;
|
|
|
|
|
|
|
|
class _LIBCPP_TEMPLATE_VIS param_type
|
|
|
|
{
|
|
|
|
double __mean_;
|
|
|
|
double __s_;
|
|
|
|
double __d_;
|
|
|
|
double __l_;
|
|
|
|
double __omega_;
|
|
|
|
double __c0_;
|
|
|
|
double __c1_;
|
|
|
|
double __c2_;
|
|
|
|
double __c3_;
|
|
|
|
double __c_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
typedef poisson_distribution distribution_type;
|
|
|
|
|
|
|
|
explicit param_type(double __mean = 1.0);
|
|
|
|
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
double mean() const {return __mean_;}
|
|
|
|
|
|
|
|
friend _LIBCPP_INLINE_VISIBILITY
|
|
|
|
bool operator==(const param_type& __x, const param_type& __y)
|
|
|
|
{return __x.__mean_ == __y.__mean_;}
|
|
|
|
friend _LIBCPP_INLINE_VISIBILITY
|
|
|
|
bool operator!=(const param_type& __x, const param_type& __y)
|
|
|
|
{return !(__x == __y);}
|
|
|
|
|
|
|
|
friend class poisson_distribution;
|
|
|
|
};
|
|
|
|
|
|
|
|
private:
|
|
|
|
param_type __p_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
// constructors and reset functions
|
|
|
|
#ifndef _LIBCPP_CXX03_LANG
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
poisson_distribution() : poisson_distribution(1.0) {}
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
explicit poisson_distribution(double __mean)
|
|
|
|
: __p_(__mean) {}
|
|
|
|
#else
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
explicit poisson_distribution(double __mean = 1.0)
|
|
|
|
: __p_(__mean) {}
|
|
|
|
#endif
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
explicit poisson_distribution(const param_type& __p) : __p_(__p) {}
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
void reset() {}
|
|
|
|
|
|
|
|
// generating functions
|
|
|
|
template<class _URNG>
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
result_type operator()(_URNG& __g)
|
|
|
|
{return (*this)(__g, __p_);}
|
|
|
|
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
|
|
|
|
|
|
|
|
// property functions
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
double mean() const {return __p_.mean();}
|
|
|
|
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
param_type param() const {return __p_;}
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
void param(const param_type& __p) {__p_ = __p;}
|
|
|
|
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
result_type min() const {return 0;}
|
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
|
|
|
result_type max() const {return numeric_limits<result_type>::max();}
|
|
|
|
|
|
|
|
friend _LIBCPP_INLINE_VISIBILITY
|
|
|
|
bool operator==(const poisson_distribution& __x,
|
|
|
|
const poisson_distribution& __y)
|
|
|
|
{return __x.__p_ == __y.__p_;}
|
|
|
|
friend _LIBCPP_INLINE_VISIBILITY
|
|
|
|
bool operator!=(const poisson_distribution& __x,
|
|
|
|
const poisson_distribution& __y)
|
|
|
|
{return !(__x == __y);}
|
|
|
|
};
|
|
|
|
|
|
|
|
template<class _IntType>
|
|
|
|
poisson_distribution<_IntType>::param_type::param_type(double __mean)
|
|
|
|
// According to the standard `inf` is a valid input, but it causes the
|
|
|
|
// distribution to hang, so we replace it with the maximum representable
|
|
|
|
// mean.
|
|
|
|
: __mean_(isinf(__mean) ? numeric_limits<double>::max() : __mean)
|
|
|
|
{
|
|
|
|
if (__mean_ < 10)
|
|
|
|
{
|
|
|
|
__s_ = 0;
|
|
|
|
__d_ = 0;
|
|
|
|
__l_ = _VSTD::exp(-__mean_);
|
|
|
|
__omega_ = 0;
|
|
|
|
__c3_ = 0;
|
|
|
|
__c2_ = 0;
|
|
|
|
__c1_ = 0;
|
|
|
|
__c0_ = 0;
|
|
|
|
__c_ = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
__s_ = _VSTD::sqrt(__mean_);
|
|
|
|
__d_ = 6 * __mean_ * __mean_;
|
|
|
|
__l_ = _VSTD::trunc(__mean_ - 1.1484);
|
|
|
|
__omega_ = .3989423 / __s_;
|
|
|
|
double __b1_ = .4166667E-1 / __mean_;
|
|
|
|
double __b2_ = .3 * __b1_ * __b1_;
|
|
|
|
__c3_ = .1428571 * __b1_ * __b2_;
|
|
|
|
__c2_ = __b2_ - 15. * __c3_;
|
|
|
|
__c1_ = __b1_ - 6. * __b2_ + 45. * __c3_;
|
|
|
|
__c0_ = 1. - __b1_ + 3. * __b2_ - 15. * __c3_;
|
|
|
|
__c_ = .1069 / __mean_;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _IntType>
|
|
|
|
template<class _URNG>
|
|
|
|
_IntType
|
|
|
|
poisson_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr)
|
|
|
|
{
|
2022-01-18 00:04:01 +08:00
|
|
|
static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "");
|
2021-11-20 03:58:51 +08:00
|
|
|
double __tx;
|
|
|
|
uniform_real_distribution<double> __urd;
|
|
|
|
if (__pr.__mean_ < 10)
|
|
|
|
{
|
|
|
|
__tx = 0;
|
|
|
|
for (double __p = __urd(__urng); __p > __pr.__l_; ++__tx)
|
|
|
|
__p *= __urd(__urng);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
double __difmuk;
|
|
|
|
double __g = __pr.__mean_ + __pr.__s_ * normal_distribution<double>()(__urng);
|
|
|
|
double __u;
|
|
|
|
if (__g > 0)
|
|
|
|
{
|
|
|
|
__tx = _VSTD::trunc(__g);
|
|
|
|
if (__tx >= __pr.__l_)
|
|
|
|
return _VSTD::__clamp_to_integral<result_type>(__tx);
|
|
|
|
__difmuk = __pr.__mean_ - __tx;
|
|
|
|
__u = __urd(__urng);
|
|
|
|
if (__pr.__d_ * __u >= __difmuk * __difmuk * __difmuk)
|
|
|
|
return _VSTD::__clamp_to_integral<result_type>(__tx);
|
|
|
|
}
|
|
|
|
exponential_distribution<double> __edist;
|
|
|
|
for (bool __using_exp_dist = false; true; __using_exp_dist = true)
|
|
|
|
{
|
|
|
|
double __e;
|
|
|
|
if (__using_exp_dist || __g <= 0)
|
|
|
|
{
|
|
|
|
double __t;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
__e = __edist(__urng);
|
|
|
|
__u = __urd(__urng);
|
|
|
|
__u += __u - 1;
|
|
|
|
__t = 1.8 + (__u < 0 ? -__e : __e);
|
|
|
|
} while (__t <= -.6744);
|
|
|
|
__tx = _VSTD::trunc(__pr.__mean_ + __pr.__s_ * __t);
|
|
|
|
__difmuk = __pr.__mean_ - __tx;
|
|
|
|
__using_exp_dist = true;
|
|
|
|
}
|
|
|
|
double __px;
|
|
|
|
double __py;
|
|
|
|
if (__tx < 10 && __tx >= 0)
|
|
|
|
{
|
|
|
|
const double __fac[] = {1, 1, 2, 6, 24, 120, 720, 5040,
|
|
|
|
40320, 362880};
|
|
|
|
__px = -__pr.__mean_;
|
|
|
|
__py = _VSTD::pow(__pr.__mean_, (double)__tx) / __fac[static_cast<int>(__tx)];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
double __del = .8333333E-1 / __tx;
|
|
|
|
__del -= 4.8 * __del * __del * __del;
|
|
|
|
double __v = __difmuk / __tx;
|
|
|
|
if (_VSTD::abs(__v) > 0.25)
|
|
|
|
__px = __tx * _VSTD::log(1 + __v) - __difmuk - __del;
|
|
|
|
else
|
|
|
|
__px = __tx * __v * __v * (((((((.1250060 * __v + -.1384794) *
|
|
|
|
__v + .1421878) * __v + -.1661269) * __v + .2000118) *
|
|
|
|
__v + -.2500068) * __v + .3333333) * __v + -.5) - __del;
|
|
|
|
__py = .3989423 / _VSTD::sqrt(__tx);
|
|
|
|
}
|
|
|
|
double __r = (0.5 - __difmuk) / __pr.__s_;
|
|
|
|
double __r2 = __r * __r;
|
|
|
|
double __fx = -0.5 * __r2;
|
|
|
|
double __fy = __pr.__omega_ * (((__pr.__c3_ * __r2 + __pr.__c2_) *
|
|
|
|
__r2 + __pr.__c1_) * __r2 + __pr.__c0_);
|
|
|
|
if (__using_exp_dist)
|
|
|
|
{
|
|
|
|
if (__pr.__c_ * _VSTD::abs(__u) <= __py * _VSTD::exp(__px + __e) -
|
|
|
|
__fy * _VSTD::exp(__fx + __e))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (__fy - __u * __fy <= __py * _VSTD::exp(__px - __fx))
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return _VSTD::__clamp_to_integral<result_type>(__tx);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _CharT, class _Traits, class _IntType>
|
|
|
|
basic_ostream<_CharT, _Traits>&
|
|
|
|
operator<<(basic_ostream<_CharT, _Traits>& __os,
|
|
|
|
const poisson_distribution<_IntType>& __x)
|
|
|
|
{
|
|
|
|
__save_flags<_CharT, _Traits> __lx(__os);
|
|
|
|
typedef basic_ostream<_CharT, _Traits> _OStream;
|
|
|
|
__os.flags(_OStream::dec | _OStream::left | _OStream::fixed |
|
|
|
|
_OStream::scientific);
|
|
|
|
return __os << __x.mean();
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _CharT, class _Traits, class _IntType>
|
|
|
|
basic_istream<_CharT, _Traits>&
|
|
|
|
operator>>(basic_istream<_CharT, _Traits>& __is,
|
|
|
|
poisson_distribution<_IntType>& __x)
|
|
|
|
{
|
|
|
|
typedef poisson_distribution<_IntType> _Eng;
|
|
|
|
typedef typename _Eng::param_type param_type;
|
|
|
|
__save_flags<_CharT, _Traits> __lx(__is);
|
|
|
|
typedef basic_istream<_CharT, _Traits> _Istream;
|
|
|
|
__is.flags(_Istream::dec | _Istream::skipws);
|
|
|
|
double __mean;
|
|
|
|
__is >> __mean;
|
|
|
|
if (!__is.fail())
|
|
|
|
__x.param(param_type(__mean));
|
|
|
|
return __is;
|
|
|
|
}
|
|
|
|
|
|
|
|
_LIBCPP_END_NAMESPACE_STD
|
|
|
|
|
|
|
|
_LIBCPP_POP_MACROS
|
|
|
|
|
|
|
|
#endif // _LIBCPP___RANDOM_POISSON_DISTRIBUTION_H
|