llvm-project/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp

681 lines
27 KiB
C++
Raw Normal View History

//===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities for peeling loops
// with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
// unrolling loops with compile-time constant trip counts.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "loop-unroll"
STATISTIC(NumPeeled, "Number of loops peeled");
static cl::opt<unsigned> UnrollPeelMaxCount(
"unroll-peel-max-count", cl::init(7), cl::Hidden,
cl::desc("Max average trip count which will cause loop peeling."));
static cl::opt<unsigned> UnrollForcePeelCount(
"unroll-force-peel-count", cl::init(0), cl::Hidden,
cl::desc("Force a peel count regardless of profiling information."));
// Designates that a Phi is estimated to become invariant after an "infinite"
// number of loop iterations (i.e. only may become an invariant if the loop is
// fully unrolled).
static const unsigned InfiniteIterationsToInvariance =
std::numeric_limits<unsigned>::max();
// Check whether we are capable of peeling this loop.
bool llvm::canPeel(Loop *L) {
// Make sure the loop is in simplified form
if (!L->isLoopSimplifyForm())
return false;
// Only peel loops that contain a single exit
if (!L->getExitingBlock() || !L->getUniqueExitBlock())
return false;
// Don't try to peel loops where the latch is not the exiting block.
// This can be an indication of two different things:
// 1) The loop is not rotated.
// 2) The loop contains irreducible control flow that involves the latch.
if (L->getLoopLatch() != L->getExitingBlock())
return false;
return true;
}
// This function calculates the number of iterations after which the given Phi
// becomes an invariant. The pre-calculated values are memorized in the map. The
// function (shortcut is I) is calculated according to the following definition:
// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
// If %y is a loop invariant, then I(%x) = 1.
// If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
// Otherwise, I(%x) is infinite.
// TODO: Actually if %y is an expression that depends only on Phi %z and some
// loop invariants, we can estimate I(%x) = I(%z) + 1. The example
// looks like:
// %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration.
// %y = phi(0, 5),
// %a = %y + 1.
static unsigned calculateIterationsToInvariance(
PHINode *Phi, Loop *L, BasicBlock *BackEdge,
SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
assert(Phi->getParent() == L->getHeader() &&
"Non-loop Phi should not be checked for turning into invariant.");
assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
// If we already know the answer, take it from the map.
auto I = IterationsToInvariance.find(Phi);
if (I != IterationsToInvariance.end())
return I->second;
// Otherwise we need to analyze the input from the back edge.
Value *Input = Phi->getIncomingValueForBlock(BackEdge);
// Place infinity to map to avoid infinite recursion for cycled Phis. Such
// cycles can never stop on an invariant.
IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
unsigned ToInvariance = InfiniteIterationsToInvariance;
if (L->isLoopInvariant(Input))
ToInvariance = 1u;
else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
// Only consider Phis in header block.
if (IncPhi->getParent() != L->getHeader())
return InfiniteIterationsToInvariance;
// If the input becomes an invariant after X iterations, then our Phi
// becomes an invariant after X + 1 iterations.
unsigned InputToInvariance = calculateIterationsToInvariance(
IncPhi, L, BackEdge, IterationsToInvariance);
if (InputToInvariance != InfiniteIterationsToInvariance)
ToInvariance = InputToInvariance + 1u;
}
// If we found that this Phi lies in an invariant chain, update the map.
if (ToInvariance != InfiniteIterationsToInvariance)
IterationsToInvariance[Phi] = ToInvariance;
return ToInvariance;
}
// Return the number of iterations to peel off that make conditions in the
// body true/false. For example, if we peel 2 iterations off the loop below,
// the condition i < 2 can be evaluated at compile time.
// for (i = 0; i < n; i++)
// if (i < 2)
// ..
// else
// ..
// }
static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
ScalarEvolution &SE) {
assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
unsigned DesiredPeelCount = 0;
for (auto *BB : L.blocks()) {
auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || BI->isUnconditional())
continue;
// Ignore loop exit condition.
if (L.getLoopLatch() == BB)
continue;
Value *Condition = BI->getCondition();
Value *LeftVal, *RightVal;
CmpInst::Predicate Pred;
if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
continue;
const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
const SCEV *RightSCEV = SE.getSCEV(RightVal);
// Do not consider predicates that are known to be true or false
// independently of the loop iteration.
if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
RightSCEV))
continue;
// Check if we have a condition with one AddRec and one non AddRec
// expression. Normalize LeftSCEV to be the AddRec.
if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
if (isa<SCEVAddRecExpr>(RightSCEV)) {
std::swap(LeftSCEV, RightSCEV);
Pred = ICmpInst::getSwappedPredicate(Pred);
} else
continue;
}
const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
// Avoid huge SCEV computations in the loop below, make sure we only
// consider AddRecs of the loop we are trying to peel and avoid
// non-monotonic predicates, as we will not be able to simplify the loop
// body.
// FIXME: For the non-monotonic predicates ICMP_EQ and ICMP_NE we can
// simplify the loop, if we peel 1 additional iteration, if there
// is no wrapping.
bool Increasing;
if (!LeftAR->isAffine() || LeftAR->getLoop() != &L ||
!SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
continue;
(void)Increasing;
// Check if extending the current DesiredPeelCount lets us evaluate Pred
// or !Pred in the loop body statically.
unsigned NewPeelCount = DesiredPeelCount;
const SCEV *IterVal = LeftAR->evaluateAtIteration(
SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
// If the original condition is not known, get the negated predicate
// (which holds on the else branch) and check if it is known. This allows
// us to peel of iterations that make the original condition false.
if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
Pred = ICmpInst::getInversePredicate(Pred);
const SCEV *Step = LeftAR->getStepRecurrence(SE);
while (NewPeelCount < MaxPeelCount &&
SE.isKnownPredicate(Pred, IterVal, RightSCEV)) {
IterVal = SE.getAddExpr(IterVal, Step);
NewPeelCount++;
}
// Only peel the loop if the monotonic predicate !Pred becomes known in the
// first iteration of the loop body after peeling.
if (NewPeelCount > DesiredPeelCount &&
SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
RightSCEV))
DesiredPeelCount = NewPeelCount;
}
return DesiredPeelCount;
}
// Return the number of iterations we want to peel off.
void llvm::computePeelCount(Loop *L, unsigned LoopSize,
TargetTransformInfo::UnrollingPreferences &UP,
unsigned &TripCount, ScalarEvolution &SE) {
assert(LoopSize > 0 && "Zero loop size is not allowed!");
// Save the UP.PeelCount value set by the target in
// TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
unsigned TargetPeelCount = UP.PeelCount;
UP.PeelCount = 0;
if (!canPeel(L))
return;
// Only try to peel innermost loops.
if (!L->empty())
return;
// If the user provided a peel count, use that.
bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
if (UserPeelCount) {
LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
<< " iterations.\n");
UP.PeelCount = UnrollForcePeelCount;
return;
}
// Skip peeling if it's disabled.
if (!UP.AllowPeeling)
return;
// Here we try to get rid of Phis which become invariants after 1, 2, ..., N
// iterations of the loop. For this we compute the number for iterations after
// which every Phi is guaranteed to become an invariant, and try to peel the
// maximum number of iterations among these values, thus turning all those
// Phis into invariants.
// First, check that we can peel at least one iteration.
if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
// Store the pre-calculated values here.
SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
// Now go through all Phis to calculate their the number of iterations they
// need to become invariants.
// Start the max computation with the UP.PeelCount value set by the target
// in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
unsigned DesiredPeelCount = TargetPeelCount;
BasicBlock *BackEdge = L->getLoopLatch();
assert(BackEdge && "Loop is not in simplified form?");
for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
PHINode *Phi = cast<PHINode>(&*BI);
unsigned ToInvariance = calculateIterationsToInvariance(
Phi, L, BackEdge, IterationsToInvariance);
if (ToInvariance != InfiniteIterationsToInvariance)
DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
}
// Pay respect to limitations implied by loop size and the max peel count.
unsigned MaxPeelCount = UnrollPeelMaxCount;
MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);
DesiredPeelCount = std::max(DesiredPeelCount,
countToEliminateCompares(*L, MaxPeelCount, SE));
if (DesiredPeelCount > 0) {
DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
// Consider max peel count limitation.
assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
<< " iteration(s) to turn"
<< " some Phis into invariants.\n");
UP.PeelCount = DesiredPeelCount;
return;
}
}
// Bail if we know the statically calculated trip count.
// In this case we rather prefer partial unrolling.
if (TripCount)
return;
// If we don't know the trip count, but have reason to believe the average
// trip count is low, peeling should be beneficial, since we will usually
// hit the peeled section.
// We only do this in the presence of profile information, since otherwise
// our estimates of the trip count are not reliable enough.
if (L->getHeader()->getParent()->hasProfileData()) {
Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
if (!PeelCount)
return;
LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
<< "\n");
if (*PeelCount) {
if ((*PeelCount <= UnrollPeelMaxCount) &&
(LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
<< " iterations.\n");
UP.PeelCount = *PeelCount;
return;
}
LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
<< "\n");
LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
}
}
}
/// Update the branch weights of the latch of a peeled-off loop
/// iteration.
/// This sets the branch weights for the latch of the recently peeled off loop
/// iteration correctly.
/// Our goal is to make sure that:
/// a) The total weight of all the copies of the loop body is preserved.
/// b) The total weight of the loop exit is preserved.
/// c) The body weight is reasonably distributed between the peeled iterations.
///
/// \param Header The copy of the header block that belongs to next iteration.
/// \param LatchBR The copy of the latch branch that belongs to this iteration.
/// \param IterNumber The serial number of the iteration that was just
/// peeled off.
/// \param AvgIters The average number of iterations we expect the loop to have.
/// \param[in,out] PeeledHeaderWeight The total number of dynamic loop
/// iterations that are unaccounted for. As an input, it represents the number
/// of times we expect to enter the header of the iteration currently being
/// peeled off. The output is the number of times we expect to enter the
/// header of the next iteration.
static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
unsigned IterNumber, unsigned AvgIters,
uint64_t &PeeledHeaderWeight) {
// FIXME: Pick a more realistic distribution.
// Currently the proportion of weight we assign to the fall-through
// side of the branch drops linearly with the iteration number, and we use
// a 0.9 fudge factor to make the drop-off less sharp...
if (PeeledHeaderWeight) {
uint64_t FallThruWeight =
PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9);
uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight;
PeeledHeaderWeight -= ExitWeight;
unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
MDBuilder MDB(LatchBR->getContext());
MDNode *WeightNode =
HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight)
: MDB.createBranchWeights(FallThruWeight, ExitWeight);
LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
}
}
/// Clones the body of the loop L, putting it between \p InsertTop and \p
/// InsertBot.
/// \param IterNumber The serial number of the iteration currently being
/// peeled off.
/// \param Exit The exit block of the original loop.
/// \param[out] NewBlocks A list of the blocks in the newly created clone
/// \param[out] VMap The value map between the loop and the new clone.
/// \param LoopBlocks A helper for DFS-traversal of the loop.
/// \param LVMap A value-map that maps instructions from the original loop to
/// instructions in the last peeled-off iteration.
static void cloneLoopBlocks(Loop *L, unsigned IterNumber, BasicBlock *InsertTop,
BasicBlock *InsertBot, BasicBlock *Exit,
SmallVectorImpl<BasicBlock *> &NewBlocks,
LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
ValueToValueMapTy &LVMap, DominatorTree *DT,
LoopInfo *LI) {
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *PreHeader = L->getLoopPreheader();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
Loop *ParentLoop = L->getParentLoop();
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
NewBlocks.push_back(NewBB);
if (ParentLoop)
ParentLoop->addBasicBlockToLoop(NewBB, *LI);
VMap[*BB] = NewBB;
// If dominator tree is available, insert nodes to represent cloned blocks.
if (DT) {
if (Header == *BB)
DT->addNewBlock(NewBB, InsertTop);
else {
DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
// VMap must contain entry for IDom, as the iteration order is RPO.
DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
}
}
}
// Hook-up the control flow for the newly inserted blocks.
// The new header is hooked up directly to the "top", which is either
// the original loop preheader (for the first iteration) or the previous
// iteration's exiting block (for every other iteration)
InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
// Similarly, for the latch:
// The original exiting edge is still hooked up to the loop exit.
// The backedge now goes to the "bottom", which is either the loop's real
// header (for the last peeled iteration) or the copied header of the next
// iteration (for every other iteration)
BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
LatchBR->setSuccessor(HeaderIdx, InsertBot);
LatchBR->setSuccessor(1 - HeaderIdx, Exit);
if (DT)
DT->changeImmediateDominator(InsertBot, NewLatch);
// The new copy of the loop body starts with a bunch of PHI nodes
// that pick an incoming value from either the preheader, or the previous
// loop iteration. Since this copy is no longer part of the loop, we
// resolve this statically:
// For the first iteration, we use the value from the preheader directly.
// For any other iteration, we replace the phi with the value generated by
// the immediately preceding clone of the loop body (which represents
// the previous iteration).
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
if (IterNumber == 0) {
VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
} else {
Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
if (LatchInst && L->contains(LatchInst))
VMap[&*I] = LVMap[LatchInst];
else
VMap[&*I] = LatchVal;
}
cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
}
// Fix up the outgoing values - we need to add a value for the iteration
// we've just created. Note that this must happen *after* the incoming
// values are adjusted, since the value going out of the latch may also be
// a value coming into the header.
for (BasicBlock::iterator I = Exit->begin(); isa<PHINode>(I); ++I) {
PHINode *PHI = cast<PHINode>(I);
Value *LatchVal = PHI->getIncomingValueForBlock(Latch);
Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
if (LatchInst && L->contains(LatchInst))
LatchVal = VMap[LatchVal];
PHI->addIncoming(LatchVal, cast<BasicBlock>(VMap[Latch]));
}
// LastValueMap is updated with the values for the current loop
// which are used the next time this function is called.
for (const auto &KV : VMap)
LVMap[KV.first] = KV.second;
}
/// Peel off the first \p PeelCount iterations of loop \p L.
///
/// Note that this does not peel them off as a single straight-line block.
/// Rather, each iteration is peeled off separately, and needs to check the
/// exit condition.
/// For loops that dynamically execute \p PeelCount iterations or less
/// this provides a benefit, since the peeled off iterations, which account
/// for the bulk of dynamic execution, can be further simplified by scalar
/// optimizations.
bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
ScalarEvolution *SE, DominatorTree *DT,
AssumptionCache *AC, bool PreserveLCSSA) {
assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
LoopBlocksDFS LoopBlocks(L);
LoopBlocks.perform(LI);
BasicBlock *Header = L->getHeader();
BasicBlock *PreHeader = L->getLoopPreheader();
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *Exit = L->getUniqueExitBlock();
Function *F = Header->getParent();
// Set up all the necessary basic blocks. It is convenient to split the
// preheader into 3 parts - two blocks to anchor the peeled copy of the loop
// body, and a new preheader for the "real" loop.
// Peeling the first iteration transforms.
//
// PreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
//
// into
//
// InsertTop:
// LoopBody
// If (!cond) goto Exit
// InsertBot:
// NewPreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
//
// Each following iteration will split the current bottom anchor in two,
// and put the new copy of the loop body between these two blocks. That is,
// after peeling another iteration from the example above, we'll split
// InsertBot, and get:
//
// InsertTop:
// LoopBody
// If (!cond) goto Exit
// InsertBot:
// LoopBody
// If (!cond) goto Exit
// InsertBot.next:
// NewPreHeader:
// ...
// Header:
// LoopBody
// If (cond) goto Header
// Exit:
BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
BasicBlock *InsertBot =
SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
BasicBlock *NewPreHeader =
SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
InsertTop->setName(Header->getName() + ".peel.begin");
InsertBot->setName(Header->getName() + ".peel.next");
NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
ValueToValueMapTy LVMap;
// If we have branch weight information, we'll want to update it for the
// newly created branches.
BranchInst *LatchBR =
cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
uint64_t TrueWeight, FalseWeight;
uint64_t ExitWeight = 0, CurHeaderWeight = 0;
if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) {
ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
// The # of times the loop body executes is the sum of the exit block
// weight and the # of times the backedges are taken.
CurHeaderWeight = TrueWeight + FalseWeight;
}
// For each peeled-off iteration, make a copy of the loop.
for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
SmallVector<BasicBlock *, 8> NewBlocks;
ValueToValueMapTy VMap;
// Subtract the exit weight from the current header weight -- the exit
// weight is exactly the weight of the previous iteration's header.
// FIXME: due to the way the distribution is constructed, we need a
// guard here to make sure we don't end up with non-positive weights.
if (ExitWeight < CurHeaderWeight)
CurHeaderWeight -= ExitWeight;
else
CurHeaderWeight = 1;
cloneLoopBlocks(L, Iter, InsertTop, InsertBot, Exit,
NewBlocks, LoopBlocks, VMap, LVMap, DT, LI);
// Remap to use values from the current iteration instead of the
// previous one.
remapInstructionsInBlocks(NewBlocks, VMap);
if (DT) {
// Latches of the cloned loops dominate over the loop exit, so idom of the
// latter is the first cloned loop body, as original PreHeader dominates
// the original loop body.
if (Iter == 0)
DT->changeImmediateDominator(Exit, cast<BasicBlock>(LVMap[Latch]));
assert(DT->verify(DominatorTree::VerificationLevel::Fast));
}
auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
updateBranchWeights(InsertBot, LatchBRCopy, Iter,
PeelCount, ExitWeight);
// Remove Loop metadata from the latch branch instruction
// because it is not the Loop's latch branch anymore.
LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
InsertTop = InsertBot;
InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
InsertBot->setName(Header->getName() + ".peel.next");
F->getBasicBlockList().splice(InsertTop->getIterator(),
F->getBasicBlockList(),
NewBlocks[0]->getIterator(), F->end());
}
// Now adjust the phi nodes in the loop header to get their initial values
// from the last peeled-off iteration instead of the preheader.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *PHI = cast<PHINode>(I);
Value *NewVal = PHI->getIncomingValueForBlock(Latch);
Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
if (LatchInst && L->contains(LatchInst))
NewVal = LVMap[LatchInst];
PHI->setIncomingValue(PHI->getBasicBlockIndex(NewPreHeader), NewVal);
}
// Adjust the branch weights on the loop exit.
if (ExitWeight) {
// The backedge count is the difference of current header weight and
// current loop exit weight. If the current header weight is smaller than
// the current loop exit weight, we mark the loop backedge weight as 1.
uint64_t BackEdgeWeight = 0;
if (ExitWeight < CurHeaderWeight)
BackEdgeWeight = CurHeaderWeight - ExitWeight;
else
BackEdgeWeight = 1;
MDBuilder MDB(LatchBR->getContext());
MDNode *WeightNode =
HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
: MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
}
// If the loop is nested, we changed the parent loop, update SE.
if (Loop *ParentLoop = L->getParentLoop()) {
SE->forgetLoop(ParentLoop);
// FIXME: Incrementally update loop-simplify
simplifyLoop(ParentLoop, DT, LI, SE, AC, PreserveLCSSA);
} else {
// FIXME: Incrementally update loop-simplify
simplifyLoop(L, DT, LI, SE, AC, PreserveLCSSA);
}
NumPeeled++;
return true;
}