llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cc

377 lines
12 KiB
C++
Raw Normal View History

//===-- hwasan_allocator.cc ------------------------- ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// HWAddressSanitizer allocator.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include "hwasan_poisoning.h"
#include "hwasan_report.h"
namespace __hwasan {
enum {
CHUNK_INVALID = 0,
CHUNK_FREE = 1,
CHUNK_ALLOCATED = 2
};
struct Metadata {
u64 state : 2;
u32 requested_size; // Current use cases of hwasan do not expect sizes > 4G.
u32 alloc_context_id;
u32 free_context_id;
};
bool HwasanChunkView::IsValid() const {
return metadata_ && metadata_->state != CHUNK_INVALID;
}
bool HwasanChunkView::IsAllocated() const {
return metadata_ && metadata_->state == CHUNK_ALLOCATED;
}
uptr HwasanChunkView::Beg() const {
return block_;
}
uptr HwasanChunkView::End() const {
return Beg() + UsedSize();
}
uptr HwasanChunkView::UsedSize() const {
return metadata_->requested_size;
}
u32 HwasanChunkView::GetAllocStackId() const {
return metadata_->alloc_context_id;
}
u32 HwasanChunkView::GetFreeStackId() const {
return metadata_->free_context_id;
}
struct HwasanMapUnmapCallback {
void OnMap(uptr p, uptr size) const {}
void OnUnmap(uptr p, uptr size) const {
// We are about to unmap a chunk of user memory.
// It can return as user-requested mmap() or another thread stack.
// Make it accessible with zero-tagged pointer.
TagMemory(p, size, 0);
}
};
#if !defined(__aarch64__) && !defined(__x86_64__)
#error Unsupported platform
#endif
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
static const uptr kRegionSizeLog = 20;
static const uptr kNumRegions = SANITIZER_MMAP_RANGE_SIZE >> kRegionSizeLog;
typedef TwoLevelByteMap<(kNumRegions >> 12), 1 << 12> ByteMap;
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = sizeof(Metadata);
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = __hwasan::kRegionSizeLog;
typedef __hwasan::ByteMap ByteMap;
typedef HwasanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<HwasanMapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
static atomic_uint8_t hwasan_allocator_tagging_enabled;
static const tag_t kFallbackAllocTag = 0xBB;
static const tag_t kFallbackFreeTag = 0xBC;
void HwasanAllocatorInit() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
!flags()->disable_allocator_tagging);
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
}
AllocatorCache *GetAllocatorCache(HwasanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}
void HwasanThreadLocalMallocStorage::CommitBack() {
allocator.SwallowCache(GetAllocatorCache(this));
}
static void *HwasanAllocate(StackTrace *stack, uptr size, uptr alignment,
bool zeroise) {
alignment = Max(alignment, kShadowAlignment);
size = RoundUpTo(size, kShadowAlignment);
if (size > kMaxAllowedMallocSize) {
if (AllocatorMayReturnNull()) {
Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
size);
return nullptr;
}
ReportAllocationSizeTooBig(size, kMaxAllowedMallocSize, stack);
}
HwasanThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, size, alignment);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment);
}
if (UNLIKELY(!allocated)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
ReportOutOfMemory(size, stack);
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
meta->state = CHUNK_ALLOCATED;
meta->requested_size = static_cast<u32>(size);
meta->alloc_context_id = StackDepotPut(*stack);
if (zeroise) {
internal_memset(allocated, 0, size);
} else if (flags()->max_malloc_fill_size > 0) {
uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
}
void *user_ptr = allocated;
if (flags()->tag_in_malloc &&
atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
user_ptr = (void *)TagMemoryAligned(
(uptr)user_ptr, size, t ? t->GenerateRandomTag() : kFallbackAllocTag);
HWASAN_MALLOC_HOOK(user_ptr, size);
return user_ptr;
}
static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
CHECK(tagged_ptr);
tag_t ptr_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
tag_t mem_tag = *reinterpret_cast<tag_t *>(
MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
return ptr_tag == mem_tag;
}
void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
CHECK(tagged_ptr);
HWASAN_FREE_HOOK(tagged_ptr);
if (!PointerAndMemoryTagsMatch(tagged_ptr))
ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
void *untagged_ptr = UntagPtr(tagged_ptr);
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr));
uptr size = meta->requested_size;
meta->state = CHUNK_FREE;
meta->requested_size = 0;
u32 free_context_id = StackDepotPut(*stack);
meta->free_context_id = free_context_id;
// This memory will not be reused by anyone else, so we are free to keep it
// poisoned.
HwasanThread *t = GetCurrentThread();
if (flags()->max_free_fill_size > 0) {
uptr fill_size = Min(size, (uptr)flags()->max_free_fill_size);
internal_memset(untagged_ptr, flags()->free_fill_byte, fill_size);
}
if (flags()->tag_in_free &&
atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
TagMemoryAligned((uptr)untagged_ptr, size,
t ? t->GenerateRandomTag() : kFallbackFreeTag);
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocator.Deallocate(cache, untagged_ptr);
if (auto *ha = t->heap_allocations())
ha->push({reinterpret_cast<uptr>(tagged_ptr), free_context_id,
static_cast<u32>(size)});
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, untagged_ptr);
}
}
void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old, uptr new_size,
uptr alignment) {
alignment = Max(alignment, kShadowAlignment);
new_size = RoundUpTo(new_size, kShadowAlignment);
if (!PointerAndMemoryTagsMatch(tagged_ptr_old))
ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr_old));
void *tagged_ptr_new =
HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
if (tagged_ptr_old && tagged_ptr_new) {
void *untagged_ptr_old = UntagPtr(tagged_ptr_old);
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
internal_memcpy(UntagPtr(tagged_ptr_new), untagged_ptr_old,
Min(new_size, static_cast<uptr>(meta->requested_size)));
HwasanDeallocate(stack, tagged_ptr_old);
}
return tagged_ptr_new;
}
void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
ReportCallocOverflow(nmemb, size, stack);
}
return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
}
HwasanChunkView FindHeapChunkByAddress(uptr address) {
void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
if (!block)
return HwasanChunkView();
Metadata *metadata =
reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
}
static uptr AllocationSize(const void *tagged_ptr) {
const void *untagged_ptr = UntagPtr(tagged_ptr);
if (!untagged_ptr) return 0;
const void *beg = allocator.GetBlockBegin(untagged_ptr);
if (beg != untagged_ptr) return 0;
Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr);
return b->requested_size;
}
void *hwasan_malloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
}
void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
}
void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
if (!ptr)
return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
if (size == 0) {
HwasanDeallocate(stack, ptr);
return nullptr;
}
return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
}
void *hwasan_valloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(
HwasanAllocate(stack, size, GetPageSizeCached(), false));
}
void *hwasan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportPvallocOverflow(size, stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
}
void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAlignedAllocAlignment(size, alignment, stack);
}
return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}
void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAllocationAlignment(alignment, stack);
}
return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}
int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
ReportInvalidPosixMemalignAlignment(alignment, stack);
}
void *ptr = HwasanAllocate(stack, size, alignment, false);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by HwasanAllocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
} // namespace __hwasan
using namespace __hwasan;
void __hwasan_enable_allocator_tagging() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
}
void __hwasan_disable_allocator_tagging() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
}
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }