2018-11-21 22:37:49 +08:00
|
|
|
// RUN: mlir-translate -mlir-to-llvmir %s | FileCheck %s
|
|
|
|
|
LLVM IR lowering: support simple MemRef types
Introduce initial support for MemRef types, including type conversion,
allocation and deallocation, read and write element-wise access, passing
MemRefs to and returning from functions. Affine map compositions and
non-default memory spaces are NOT YET supported.
Lowered code needs to handle potentially dynamic sizes of the MemRef. To do
so, it replaces a MemRef-typed value with a special MemRef descriptor that
carries the data and the dynamic sizes together. A MemRef type is converted to
LLVM's first-class structure type with the first element being the pointer to
the data buffer with data layed out linearly, followed by as many integer-typed
elements as MemRef has dynamic sizes. The type of these elements is that of
MLIR index lowered to LLVM. For example, `memref<?x42x?xf32>` is converted to
`{ f32*, i64, i64 }` provided `index` is lowered to `i64`. While it is
possible to convert MemRefs with fully static sizes to simple pointers to their
elemental types, we opted for consistency and convert them to the
single-element structure. This makes the conversion code simpler and the
calling convention of the generated LLVM IR functions consistent.
Loads from and stores to a MemRef element are lowered to a sequence of LLVM
instructions that, first, computes the linearized index of the element in the
data buffer using the access indices and combining the static sizes with the
dynamic sizes stored in the descriptor, and then loads from or stores to the
buffer element indexed by the linearized subscript. While some of the index
computations may be redundant (i.e., consecutive load and store to the same
location in the same scope could reuse the linearized index), we emit them for
every operation. A subsequent optimization pass may eliminate them if
necessary.
MemRef allocation and deallocation is performed using external functions
`__mlir_alloc(index) -> i8*` and `__mlir_free(i8*)` that must be implemented by
the caller. These functions behave similarly to `malloc` and `free`, but can
be extended to support different memory spaces in future. Allocation and
deallocation instructions take care of casting the pointers. Prior to calling
the allocation function, the emitted code creates an SSA Value for the
descriptor and uses it to store the dynamic sizes of the MemRef passed to the
allocation operation. It further emits instructions that compute the dynamic
amount of memory to allocate in bytes. Finally, the allocation stores the
result of calling the `__mlir_alloc` in the MemRef descriptor. Deallocation
extracts the pointer to the allocated memory from the descriptor and calls
`__mlir_free` on it. The descriptor itself is not modified and, being
stack-allocated, ceases to exist when it goes out of scope.
MLIR functions that access MemRef values as arguments or return them are
converted to LLVM IR functions that accept MemRef descriptors as LLVM IR
structure types by value. This significantly simplifies the calling convention
at the LLVM IR level and avoids handling descriptors in the dynamic memory,
however is not always comaptible with LLVM IR functions emitted from C code
with similar signatures. A separate LLVM pass may be introduced in the future
to provide C-compatible calling conventions for LLVM IR functions generated
from MLIR.
PiperOrigin-RevId: 223134883
2018-11-28 18:32:10 +08:00
|
|
|
//
|
|
|
|
// Declarations of the allocation functions to be linked against.
|
|
|
|
//
|
|
|
|
|
|
|
|
// CHECK: declare i8* @__mlir_alloc(i64)
|
|
|
|
// CHECK: declare void @__mlir_free(i8*)
|
|
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
// Basic functionality: function and basic block conversion, function calls,
|
|
|
|
// phi nodes, scalar type conversion, arithmetic operations.
|
|
|
|
//
|
|
|
|
|
2018-11-21 22:37:49 +08:00
|
|
|
// CHECK-LABEL: define void @empty() {
|
|
|
|
// CHECK-NEXT: ret void
|
|
|
|
// CHECK-NEXT: }
|
|
|
|
cfgfunc @empty() {
|
|
|
|
bb0:
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK-LABEL: declare void @body(i64)
|
|
|
|
extfunc @body(index)
|
|
|
|
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @simple_loop() {
|
|
|
|
cfgfunc @simple_loop() {
|
|
|
|
bb0:
|
|
|
|
// CHECK: br label %[[SIMPLE_BB1:[0-9]+]]
|
|
|
|
br bb1
|
|
|
|
|
|
|
|
// Constants are inlined in LLVM rather than a separate instruction.
|
|
|
|
// CHECK: <label>:[[SIMPLE_BB1]]:
|
|
|
|
// CHECK-NEXT: br label %[[SIMPLE_BB2:[0-9]+]]
|
|
|
|
bb1: // pred: bb0
|
|
|
|
%c1 = constant 1 : index
|
|
|
|
%c42 = constant 42 : index
|
|
|
|
br bb2(%c1 : index)
|
|
|
|
|
|
|
|
// CHECK: <label>:[[SIMPLE_BB2]]:
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = phi i64 [ %{{[0-9]+}}, %[[SIMPLE_BB3:[0-9]+]] ], [ 1, %[[SIMPLE_BB1]] ]
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = icmp slt i64 %{{[0-9]+}}, 42
|
|
|
|
// CHECK-NEXT: br i1 %{{[0-9]+}}, label %[[SIMPLE_BB3]], label %[[SIMPLE_BB4:[0-9]+]]
|
|
|
|
bb2(%0: index): // 2 preds: bb1, bb3
|
|
|
|
%1 = cmpi "slt", %0, %c42 : index
|
|
|
|
cond_br %1, bb3, bb4
|
|
|
|
|
|
|
|
// CHECK: ; <label>:[[SIMPLE_BB3]]:
|
|
|
|
// CHECK-NEXT: call void @body(i64 %{{[0-9]+}})
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: br label %[[SIMPLE_BB2]]
|
|
|
|
bb3: // pred: bb2
|
|
|
|
call @body(%0) : (index) -> ()
|
|
|
|
%c1_0 = constant 1 : index
|
|
|
|
%2 = addi %0, %c1_0 : index
|
|
|
|
br bb2(%2 : index)
|
|
|
|
|
|
|
|
// CHECK: ; <label>:[[SIMPLE_BB4]]:
|
|
|
|
// CHECK-NEXT: ret void
|
|
|
|
bb4: // pred: bb2
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @simple_caller() {
|
|
|
|
// CHECK-NEXT: call void @simple_loop()
|
|
|
|
// CHECK-NEXT: ret void
|
|
|
|
// CHECK-NEXT: }
|
|
|
|
cfgfunc @simple_caller() {
|
|
|
|
bb0:
|
|
|
|
call @simple_loop() : () -> ()
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
//cfgfunc @simple_indirect_caller() {
|
|
|
|
//bb0:
|
|
|
|
// %f = constant @simple_loop : () -> ()
|
|
|
|
// call_indirect %f() : () -> ()
|
|
|
|
// return
|
|
|
|
//}
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @ml_caller() {
|
|
|
|
// CHECK-NEXT: call void @simple_loop()
|
|
|
|
// CHECK-NEXT: call void @more_imperfectly_nested_loops()
|
|
|
|
// CHECK-NEXT: ret void
|
|
|
|
// CHECK-NEXT: }
|
|
|
|
cfgfunc @ml_caller() {
|
|
|
|
bb0:
|
|
|
|
call @simple_loop() : () -> ()
|
|
|
|
call @more_imperfectly_nested_loops() : () -> ()
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK-LABEL: declare i64 @body_args(i64)
|
|
|
|
extfunc @body_args(index) -> index
|
|
|
|
// CHECK-LABEL: declare i32 @other(i64, i32)
|
|
|
|
extfunc @other(index, i32) -> i32
|
|
|
|
|
|
|
|
// CHECK-LABEL: define i32 @mlfunc_args(i32, i32) {
|
|
|
|
// CHECK-NEXT: br label %[[ARGS_BB1:[0-9]+]]
|
|
|
|
cfgfunc @mlfunc_args(i32, i32) -> i32 {
|
|
|
|
bb0(%arg0: i32, %arg1: i32):
|
|
|
|
%c0_i32 = constant 0 : i32
|
|
|
|
br bb1
|
|
|
|
|
|
|
|
// CHECK: <label>:[[ARGS_BB1]]:
|
|
|
|
// CHECK-NEXT: br label %[[ARGS_BB2:[0-9]+]]
|
|
|
|
bb1: // pred: bb0
|
|
|
|
%c0 = constant 0 : index
|
|
|
|
%c42 = constant 42 : index
|
|
|
|
br bb2(%c0 : index)
|
|
|
|
|
|
|
|
// CHECK: <label>:[[ARGS_BB2]]:
|
|
|
|
// CHECK-NEXT: %5 = phi i64 [ %12, %[[ARGS_BB3:[0-9]+]] ], [ 0, %[[ARGS_BB1]] ]
|
|
|
|
// CHECK-NEXT: %6 = icmp slt i64 %5, 42
|
|
|
|
// CHECK-NEXT: br i1 %6, label %[[ARGS_BB3]], label %[[ARGS_BB4:[0-9]+]]
|
|
|
|
bb2(%0: index): // 2 preds: bb1, bb3
|
|
|
|
%1 = cmpi "slt", %0, %c42 : index
|
|
|
|
cond_br %1, bb3, bb4
|
|
|
|
|
|
|
|
// CHECK: <label>:[[ARGS_BB3]]:
|
|
|
|
// CHECK-NEXT: %8 = call i64 @body_args(i64 %5)
|
|
|
|
// CHECK-NEXT: %9 = call i32 @other(i64 %8, i32 %0)
|
|
|
|
// CHECK-NEXT: %10 = call i32 @other(i64 %8, i32 %9)
|
|
|
|
// CHECK-NEXT: %11 = call i32 @other(i64 %8, i32 %1)
|
|
|
|
// CHECK-NEXT: %12 = add i64 %5, 1
|
|
|
|
// CHECK-NEXT: br label %[[ARGS_BB2]]
|
|
|
|
bb3: // pred: bb2
|
|
|
|
%2 = call @body_args(%0) : (index) -> index
|
|
|
|
%3 = call @other(%2, %arg0) : (index, i32) -> i32
|
|
|
|
%4 = call @other(%2, %3) : (index, i32) -> i32
|
|
|
|
%5 = call @other(%2, %arg1) : (index, i32) -> i32
|
|
|
|
%c1 = constant 1 : index
|
|
|
|
%6 = addi %0, %c1 : index
|
|
|
|
br bb2(%6 : index)
|
|
|
|
|
|
|
|
// CHECK: <label>:[[ARGS_BB4]]:
|
|
|
|
// CHECK-NEXT: %14 = call i32 @other(i64 0, i32 0)
|
|
|
|
// CHECK-NEXT: ret i32 %14
|
|
|
|
bb4: // pred: bb2
|
|
|
|
%c0_0 = constant 0 : index
|
|
|
|
%7 = call @other(%c0_0, %c0_i32) : (index, i32) -> i32
|
|
|
|
return %7 : i32
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK: declare void @pre(i64)
|
|
|
|
extfunc @pre(index)
|
|
|
|
|
|
|
|
// CHECK: declare void @body2(i64, i64)
|
|
|
|
extfunc @body2(index, index)
|
|
|
|
|
|
|
|
// CHECK: declare void @post(i64)
|
|
|
|
extfunc @post(index)
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @imperfectly_nested_loops() {
|
|
|
|
// CHECK-NEXT: br label %[[IMPER_BB1:[0-9]+]]
|
|
|
|
cfgfunc @imperfectly_nested_loops() {
|
|
|
|
bb0:
|
|
|
|
br bb1
|
|
|
|
|
|
|
|
// CHECK: <label>:[[IMPER_BB1]]:
|
|
|
|
// CHECK-NEXT: br label %[[IMPER_BB2:[0-9]+]]
|
|
|
|
bb1: // pred: bb0
|
|
|
|
%c0 = constant 0 : index
|
|
|
|
%c42 = constant 42 : index
|
|
|
|
br bb2(%c0 : index)
|
|
|
|
|
|
|
|
// CHECK: <label>:[[IMPER_BB2]]:
|
|
|
|
// CHECK-NEXT: %3 = phi i64 [ %13, %[[IMPER_BB7:[0-9]+]] ], [ 0, %[[IMPER_BB1]] ]
|
|
|
|
// CHECK-NEXT: %4 = icmp slt i64 %3, 42
|
|
|
|
// CHECK-NEXT: br i1 %4, label %[[IMPER_BB3:[0-9]+]], label %[[IMPER_BB8:[0-9]+]]
|
|
|
|
bb2(%0: index): // 2 preds: bb1, bb7
|
|
|
|
%1 = cmpi "slt", %0, %c42 : index
|
|
|
|
cond_br %1, bb3, bb8
|
|
|
|
|
|
|
|
// CHECK: <label>:[[IMPER_BB3]]:
|
|
|
|
// CHECK-NEXT: call void @pre(i64 %3)
|
|
|
|
// CHECK-NEXT: br label %[[IMPER_BB4:[0-9]+]]
|
|
|
|
bb3: // pred: bb2
|
|
|
|
call @pre(%0) : (index) -> ()
|
|
|
|
br bb4
|
|
|
|
|
|
|
|
// CHECK: <label>:[[IMPER_BB4]]:
|
|
|
|
// CHECK-NEXT: br label %[[IMPER_BB5:[0-9]+]]
|
|
|
|
bb4: // pred: bb3
|
|
|
|
%c7 = constant 7 : index
|
|
|
|
%c56 = constant 56 : index
|
|
|
|
br bb5(%c7 : index)
|
|
|
|
|
|
|
|
// CHECK: <label>:[[IMPER_BB5]]:
|
|
|
|
// CHECK-NEXT: %8 = phi i64 [ %11, %[[IMPER_BB6:[0-9]+]] ], [ 7, %[[IMPER_BB4]] ]
|
|
|
|
// CHECK-NEXT: %9 = icmp slt i64 %8, 56
|
|
|
|
// CHECK-NEXT: br i1 %9, label %[[IMPER_BB6]], label %[[IMPER_BB7]]
|
|
|
|
bb5(%2: index): // 2 preds: bb4, bb6
|
|
|
|
%3 = cmpi "slt", %2, %c56 : index
|
|
|
|
cond_br %3, bb6, bb7
|
|
|
|
|
|
|
|
// CHECK: <label>:[[IMPER_BB6]]:
|
|
|
|
// CHECK-NEXT: call void @body2(i64 %3, i64 %8)
|
|
|
|
// CHECK-NEXT: %11 = add i64 %8, 2
|
|
|
|
// CHECK-NEXT: br label %[[IMPER_BB5]]
|
|
|
|
bb6: // pred: bb5
|
|
|
|
call @body2(%0, %2) : (index, index) -> ()
|
|
|
|
%c2 = constant 2 : index
|
|
|
|
%4 = addi %2, %c2 : index
|
|
|
|
br bb5(%4 : index)
|
|
|
|
|
|
|
|
// CHECK: <label>:[[IMPER_BB7]]:
|
|
|
|
// CHECK-NEXT: call void @post(i64 %3)
|
|
|
|
// CHECK-NEXT: %13 = add i64 %3, 1
|
|
|
|
// CHECK-NEXT: br label %[[IMPER_BB2]]
|
|
|
|
bb7: // pred: bb5
|
|
|
|
call @post(%0) : (index) -> ()
|
|
|
|
%c1 = constant 1 : index
|
|
|
|
%5 = addi %0, %c1 : index
|
|
|
|
br bb2(%5 : index)
|
|
|
|
|
|
|
|
// CHECK: <label>:[[IMPER_BB8]]:
|
|
|
|
// CHECK-NEXT: ret void
|
|
|
|
bb8: // pred: bb2
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK: declare void @mid(i64)
|
|
|
|
extfunc @mid(index)
|
|
|
|
|
|
|
|
// CHECK: declare void @body3(i64, i64)
|
|
|
|
extfunc @body3(index, index)
|
|
|
|
|
|
|
|
// A complete function transformation check.
|
|
|
|
// CHECK-LABEL: define void @more_imperfectly_nested_loops() {
|
|
|
|
// CHECK-NEXT: br label %1
|
|
|
|
// CHECK: ; <label>:1: ; preds = %0
|
|
|
|
// CHECK-NEXT: br label %2
|
|
|
|
// CHECK: ; <label>:2: ; preds = %19, %1
|
|
|
|
// CHECK-NEXT: %3 = phi i64 [ %20, %19 ], [ 0, %1 ]
|
|
|
|
// CHECK-NEXT: %4 = icmp slt i64 %3, 42
|
|
|
|
// CHECK-NEXT: br i1 %4, label %5, label %21
|
|
|
|
// CHECK: ; <label>:5: ; preds = %2
|
|
|
|
// CHECK-NEXT: call void @pre(i64 %3)
|
|
|
|
// CHECK-NEXT: br label %6
|
|
|
|
// CHECK: ; <label>:6: ; preds = %5
|
|
|
|
// CHECK-NEXT: br label %7
|
|
|
|
// CHECK: ; <label>:7: ; preds = %10, %6
|
|
|
|
// CHECK-NEXT: %8 = phi i64 [ %11, %10 ], [ 7, %6 ]
|
|
|
|
// CHECK-NEXT: %9 = icmp slt i64 %8, 56
|
|
|
|
// CHECK-NEXT: br i1 %9, label %10, label %12
|
|
|
|
// CHECK: ; <label>:10: ; preds = %7
|
|
|
|
// CHECK-NEXT: call void @body2(i64 %3, i64 %8)
|
|
|
|
// CHECK-NEXT: %11 = add i64 %8, 2
|
|
|
|
// CHECK-NEXT: br label %7
|
|
|
|
// CHECK: ; <label>:12: ; preds = %7
|
|
|
|
// CHECK-NEXT: call void @mid(i64 %3)
|
|
|
|
// CHECK-NEXT: br label %13
|
|
|
|
// CHECK: ; <label>:13: ; preds = %12
|
|
|
|
// CHECK-NEXT: br label %14
|
|
|
|
// CHECK: ; <label>:14: ; preds = %17, %13
|
|
|
|
// CHECK-NEXT: %15 = phi i64 [ %18, %17 ], [ 18, %13 ]
|
|
|
|
// CHECK-NEXT: %16 = icmp slt i64 %15, 37
|
|
|
|
// CHECK-NEXT: br i1 %16, label %17, label %19
|
|
|
|
// CHECK: ; <label>:17: ; preds = %14
|
|
|
|
// CHECK-NEXT: call void @body3(i64 %3, i64 %15)
|
|
|
|
// CHECK-NEXT: %18 = add i64 %15, 3
|
|
|
|
// CHECK-NEXT: br label %14
|
|
|
|
// CHECK: ; <label>:19: ; preds = %14
|
|
|
|
// CHECK-NEXT: call void @post(i64 %3)
|
|
|
|
// CHECK-NEXT: %20 = add i64 %3, 1
|
|
|
|
// CHECK-NEXT: br label %2
|
|
|
|
// CHECK: ; <label>:21: ; preds = %2
|
|
|
|
// CHECK-NEXT: ret void
|
|
|
|
// CHECK-NEXT: }
|
|
|
|
cfgfunc @more_imperfectly_nested_loops() {
|
|
|
|
bb0:
|
|
|
|
br bb1
|
|
|
|
bb1: // pred: bb0
|
|
|
|
%c0 = constant 0 : index
|
|
|
|
%c42 = constant 42 : index
|
|
|
|
br bb2(%c0 : index)
|
|
|
|
bb2(%0: index): // 2 preds: bb1, bb11
|
|
|
|
%1 = cmpi "slt", %0, %c42 : index
|
|
|
|
cond_br %1, bb3, bb12
|
|
|
|
bb3: // pred: bb2
|
|
|
|
call @pre(%0) : (index) -> ()
|
|
|
|
br bb4
|
|
|
|
bb4: // pred: bb3
|
|
|
|
%c7 = constant 7 : index
|
|
|
|
%c56 = constant 56 : index
|
|
|
|
br bb5(%c7 : index)
|
|
|
|
bb5(%2: index): // 2 preds: bb4, bb6
|
|
|
|
%3 = cmpi "slt", %2, %c56 : index
|
|
|
|
cond_br %3, bb6, bb7
|
|
|
|
bb6: // pred: bb5
|
|
|
|
call @body2(%0, %2) : (index, index) -> ()
|
|
|
|
%c2 = constant 2 : index
|
|
|
|
%4 = addi %2, %c2 : index
|
|
|
|
br bb5(%4 : index)
|
|
|
|
bb7: // pred: bb5
|
|
|
|
call @mid(%0) : (index) -> ()
|
|
|
|
br bb8
|
|
|
|
bb8: // pred: bb7
|
|
|
|
%c18 = constant 18 : index
|
|
|
|
%c37 = constant 37 : index
|
|
|
|
br bb9(%c18 : index)
|
|
|
|
bb9(%5: index): // 2 preds: bb8, bb10
|
|
|
|
%6 = cmpi "slt", %5, %c37 : index
|
|
|
|
cond_br %6, bb10, bb11
|
|
|
|
bb10: // pred: bb9
|
|
|
|
call @body3(%0, %5) : (index, index) -> ()
|
|
|
|
%c3 = constant 3 : index
|
|
|
|
%7 = addi %5, %c3 : index
|
|
|
|
br bb9(%7 : index)
|
|
|
|
bb11: // pred: bb9
|
|
|
|
call @post(%0) : (index) -> ()
|
|
|
|
%c1 = constant 1 : index
|
|
|
|
%8 = addi %0, %c1 : index
|
|
|
|
br bb2(%8 : index)
|
|
|
|
bb12: // pred: bb2
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
LLVM IR lowering: support simple MemRef types
Introduce initial support for MemRef types, including type conversion,
allocation and deallocation, read and write element-wise access, passing
MemRefs to and returning from functions. Affine map compositions and
non-default memory spaces are NOT YET supported.
Lowered code needs to handle potentially dynamic sizes of the MemRef. To do
so, it replaces a MemRef-typed value with a special MemRef descriptor that
carries the data and the dynamic sizes together. A MemRef type is converted to
LLVM's first-class structure type with the first element being the pointer to
the data buffer with data layed out linearly, followed by as many integer-typed
elements as MemRef has dynamic sizes. The type of these elements is that of
MLIR index lowered to LLVM. For example, `memref<?x42x?xf32>` is converted to
`{ f32*, i64, i64 }` provided `index` is lowered to `i64`. While it is
possible to convert MemRefs with fully static sizes to simple pointers to their
elemental types, we opted for consistency and convert them to the
single-element structure. This makes the conversion code simpler and the
calling convention of the generated LLVM IR functions consistent.
Loads from and stores to a MemRef element are lowered to a sequence of LLVM
instructions that, first, computes the linearized index of the element in the
data buffer using the access indices and combining the static sizes with the
dynamic sizes stored in the descriptor, and then loads from or stores to the
buffer element indexed by the linearized subscript. While some of the index
computations may be redundant (i.e., consecutive load and store to the same
location in the same scope could reuse the linearized index), we emit them for
every operation. A subsequent optimization pass may eliminate them if
necessary.
MemRef allocation and deallocation is performed using external functions
`__mlir_alloc(index) -> i8*` and `__mlir_free(i8*)` that must be implemented by
the caller. These functions behave similarly to `malloc` and `free`, but can
be extended to support different memory spaces in future. Allocation and
deallocation instructions take care of casting the pointers. Prior to calling
the allocation function, the emitted code creates an SSA Value for the
descriptor and uses it to store the dynamic sizes of the MemRef passed to the
allocation operation. It further emits instructions that compute the dynamic
amount of memory to allocate in bytes. Finally, the allocation stores the
result of calling the `__mlir_alloc` in the MemRef descriptor. Deallocation
extracts the pointer to the allocated memory from the descriptor and calls
`__mlir_free` on it. The descriptor itself is not modified and, being
stack-allocated, ceases to exist when it goes out of scope.
MLIR functions that access MemRef values as arguments or return them are
converted to LLVM IR functions that accept MemRef descriptors as LLVM IR
structure types by value. This significantly simplifies the calling convention
at the LLVM IR level and avoids handling descriptors in the dynamic memory,
however is not always comaptible with LLVM IR functions emitted from C code
with similar signatures. A separate LLVM pass may be introduced in the future
to provide C-compatible calling conventions for LLVM IR functions generated
from MLIR.
PiperOrigin-RevId: 223134883
2018-11-28 18:32:10 +08:00
|
|
|
//
|
|
|
|
// MemRef type conversion, allocation and communication with functions.
|
|
|
|
//
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @memref_alloc()
|
|
|
|
cfgfunc @memref_alloc() {
|
|
|
|
bb0:
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = call i8* @__mlir_alloc(i64 400)
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = bitcast i8* %{{[0-9]+}} to float*
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float* } undef, float* %{{[0-9]+}}, 0
|
|
|
|
%0 = alloc() : memref<10x10xf32>
|
|
|
|
// CHECK-NEXT: ret void
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK-LABEL: declare i64 @get_index()
|
|
|
|
extfunc @get_index() -> index
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @store_load_static()
|
|
|
|
cfgfunc @store_load_static() {
|
|
|
|
bb0:
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = call i8* @__mlir_alloc(i64 40)
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = bitcast i8* %{{[0-9]+}} to float*
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float* } undef, float* %{{[0-9]+}}, 0
|
|
|
|
%0 = alloc() : memref<10xf32>
|
|
|
|
%cst = constant 1.000000e+00 : f32
|
|
|
|
br bb1
|
|
|
|
bb1: // pred: bb0
|
|
|
|
%c0 = constant 0 : index
|
|
|
|
%c10 = constant 10 : index
|
|
|
|
br bb2(%c0 : index)
|
|
|
|
// CHECK: %{{[0-9]+}} = phi i64 [ %{{[0-9]+}}, %{{[0-9]+}} ], [ 0, %{{[0-9]+}} ]
|
|
|
|
bb2(%1: index): // 2 preds: bb1, bb3
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = icmp slt i64 %{{[0-9]+}}, 10
|
|
|
|
%2 = cmpi "slt", %1, %c10 : index
|
|
|
|
// CHECK-NEXT: br i1 %{{[0-9]+}}, label %{{[0-9]+}}, label %{{[0-9]+}}
|
|
|
|
cond_br %2, bb3, bb4
|
|
|
|
bb3: // pred: bb2
|
|
|
|
// CHECK: %{{[0-9]+}} = extractvalue { float* } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: store float 1.000000e+00, float* %{{[0-9]+}}
|
|
|
|
store %cst, %0[%1] : memref<10xf32>
|
|
|
|
%c1 = constant 1 : index
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, 1
|
|
|
|
%3 = addi %1, %c1 : index
|
|
|
|
// CHECK-NEXT: br label %{{[0-9]+}}
|
|
|
|
br bb2(%3 : index)
|
|
|
|
bb4: // pred: bb2
|
|
|
|
br bb5
|
|
|
|
bb5: // pred: bb4
|
|
|
|
%c0_0 = constant 0 : index
|
|
|
|
%c10_1 = constant 10 : index
|
|
|
|
br bb6(%c0_0 : index)
|
|
|
|
// CHECK: %{{[0-9]+}} = phi i64 [ %{{[0-9]+}}, %{{[0-9]+}} ], [ 0, %{{[0-9]+}} ]
|
|
|
|
bb6(%4: index): // 2 preds: bb5, bb7
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = icmp slt i64 %{{[0-9]+}}, 10
|
|
|
|
%5 = cmpi "slt", %4, %c10_1 : index
|
|
|
|
// CHECK-NEXT: br i1 %{{[0-9]+}}, label %{{[0-9]+}}, label %{{[0-9]+}}
|
|
|
|
cond_br %5, bb7, bb8
|
|
|
|
bb7: // pred: bb6
|
|
|
|
// CHECK: %{{[0-9]+}} = extractvalue { float* } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = load float, float* %{{[0-9]+}}
|
|
|
|
%6 = load %0[%4] : memref<10xf32>
|
|
|
|
%c1_2 = constant 1 : index
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, 1
|
|
|
|
%7 = addi %4, %c1_2 : index
|
|
|
|
// CHECK-NEXT: br label %{{[0-9]+}}
|
|
|
|
br bb6(%7 : index)
|
|
|
|
bb8: // pred: bb6
|
|
|
|
// CHECK: ret void
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @store_load_dynamic(i64)
|
|
|
|
cfgfunc @store_load_dynamic(index) {
|
|
|
|
bb0(%arg0: index):
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, 4
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = call i8* @__mlir_alloc(i64 %{{[0-9]+}})
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = bitcast i8* %{{[0-9]+}} to float*
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float*, i64 } undef, float* %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float*, i64 } %{{[0-9]+}}, i64 %{{[0-9]+}}, 1
|
|
|
|
%0 = alloc(%arg0) : memref<?xf32>
|
|
|
|
%cst = constant 1.000000e+00 : f32
|
|
|
|
// CHECK-NEXT: br label %{{[0-9]+}}
|
|
|
|
br bb1
|
|
|
|
bb1: // pred: bb0
|
|
|
|
%c0 = constant 0 : index
|
|
|
|
br bb2(%c0 : index)
|
|
|
|
// CHECK: %{{[0-9]+}} = phi i64 [ %{{[0-9]+}}, %{{[0-9]+}} ], [ 0, %{{[0-9]+}} ]
|
|
|
|
bb2(%1: index): // 2 preds: bb1, bb3
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = icmp slt i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
%2 = cmpi "slt", %1, %arg0 : index
|
|
|
|
// CHECK-NEXT: br i1 %{{[0-9]+}}, label %{{[0-9]+}}, label %{{[0-9]+}}
|
|
|
|
cond_br %2, bb3, bb4
|
|
|
|
bb3: // pred: bb2
|
|
|
|
// CHECK: %{{[0-9]+}} = extractvalue { float*, i64 } %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64 } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: store float 1.000000e+00, float* %{{[0-9]+}}
|
|
|
|
store %cst, %0[%1] : memref<?xf32>
|
|
|
|
%c1 = constant 1 : index
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, 1
|
|
|
|
%3 = addi %1, %c1 : index
|
|
|
|
// CHECK-NEXT: br label %{{[0-9]+}}
|
|
|
|
br bb2(%3 : index)
|
|
|
|
bb4: // pred: bb3
|
|
|
|
br bb5
|
|
|
|
bb5: // pred: bb4
|
|
|
|
%c0_0 = constant 0 : index
|
|
|
|
br bb6(%c0_0 : index)
|
|
|
|
// CHECK: %{{[0-9]+}} = phi i64 [ %{{[0-9]+}}, %{{[0-9]+}} ], [ 0, %{{[0-9]+}} ]
|
|
|
|
bb6(%4: index): // 2 preds: bb5, bb7
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = icmp slt i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
%5 = cmpi "slt", %4, %arg0 : index
|
|
|
|
// CHECK-NEXT: br i1 %{{[0-9]+}}, label %{{[0-9]+}}, label %{{[0-9]+}}
|
|
|
|
cond_br %5, bb7, bb8
|
|
|
|
bb7: // pred: bb6
|
|
|
|
// CHECK: %{{[0-9]+}} = extractvalue { float*, i64 } %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64 } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = load float, float* %{{[0-9]+}}
|
|
|
|
%6 = load %0[%4] : memref<?xf32>
|
|
|
|
%c1_1 = constant 1 : index
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, 1
|
|
|
|
%7 = addi %4, %c1_1 : index
|
|
|
|
// CHECK-NEXT: br label %{{[0-9]+}}
|
|
|
|
br bb6(%7 : index)
|
|
|
|
bb8: // pred: bb6
|
|
|
|
// CHECK: ret void
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @store_load_mixed(i64)
|
|
|
|
cfgfunc @store_load_mixed(index) {
|
|
|
|
bb0(%arg0: index):
|
|
|
|
%c10 = constant 10 : index
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 2, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, 4
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, 10
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, 4
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = call i8* @__mlir_alloc(i64 %{{[0-9]+}})
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = bitcast i8* %{{[0-9]+}} to float*
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float*, i64, i64 } undef, float* %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float*, i64, i64 } %{{[0-9]+}}, i64 %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float*, i64, i64 } %{{[0-9]+}}, i64 10, 2
|
|
|
|
%0 = alloc(%arg0, %c10) : memref<2x?x4x?xf32>
|
|
|
|
%c1 = constant 1 : index
|
|
|
|
%c2 = constant 2 : index
|
|
|
|
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = call i64 @get_index()
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = call i64 @get_index()
|
|
|
|
%1 = call @get_index() : () -> index
|
|
|
|
%2 = call @get_index() : () -> index
|
|
|
|
%cst = constant 4.200000e+01 : f32
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64, i64 } %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64, i64 } %{{[0-9]+}}, 2
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 1, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, 2
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, 4
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64, i64 } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: store float 4.200000e+01, float* %{{[0-9]+}}
|
|
|
|
store %cst, %0[%c1, %c2, %1, %2] : memref<2x?x4x?xf32>
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64, i64 } %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64, i64 } %{{[0-9]+}}, 2
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, 4
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, 2
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64, i64 } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = load float, float* %{{[0-9]+}}
|
|
|
|
%3 = load %0[%2, %1, %c2, %c1] : memref<2x?x4x?xf32>
|
|
|
|
// CHECK-NEXT: ret void
|
|
|
|
return
|
|
|
|
}
|
|
|
|
|
|
|
|
// CHECK-LABEL: define { float*, i64 } @memref_args_rets({ float* }, { float*, i64 }, { float*, i64 }) {
|
|
|
|
cfgfunc @memref_args_rets(memref<10xf32>, memref<?xf32>, memref<10x?xf32>) -> memref<10x?xf32> {
|
|
|
|
bb0(%arg0: memref<10xf32>, %arg1: memref<?xf32>, %arg2: memref<10x?xf32>):
|
|
|
|
%c7 = constant 7 : index
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = call i64 @get_index()
|
|
|
|
%0 = call @get_index() : () -> index
|
|
|
|
%cst = constant 4.200000e+01 : f32
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float* } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 7
|
|
|
|
// CHECK-NEXT: store float 4.200000e+01, float* %{{[0-9]+}}
|
|
|
|
store %cst, %arg0[%c7] : memref<10xf32>
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64 } %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64 } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 7
|
|
|
|
// CHECK-NEXT: store float 4.200000e+01, float* %{{[0-9]+}}
|
|
|
|
store %cst, %arg1[%c7] : memref<?xf32>
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64 } %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 7, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = add i64 %{{[0-9]+}}, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = extractvalue { float*, i64 } %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = getelementptr float, float* %{{[0-9]+}}, i64 %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: store float 4.200000e+01, float* %{{[0-9]+}}
|
|
|
|
store %cst, %arg2[%c7, %0] : memref<10x?xf32>
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 10, %{{[0-9]+}}
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = mul i64 %{{[0-9]+}}, 4
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = call i8* @__mlir_alloc(i64 %{{[0-9]+}})
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = bitcast i8* %{{[0-9]+}} to float*
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float*, i64 } undef, float* %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { float*, i64 } %{{[0-9]+}}, i64 %{{[0-9]+}}, 1
|
|
|
|
%3 = alloc(%0) : memref<10x?xf32>
|
|
|
|
// CHECK-NEXT: ret { float*, i64 } %{{[0-9]+}}
|
|
|
|
return %3 : memref<10x?xf32>
|
|
|
|
}
|
|
|
|
|
2018-11-28 23:07:56 +08:00
|
|
|
|
|
|
|
// CHECK-LABEL: define i64 @memref_dim({ float*, i64, i64 })
|
|
|
|
cfgfunc @memref_dim(memref<42x?x10x?xf32>) -> index {
|
|
|
|
bb0(%arg0: memref<42x?x10x?xf32>):
|
|
|
|
// Expecting this to create an LLVM constant.
|
|
|
|
%d0 = dim %arg0, 0 : memref<42x?x10x?xf32>
|
|
|
|
// CHECK-NEXT: %2 = extractvalue { float*, i64, i64 } %0, 1
|
|
|
|
%d1 = dim %arg0, 1 : memref<42x?x10x?xf32>
|
|
|
|
// Expecting this to create an LLVM constant.
|
|
|
|
%d2 = dim %arg0, 2 : memref<42x?x10x?xf32>
|
|
|
|
// CHECK-NEXT: %3 = extractvalue { float*, i64, i64 } %0, 2
|
|
|
|
%d3 = dim %arg0, 3 : memref<42x?x10x?xf32>
|
|
|
|
// Checking that the constant for d0 has been created.
|
|
|
|
// CHECK-NEXT: %4 = add i64 42, %2
|
|
|
|
%d01 = addi %d0, %d1 : index
|
|
|
|
// Checking that the constant for d2 has been created.
|
|
|
|
// CHECK-NEXT: %5 = add i64 10, %3
|
|
|
|
%d23 = addi %d2, %d3 : index
|
|
|
|
// CHECK-NEXT: %6 = add i64 %4, %5
|
|
|
|
%d0123 = addi %d01, %d23 : index
|
|
|
|
// CHECK-NEXT: ret i64 %6
|
|
|
|
return %d0123 : index
|
|
|
|
}
|
2018-12-04 22:16:26 +08:00
|
|
|
|
|
|
|
extfunc @get_i64() -> (i64)
|
|
|
|
extfunc @get_f32() -> (f32)
|
|
|
|
extfunc @get_memref() -> (memref<42x?x10x?xf32>)
|
|
|
|
|
|
|
|
// CHECK-LABEL: define { i64, float, { float*, i64, i64 } } @multireturn() {
|
|
|
|
cfgfunc @multireturn() -> (i64, f32, memref<42x?x10x?xf32>) {
|
|
|
|
bb0:
|
|
|
|
%0 = call @get_i64() : () -> (i64)
|
|
|
|
%1 = call @get_f32() : () -> (f32)
|
|
|
|
%2 = call @get_memref() : () -> (memref<42x?x10x?xf32>)
|
|
|
|
// CHECK: %{{[0-9]+}} = insertvalue { i64, float, { float*, i64, i64 } } undef, i64 %{{[0-9]+}}, 0
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { i64, float, { float*, i64, i64 } } %{{[0-9]+}}, float %{{[0-9]+}}, 1
|
|
|
|
// CHECK-NEXT: %{{[0-9]+}} = insertvalue { i64, float, { float*, i64, i64 } } %{{[0-9]+}}, { float*, i64, i64 } %{{[0-9]+}}, 2
|
|
|
|
// CHECK-NEXT: ret { i64, float, { float*, i64, i64 } } %{{[0-9]+}}
|
|
|
|
return %0, %1, %2 : i64, f32, memref<42x?x10x?xf32>
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// CHECK-LABEL: define void @multireturn_caller() {
|
|
|
|
cfgfunc @multireturn_caller() {
|
|
|
|
bb0:
|
|
|
|
// CHECK-NEXT: %1 = call { i64, float, { float*, i64, i64 } } @multireturn()
|
|
|
|
// CHECK-NEXT: [[ret0:%[0-9]+]] = extractvalue { i64, float, { float*, i64, i64 } } %1, 0
|
|
|
|
// CHECK-NEXT: [[ret1:%[0-9]+]] = extractvalue { i64, float, { float*, i64, i64 } } %1, 1
|
|
|
|
// CHECK-NEXT: [[ret2:%[0-9]+]] = extractvalue { i64, float, { float*, i64, i64 } } %1, 2
|
|
|
|
%0 = call @multireturn() : () -> (i64, f32, memref<42x?x10x?xf32>)
|
|
|
|
%1 = constant 42 : i64
|
|
|
|
// CHECK: add i64 [[ret0]], 42
|
|
|
|
%2 = addi %0#0, %1 : i64
|
|
|
|
%3 = constant 42.0 : f32
|
|
|
|
// CHECK: fadd float [[ret1]], 4.200000e+01
|
|
|
|
%4 = addf %0#1, %3 : f32
|
|
|
|
%5 = constant 0 : index
|
|
|
|
// CHECK: extractvalue { float*, i64, i64 } [[ret2]], 0
|
|
|
|
%6 = load %0#2 [%5, %5, %5, %5] : memref<42x?x10x?xf32>
|
|
|
|
return
|
|
|
|
}
|
2018-12-12 22:11:33 +08:00
|
|
|
|
|
|
|
// CHECK-LABEL: define <4 x float> @vector_ops(<4 x float>) {
|
|
|
|
// CHECK-NEXT: %2 = fadd <4 x float> %0, <float 4.200000e+01, float 4.200000e+01, float 4.200000e+01, float 4.200000e+01>
|
|
|
|
// CHECK-NEXT: ret <4 x float> %2
|
|
|
|
// CHECK-NEXT: }
|
|
|
|
cfgfunc @vector_ops(vector<4xf32>) -> vector<4xf32> {
|
|
|
|
bb0(%arg0 : vector<4xf32>):
|
|
|
|
%0 = constant splat<vector<4xf32>, 42.> : vector<4xf32>
|
|
|
|
%1 = addf %arg0, %0 : vector<4xf32>
|
|
|
|
return %1 : vector<4xf32>
|
|
|
|
}
|
2018-12-27 04:09:06 +08:00
|
|
|
|
|
|
|
// CHECK-LABEL: @ops
|
|
|
|
cfgfunc @ops(f32, f32, i32, i32) -> (f32, i32) {
|
|
|
|
bb0(%arg0 : f32, %arg1 : f32, %arg2 : i32, %arg3 : i32):
|
|
|
|
// CHECK-NEXT: fsub float %0, %1
|
|
|
|
%0 = subf %arg0, %arg1 : f32
|
|
|
|
// CHECK-NEXT: sub i32 %2, %3
|
|
|
|
%1 = subi %arg2, %arg3 : i32
|
|
|
|
return %0, %1 : f32, i32
|
|
|
|
}
|