llvm-project/clang/lib/AST/StmtProfile.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2187 lines
59 KiB
C++
Raw Normal View History

//===---- StmtProfile.cpp - Profile implementation for Stmt ASTs ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Stmt::Profile method, which builds a unique bit
// representation that identifies a statement/expression.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ExprOpenMP.h"
#include "clang/AST/ODRHash.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/StmtVisitor.h"
#include "llvm/ADT/FoldingSet.h"
using namespace clang;
namespace {
class StmtProfiler : public ConstStmtVisitor<StmtProfiler> {
protected:
llvm::FoldingSetNodeID &ID;
bool Canonical;
public:
StmtProfiler(llvm::FoldingSetNodeID &ID, bool Canonical)
: ID(ID), Canonical(Canonical) {}
virtual ~StmtProfiler() {}
void VisitStmt(const Stmt *S);
virtual void HandleStmtClass(Stmt::StmtClass SC) = 0;
#define STMT(Node, Base) void Visit##Node(const Node *S);
#include "clang/AST/StmtNodes.inc"
/// Visit a declaration that is referenced within an expression
/// or statement.
virtual void VisitDecl(const Decl *D) = 0;
/// Visit a type that is referenced within an expression or
/// statement.
virtual void VisitType(QualType T) = 0;
/// Visit a name that occurs within an expression or statement.
virtual void VisitName(DeclarationName Name, bool TreatAsDecl = false) = 0;
/// Visit identifiers that are not in Decl's or Type's.
virtual void VisitIdentifierInfo(IdentifierInfo *II) = 0;
/// Visit a nested-name-specifier that occurs within an expression
/// or statement.
virtual void VisitNestedNameSpecifier(NestedNameSpecifier *NNS) = 0;
/// Visit a template name that occurs within an expression or
/// statement.
virtual void VisitTemplateName(TemplateName Name) = 0;
/// Visit template arguments that occur within an expression or
/// statement.
void VisitTemplateArguments(const TemplateArgumentLoc *Args,
unsigned NumArgs);
/// Visit a single template argument.
void VisitTemplateArgument(const TemplateArgument &Arg);
};
class StmtProfilerWithPointers : public StmtProfiler {
const ASTContext &Context;
public:
StmtProfilerWithPointers(llvm::FoldingSetNodeID &ID,
const ASTContext &Context, bool Canonical)
: StmtProfiler(ID, Canonical), Context(Context) {}
private:
void HandleStmtClass(Stmt::StmtClass SC) override {
ID.AddInteger(SC);
}
void VisitDecl(const Decl *D) override {
ID.AddInteger(D ? D->getKind() : 0);
if (Canonical && D) {
if (const NonTypeTemplateParmDecl *NTTP =
dyn_cast<NonTypeTemplateParmDecl>(D)) {
ID.AddInteger(NTTP->getDepth());
ID.AddInteger(NTTP->getIndex());
ID.AddBoolean(NTTP->isParameterPack());
VisitType(NTTP->getType());
return;
}
if (const ParmVarDecl *Parm = dyn_cast<ParmVarDecl>(D)) {
// The Itanium C++ ABI uses the type, scope depth, and scope
// index of a parameter when mangling expressions that involve
// function parameters, so we will use the parameter's type for
// establishing function parameter identity. That way, our
// definition of "equivalent" (per C++ [temp.over.link]) is at
// least as strong as the definition of "equivalent" used for
// name mangling.
VisitType(Parm->getType());
ID.AddInteger(Parm->getFunctionScopeDepth());
ID.AddInteger(Parm->getFunctionScopeIndex());
return;
}
if (const TemplateTypeParmDecl *TTP =
dyn_cast<TemplateTypeParmDecl>(D)) {
ID.AddInteger(TTP->getDepth());
ID.AddInteger(TTP->getIndex());
ID.AddBoolean(TTP->isParameterPack());
return;
}
if (const TemplateTemplateParmDecl *TTP =
dyn_cast<TemplateTemplateParmDecl>(D)) {
ID.AddInteger(TTP->getDepth());
ID.AddInteger(TTP->getIndex());
ID.AddBoolean(TTP->isParameterPack());
return;
}
}
ID.AddPointer(D ? D->getCanonicalDecl() : nullptr);
}
void VisitType(QualType T) override {
if (Canonical && !T.isNull())
T = Context.getCanonicalType(T);
ID.AddPointer(T.getAsOpaquePtr());
}
void VisitName(DeclarationName Name, bool /*TreatAsDecl*/) override {
ID.AddPointer(Name.getAsOpaquePtr());
}
void VisitIdentifierInfo(IdentifierInfo *II) override {
ID.AddPointer(II);
}
void VisitNestedNameSpecifier(NestedNameSpecifier *NNS) override {
if (Canonical)
NNS = Context.getCanonicalNestedNameSpecifier(NNS);
ID.AddPointer(NNS);
}
void VisitTemplateName(TemplateName Name) override {
if (Canonical)
Name = Context.getCanonicalTemplateName(Name);
Name.Profile(ID);
}
};
class StmtProfilerWithoutPointers : public StmtProfiler {
ODRHash &Hash;
public:
StmtProfilerWithoutPointers(llvm::FoldingSetNodeID &ID, ODRHash &Hash)
: StmtProfiler(ID, false), Hash(Hash) {}
private:
void HandleStmtClass(Stmt::StmtClass SC) override {
if (SC == Stmt::UnresolvedLookupExprClass) {
// Pretend that the name looked up is a Decl due to how templates
// handle some Decl lookups.
ID.AddInteger(Stmt::DeclRefExprClass);
} else {
ID.AddInteger(SC);
}
}
void VisitType(QualType T) override {
Hash.AddQualType(T);
}
void VisitName(DeclarationName Name, bool TreatAsDecl) override {
if (TreatAsDecl) {
// A Decl can be null, so each Decl is preceded by a boolean to
// store its nullness. Add a boolean here to match.
ID.AddBoolean(true);
}
Hash.AddDeclarationName(Name, TreatAsDecl);
}
void VisitIdentifierInfo(IdentifierInfo *II) override {
ID.AddBoolean(II);
if (II) {
Hash.AddIdentifierInfo(II);
}
}
void VisitDecl(const Decl *D) override {
ID.AddBoolean(D);
if (D) {
Hash.AddDecl(D);
}
}
void VisitTemplateName(TemplateName Name) override {
Hash.AddTemplateName(Name);
}
void VisitNestedNameSpecifier(NestedNameSpecifier *NNS) override {
ID.AddBoolean(NNS);
if (NNS) {
Hash.AddNestedNameSpecifier(NNS);
}
}
};
}
void StmtProfiler::VisitStmt(const Stmt *S) {
assert(S && "Requires non-null Stmt pointer");
HandleStmtClass(S->getStmtClass());
for (const Stmt *SubStmt : S->children()) {
if (SubStmt)
Visit(SubStmt);
else
ID.AddInteger(0);
}
}
void StmtProfiler::VisitDeclStmt(const DeclStmt *S) {
VisitStmt(S);
for (const auto *D : S->decls())
VisitDecl(D);
}
void StmtProfiler::VisitNullStmt(const NullStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitCompoundStmt(const CompoundStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitCaseStmt(const CaseStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitDefaultStmt(const DefaultStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitLabelStmt(const LabelStmt *S) {
VisitStmt(S);
VisitDecl(S->getDecl());
}
void StmtProfiler::VisitAttributedStmt(const AttributedStmt *S) {
VisitStmt(S);
// TODO: maybe visit attributes?
}
void StmtProfiler::VisitIfStmt(const IfStmt *S) {
VisitStmt(S);
VisitDecl(S->getConditionVariable());
}
void StmtProfiler::VisitSwitchStmt(const SwitchStmt *S) {
VisitStmt(S);
VisitDecl(S->getConditionVariable());
}
void StmtProfiler::VisitWhileStmt(const WhileStmt *S) {
VisitStmt(S);
VisitDecl(S->getConditionVariable());
}
void StmtProfiler::VisitDoStmt(const DoStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitForStmt(const ForStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitGotoStmt(const GotoStmt *S) {
VisitStmt(S);
VisitDecl(S->getLabel());
}
void StmtProfiler::VisitIndirectGotoStmt(const IndirectGotoStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitContinueStmt(const ContinueStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitBreakStmt(const BreakStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitReturnStmt(const ReturnStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitGCCAsmStmt(const GCCAsmStmt *S) {
VisitStmt(S);
ID.AddBoolean(S->isVolatile());
ID.AddBoolean(S->isSimple());
VisitStringLiteral(S->getAsmString());
ID.AddInteger(S->getNumOutputs());
for (unsigned I = 0, N = S->getNumOutputs(); I != N; ++I) {
ID.AddString(S->getOutputName(I));
VisitStringLiteral(S->getOutputConstraintLiteral(I));
}
ID.AddInteger(S->getNumInputs());
for (unsigned I = 0, N = S->getNumInputs(); I != N; ++I) {
ID.AddString(S->getInputName(I));
VisitStringLiteral(S->getInputConstraintLiteral(I));
}
ID.AddInteger(S->getNumClobbers());
for (unsigned I = 0, N = S->getNumClobbers(); I != N; ++I)
VisitStringLiteral(S->getClobberStringLiteral(I));
ID.AddInteger(S->getNumLabels());
for (auto *L : S->labels())
VisitDecl(L->getLabel());
}
void StmtProfiler::VisitMSAsmStmt(const MSAsmStmt *S) {
// FIXME: Implement MS style inline asm statement profiler.
VisitStmt(S);
}
void StmtProfiler::VisitCXXCatchStmt(const CXXCatchStmt *S) {
VisitStmt(S);
VisitType(S->getCaughtType());
}
void StmtProfiler::VisitCXXTryStmt(const CXXTryStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitMSDependentExistsStmt(const MSDependentExistsStmt *S) {
VisitStmt(S);
ID.AddBoolean(S->isIfExists());
VisitNestedNameSpecifier(S->getQualifierLoc().getNestedNameSpecifier());
VisitName(S->getNameInfo().getName());
}
void StmtProfiler::VisitSEHTryStmt(const SEHTryStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitSEHFinallyStmt(const SEHFinallyStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitSEHExceptStmt(const SEHExceptStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitSEHLeaveStmt(const SEHLeaveStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitCapturedStmt(const CapturedStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitObjCAtCatchStmt(const ObjCAtCatchStmt *S) {
VisitStmt(S);
ID.AddBoolean(S->hasEllipsis());
if (S->getCatchParamDecl())
VisitType(S->getCatchParamDecl()->getType());
}
void StmtProfiler::VisitObjCAtFinallyStmt(const ObjCAtFinallyStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitObjCAtTryStmt(const ObjCAtTryStmt *S) {
VisitStmt(S);
}
void
StmtProfiler::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitObjCAtThrowStmt(const ObjCAtThrowStmt *S) {
VisitStmt(S);
}
void
StmtProfiler::VisitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt *S) {
VisitStmt(S);
}
namespace {
class OMPClauseProfiler : public ConstOMPClauseVisitor<OMPClauseProfiler> {
StmtProfiler *Profiler;
/// Process clauses with list of variables.
template <typename T>
void VisitOMPClauseList(T *Node);
2015-12-09 15:52:46 +08:00
public:
OMPClauseProfiler(StmtProfiler *P) : Profiler(P) { }
#define OMP_CLAUSE_CLASS(Enum, Str, Class) void Visit##Class(const Class *C);
#include "llvm/Frontend/OpenMP/OMPKinds.def"
void VistOMPClauseWithPreInit(const OMPClauseWithPreInit *C);
void VistOMPClauseWithPostUpdate(const OMPClauseWithPostUpdate *C);
};
void OMPClauseProfiler::VistOMPClauseWithPreInit(
const OMPClauseWithPreInit *C) {
if (auto *S = C->getPreInitStmt())
Profiler->VisitStmt(S);
}
void OMPClauseProfiler::VistOMPClauseWithPostUpdate(
const OMPClauseWithPostUpdate *C) {
VistOMPClauseWithPreInit(C);
if (auto *E = C->getPostUpdateExpr())
Profiler->VisitStmt(E);
}
void OMPClauseProfiler::VisitOMPIfClause(const OMPIfClause *C) {
VistOMPClauseWithPreInit(C);
if (C->getCondition())
Profiler->VisitStmt(C->getCondition());
}
void OMPClauseProfiler::VisitOMPFinalClause(const OMPFinalClause *C) {
VistOMPClauseWithPreInit(C);
if (C->getCondition())
Profiler->VisitStmt(C->getCondition());
}
void OMPClauseProfiler::VisitOMPNumThreadsClause(const OMPNumThreadsClause *C) {
VistOMPClauseWithPreInit(C);
if (C->getNumThreads())
Profiler->VisitStmt(C->getNumThreads());
}
void OMPClauseProfiler::VisitOMPSafelenClause(const OMPSafelenClause *C) {
if (C->getSafelen())
Profiler->VisitStmt(C->getSafelen());
}
void OMPClauseProfiler::VisitOMPSimdlenClause(const OMPSimdlenClause *C) {
if (C->getSimdlen())
Profiler->VisitStmt(C->getSimdlen());
}
void OMPClauseProfiler::VisitOMPAllocatorClause(const OMPAllocatorClause *C) {
if (C->getAllocator())
Profiler->VisitStmt(C->getAllocator());
}
void OMPClauseProfiler::VisitOMPCollapseClause(const OMPCollapseClause *C) {
if (C->getNumForLoops())
Profiler->VisitStmt(C->getNumForLoops());
}
void OMPClauseProfiler::VisitOMPDetachClause(const OMPDetachClause *C) {
if (Expr *Evt = C->getEventHandler())
Profiler->VisitStmt(Evt);
}
void OMPClauseProfiler::VisitOMPDefaultClause(const OMPDefaultClause *C) { }
void OMPClauseProfiler::VisitOMPProcBindClause(const OMPProcBindClause *C) { }
void OMPClauseProfiler::VisitOMPUnifiedAddressClause(
const OMPUnifiedAddressClause *C) {}
void OMPClauseProfiler::VisitOMPUnifiedSharedMemoryClause(
const OMPUnifiedSharedMemoryClause *C) {}
void OMPClauseProfiler::VisitOMPReverseOffloadClause(
const OMPReverseOffloadClause *C) {}
void OMPClauseProfiler::VisitOMPDynamicAllocatorsClause(
const OMPDynamicAllocatorsClause *C) {}
void OMPClauseProfiler::VisitOMPAtomicDefaultMemOrderClause(
const OMPAtomicDefaultMemOrderClause *C) {}
void OMPClauseProfiler::VisitOMPScheduleClause(const OMPScheduleClause *C) {
VistOMPClauseWithPreInit(C);
if (auto *S = C->getChunkSize())
Profiler->VisitStmt(S);
}
void OMPClauseProfiler::VisitOMPOrderedClause(const OMPOrderedClause *C) {
if (auto *Num = C->getNumForLoops())
Profiler->VisitStmt(Num);
}
void OMPClauseProfiler::VisitOMPNowaitClause(const OMPNowaitClause *) {}
void OMPClauseProfiler::VisitOMPUntiedClause(const OMPUntiedClause *) {}
void OMPClauseProfiler::VisitOMPMergeableClause(const OMPMergeableClause *) {}
void OMPClauseProfiler::VisitOMPReadClause(const OMPReadClause *) {}
void OMPClauseProfiler::VisitOMPWriteClause(const OMPWriteClause *) {}
void OMPClauseProfiler::VisitOMPUpdateClause(const OMPUpdateClause *) {}
void OMPClauseProfiler::VisitOMPCaptureClause(const OMPCaptureClause *) {}
void OMPClauseProfiler::VisitOMPSeqCstClause(const OMPSeqCstClause *) {}
void OMPClauseProfiler::VisitOMPAcqRelClause(const OMPAcqRelClause *) {}
void OMPClauseProfiler::VisitOMPAcquireClause(const OMPAcquireClause *) {}
void OMPClauseProfiler::VisitOMPReleaseClause(const OMPReleaseClause *) {}
void OMPClauseProfiler::VisitOMPRelaxedClause(const OMPRelaxedClause *) {}
void OMPClauseProfiler::VisitOMPThreadsClause(const OMPThreadsClause *) {}
void OMPClauseProfiler::VisitOMPSIMDClause(const OMPSIMDClause *) {}
void OMPClauseProfiler::VisitOMPNogroupClause(const OMPNogroupClause *) {}
void OMPClauseProfiler::VisitOMPDestroyClause(const OMPDestroyClause *) {}
template<typename T>
void OMPClauseProfiler::VisitOMPClauseList(T *Node) {
for (auto *E : Node->varlists()) {
if (E)
Profiler->VisitStmt(E);
}
}
void OMPClauseProfiler::VisitOMPPrivateClause(const OMPPrivateClause *C) {
VisitOMPClauseList(C);
for (auto *E : C->private_copies()) {
if (E)
Profiler->VisitStmt(E);
}
}
void
OMPClauseProfiler::VisitOMPFirstprivateClause(const OMPFirstprivateClause *C) {
VisitOMPClauseList(C);
VistOMPClauseWithPreInit(C);
for (auto *E : C->private_copies()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->inits()) {
if (E)
Profiler->VisitStmt(E);
}
}
void
OMPClauseProfiler::VisitOMPLastprivateClause(const OMPLastprivateClause *C) {
VisitOMPClauseList(C);
VistOMPClauseWithPostUpdate(C);
for (auto *E : C->source_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->destination_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->assignment_ops()) {
if (E)
Profiler->VisitStmt(E);
}
}
void OMPClauseProfiler::VisitOMPSharedClause(const OMPSharedClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPReductionClause(
const OMPReductionClause *C) {
Profiler->VisitNestedNameSpecifier(
C->getQualifierLoc().getNestedNameSpecifier());
Profiler->VisitName(C->getNameInfo().getName());
VisitOMPClauseList(C);
VistOMPClauseWithPostUpdate(C);
for (auto *E : C->privates()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->lhs_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->rhs_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->reduction_ops()) {
if (E)
Profiler->VisitStmt(E);
}
}
void OMPClauseProfiler::VisitOMPTaskReductionClause(
const OMPTaskReductionClause *C) {
Profiler->VisitNestedNameSpecifier(
C->getQualifierLoc().getNestedNameSpecifier());
Profiler->VisitName(C->getNameInfo().getName());
VisitOMPClauseList(C);
VistOMPClauseWithPostUpdate(C);
for (auto *E : C->privates()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->lhs_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->rhs_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->reduction_ops()) {
if (E)
Profiler->VisitStmt(E);
}
}
void OMPClauseProfiler::VisitOMPInReductionClause(
const OMPInReductionClause *C) {
Profiler->VisitNestedNameSpecifier(
C->getQualifierLoc().getNestedNameSpecifier());
Profiler->VisitName(C->getNameInfo().getName());
VisitOMPClauseList(C);
VistOMPClauseWithPostUpdate(C);
for (auto *E : C->privates()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->lhs_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->rhs_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->reduction_ops()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->taskgroup_descriptors()) {
if (E)
Profiler->VisitStmt(E);
}
}
void OMPClauseProfiler::VisitOMPLinearClause(const OMPLinearClause *C) {
VisitOMPClauseList(C);
VistOMPClauseWithPostUpdate(C);
for (auto *E : C->privates()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->inits()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->updates()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->finals()) {
if (E)
Profiler->VisitStmt(E);
}
if (C->getStep())
Profiler->VisitStmt(C->getStep());
if (C->getCalcStep())
Profiler->VisitStmt(C->getCalcStep());
}
void OMPClauseProfiler::VisitOMPAlignedClause(const OMPAlignedClause *C) {
VisitOMPClauseList(C);
if (C->getAlignment())
Profiler->VisitStmt(C->getAlignment());
}
void OMPClauseProfiler::VisitOMPCopyinClause(const OMPCopyinClause *C) {
VisitOMPClauseList(C);
for (auto *E : C->source_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->destination_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->assignment_ops()) {
if (E)
Profiler->VisitStmt(E);
}
}
void
OMPClauseProfiler::VisitOMPCopyprivateClause(const OMPCopyprivateClause *C) {
VisitOMPClauseList(C);
for (auto *E : C->source_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->destination_exprs()) {
if (E)
Profiler->VisitStmt(E);
}
for (auto *E : C->assignment_ops()) {
if (E)
Profiler->VisitStmt(E);
}
}
void OMPClauseProfiler::VisitOMPFlushClause(const OMPFlushClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPDepobjClause(const OMPDepobjClause *C) {
if (const Expr *Depobj = C->getDepobj())
Profiler->VisitStmt(Depobj);
}
void OMPClauseProfiler::VisitOMPDependClause(const OMPDependClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPDeviceClause(const OMPDeviceClause *C) {
if (C->getDevice())
Profiler->VisitStmt(C->getDevice());
}
void OMPClauseProfiler::VisitOMPMapClause(const OMPMapClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPAllocateClause(const OMPAllocateClause *C) {
if (Expr *Allocator = C->getAllocator())
Profiler->VisitStmt(Allocator);
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPNumTeamsClause(const OMPNumTeamsClause *C) {
VistOMPClauseWithPreInit(C);
if (C->getNumTeams())
Profiler->VisitStmt(C->getNumTeams());
}
void OMPClauseProfiler::VisitOMPThreadLimitClause(
const OMPThreadLimitClause *C) {
VistOMPClauseWithPreInit(C);
if (C->getThreadLimit())
Profiler->VisitStmt(C->getThreadLimit());
}
void OMPClauseProfiler::VisitOMPPriorityClause(const OMPPriorityClause *C) {
VistOMPClauseWithPreInit(C);
if (C->getPriority())
Profiler->VisitStmt(C->getPriority());
}
void OMPClauseProfiler::VisitOMPGrainsizeClause(const OMPGrainsizeClause *C) {
VistOMPClauseWithPreInit(C);
if (C->getGrainsize())
Profiler->VisitStmt(C->getGrainsize());
}
void OMPClauseProfiler::VisitOMPNumTasksClause(const OMPNumTasksClause *C) {
VistOMPClauseWithPreInit(C);
if (C->getNumTasks())
Profiler->VisitStmt(C->getNumTasks());
}
void OMPClauseProfiler::VisitOMPHintClause(const OMPHintClause *C) {
if (C->getHint())
Profiler->VisitStmt(C->getHint());
}
void OMPClauseProfiler::VisitOMPToClause(const OMPToClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPFromClause(const OMPFromClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPUseDevicePtrClause(
const OMPUseDevicePtrClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPIsDevicePtrClause(
const OMPIsDevicePtrClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPNontemporalClause(
const OMPNontemporalClause *C) {
VisitOMPClauseList(C);
for (auto *E : C->private_refs())
Profiler->VisitStmt(E);
}
void OMPClauseProfiler::VisitOMPInclusiveClause(const OMPInclusiveClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPExclusiveClause(const OMPExclusiveClause *C) {
VisitOMPClauseList(C);
}
void OMPClauseProfiler::VisitOMPOrderClause(const OMPOrderClause *C) {}
} // namespace
void
StmtProfiler::VisitOMPExecutableDirective(const OMPExecutableDirective *S) {
VisitStmt(S);
OMPClauseProfiler P(this);
ArrayRef<OMPClause *> Clauses = S->clauses();
for (ArrayRef<OMPClause *>::iterator I = Clauses.begin(), E = Clauses.end();
I != E; ++I)
if (*I)
P.Visit(*I);
}
void StmtProfiler::VisitOMPLoopDirective(const OMPLoopDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPParallelDirective(const OMPParallelDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPSimdDirective(const OMPSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPForDirective(const OMPForDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPForSimdDirective(const OMPForSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPSectionsDirective(const OMPSectionsDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPSectionDirective(const OMPSectionDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPSingleDirective(const OMPSingleDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPMasterDirective(const OMPMasterDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPCriticalDirective(const OMPCriticalDirective *S) {
VisitOMPExecutableDirective(S);
VisitName(S->getDirectiveName().getName());
}
void
StmtProfiler::VisitOMPParallelForDirective(const OMPParallelForDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPParallelForSimdDirective(
const OMPParallelForSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPParallelMasterDirective(
const OMPParallelMasterDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPParallelSectionsDirective(
const OMPParallelSectionsDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTaskDirective(const OMPTaskDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTaskyieldDirective(const OMPTaskyieldDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPBarrierDirective(const OMPBarrierDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTaskwaitDirective(const OMPTaskwaitDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTaskgroupDirective(const OMPTaskgroupDirective *S) {
VisitOMPExecutableDirective(S);
if (const Expr *E = S->getReductionRef())
VisitStmt(E);
}
void StmtProfiler::VisitOMPFlushDirective(const OMPFlushDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPDepobjDirective(const OMPDepobjDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPScanDirective(const OMPScanDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPOrderedDirective(const OMPOrderedDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPAtomicDirective(const OMPAtomicDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTargetDirective(const OMPTargetDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTargetDataDirective(const OMPTargetDataDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTargetEnterDataDirective(
const OMPTargetEnterDataDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTargetExitDataDirective(
const OMPTargetExitDataDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTargetParallelDirective(
const OMPTargetParallelDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTargetParallelForDirective(
const OMPTargetParallelForDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTeamsDirective(const OMPTeamsDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPCancellationPointDirective(
const OMPCancellationPointDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPCancelDirective(const OMPCancelDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTaskLoopDirective(const OMPTaskLoopDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTaskLoopSimdDirective(
const OMPTaskLoopSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPMasterTaskLoopDirective(
const OMPMasterTaskLoopDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPMasterTaskLoopSimdDirective(
const OMPMasterTaskLoopSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPParallelMasterTaskLoopDirective(
const OMPParallelMasterTaskLoopDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPParallelMasterTaskLoopSimdDirective(
const OMPParallelMasterTaskLoopSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPDistributeDirective(
const OMPDistributeDirective *S) {
VisitOMPLoopDirective(S);
}
void OMPClauseProfiler::VisitOMPDistScheduleClause(
const OMPDistScheduleClause *C) {
VistOMPClauseWithPreInit(C);
if (auto *S = C->getChunkSize())
Profiler->VisitStmt(S);
}
void OMPClauseProfiler::VisitOMPDefaultmapClause(const OMPDefaultmapClause *) {}
void StmtProfiler::VisitOMPTargetUpdateDirective(
const OMPTargetUpdateDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPDistributeParallelForDirective(
const OMPDistributeParallelForDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPDistributeParallelForSimdDirective(
const OMPDistributeParallelForSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPDistributeSimdDirective(
const OMPDistributeSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTargetParallelForSimdDirective(
const OMPTargetParallelForSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTargetSimdDirective(
const OMPTargetSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTeamsDistributeDirective(
const OMPTeamsDistributeDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTeamsDistributeSimdDirective(
const OMPTeamsDistributeSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTeamsDistributeParallelForSimdDirective(
const OMPTeamsDistributeParallelForSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTeamsDistributeParallelForDirective(
const OMPTeamsDistributeParallelForDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTargetTeamsDirective(
const OMPTargetTeamsDirective *S) {
VisitOMPExecutableDirective(S);
}
void StmtProfiler::VisitOMPTargetTeamsDistributeDirective(
const OMPTargetTeamsDistributeDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTargetTeamsDistributeParallelForDirective(
const OMPTargetTeamsDistributeParallelForDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTargetTeamsDistributeParallelForSimdDirective(
const OMPTargetTeamsDistributeParallelForSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitOMPTargetTeamsDistributeSimdDirective(
const OMPTargetTeamsDistributeSimdDirective *S) {
VisitOMPLoopDirective(S);
}
void StmtProfiler::VisitExpr(const Expr *S) {
VisitStmt(S);
}
void StmtProfiler::VisitConstantExpr(const ConstantExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitDeclRefExpr(const DeclRefExpr *S) {
VisitExpr(S);
if (!Canonical)
VisitNestedNameSpecifier(S->getQualifier());
VisitDecl(S->getDecl());
if (!Canonical) {
ID.AddBoolean(S->hasExplicitTemplateArgs());
if (S->hasExplicitTemplateArgs())
VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
}
}
void StmtProfiler::VisitPredefinedExpr(const PredefinedExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getIdentKind());
}
void StmtProfiler::VisitIntegerLiteral(const IntegerLiteral *S) {
VisitExpr(S);
S->getValue().Profile(ID);
ID.AddInteger(S->getType()->castAs<BuiltinType>()->getKind());
}
void StmtProfiler::VisitFixedPointLiteral(const FixedPointLiteral *S) {
VisitExpr(S);
S->getValue().Profile(ID);
ID.AddInteger(S->getType()->castAs<BuiltinType>()->getKind());
}
void StmtProfiler::VisitCharacterLiteral(const CharacterLiteral *S) {
VisitExpr(S);
ID.AddInteger(S->getKind());
ID.AddInteger(S->getValue());
}
void StmtProfiler::VisitFloatingLiteral(const FloatingLiteral *S) {
VisitExpr(S);
S->getValue().Profile(ID);
ID.AddBoolean(S->isExact());
ID.AddInteger(S->getType()->castAs<BuiltinType>()->getKind());
}
void StmtProfiler::VisitImaginaryLiteral(const ImaginaryLiteral *S) {
VisitExpr(S);
}
void StmtProfiler::VisitStringLiteral(const StringLiteral *S) {
VisitExpr(S);
ID.AddString(S->getBytes());
ID.AddInteger(S->getKind());
}
void StmtProfiler::VisitParenExpr(const ParenExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitParenListExpr(const ParenListExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitUnaryOperator(const UnaryOperator *S) {
VisitExpr(S);
ID.AddInteger(S->getOpcode());
}
void StmtProfiler::VisitOffsetOfExpr(const OffsetOfExpr *S) {
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
VisitType(S->getTypeSourceInfo()->getType());
unsigned n = S->getNumComponents();
for (unsigned i = 0; i < n; ++i) {
const OffsetOfNode &ON = S->getComponent(i);
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
ID.AddInteger(ON.getKind());
switch (ON.getKind()) {
case OffsetOfNode::Array:
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
// Expressions handled below.
break;
case OffsetOfNode::Field:
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
VisitDecl(ON.getField());
break;
case OffsetOfNode::Identifier:
VisitIdentifierInfo(ON.getFieldName());
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
break;
case OffsetOfNode::Base:
// These nodes are implicit, and therefore don't need profiling.
break;
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
}
}
Completely reimplement __builtin_offsetof, based on a patch by Roberto Amadini. This change introduces a new expression node type, OffsetOfExpr, that describes __builtin_offsetof. Previously, __builtin_offsetof was implemented using a unary operator whose subexpression involved various synthesized array-subscript and member-reference expressions, which was ugly and made it very hard to instantiate as a template. OffsetOfExpr represents the AST more faithfully, with proper type source information and a more compact representation. OffsetOfExpr also has support for dependent __builtin_offsetof expressions; it can be value-dependent, but will never be type-dependent (like sizeof or alignof). This commit introduces template instantiation for __builtin_offsetof as well. There are two major caveats to this patch: 1) CodeGen cannot handle the case where __builtin_offsetof is not a constant expression, so it produces an error. So, to avoid regressing in C, we retain the old UnaryOperator-based __builtin_offsetof implementation in C while using the shiny new OffsetOfExpr implementation in C++. The old implementation can go away once we have proper CodeGen support for this case, which we expect won't cause much trouble in C++. 2) __builtin_offsetof doesn't work well with non-POD class types, particularly when the designated field is found within a base class. I will address this in a subsequent patch. Fixes PR5880 and a bunch of assertions when building Boost.Python tests. llvm-svn: 102542
2010-04-29 06:16:22 +08:00
VisitExpr(S);
}
void
StmtProfiler::VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getKind());
if (S->isArgumentType())
VisitType(S->getArgumentType());
}
void StmtProfiler::VisitArraySubscriptExpr(const ArraySubscriptExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitOMPArraySectionExpr(const OMPArraySectionExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitOMPArrayShapingExpr(const OMPArrayShapingExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitOMPIteratorExpr(const OMPIteratorExpr *S) {
VisitExpr(S);
for (unsigned I = 0, E = S->numOfIterators(); I < E; ++I)
VisitDecl(S->getIteratorDecl(I));
}
void StmtProfiler::VisitCallExpr(const CallExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitMemberExpr(const MemberExpr *S) {
VisitExpr(S);
VisitDecl(S->getMemberDecl());
if (!Canonical)
VisitNestedNameSpecifier(S->getQualifier());
ID.AddBoolean(S->isArrow());
}
void StmtProfiler::VisitCompoundLiteralExpr(const CompoundLiteralExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->isFileScope());
}
void StmtProfiler::VisitCastExpr(const CastExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitImplicitCastExpr(const ImplicitCastExpr *S) {
VisitCastExpr(S);
ID.AddInteger(S->getValueKind());
}
void StmtProfiler::VisitExplicitCastExpr(const ExplicitCastExpr *S) {
VisitCastExpr(S);
VisitType(S->getTypeAsWritten());
}
void StmtProfiler::VisitCStyleCastExpr(const CStyleCastExpr *S) {
VisitExplicitCastExpr(S);
}
void StmtProfiler::VisitBinaryOperator(const BinaryOperator *S) {
VisitExpr(S);
ID.AddInteger(S->getOpcode());
}
void
StmtProfiler::VisitCompoundAssignOperator(const CompoundAssignOperator *S) {
VisitBinaryOperator(S);
}
void StmtProfiler::VisitConditionalOperator(const ConditionalOperator *S) {
VisitExpr(S);
}
void StmtProfiler::VisitBinaryConditionalOperator(
const BinaryConditionalOperator *S) {
VisitExpr(S);
}
void StmtProfiler::VisitAddrLabelExpr(const AddrLabelExpr *S) {
VisitExpr(S);
VisitDecl(S->getLabel());
}
void StmtProfiler::VisitStmtExpr(const StmtExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitShuffleVectorExpr(const ShuffleVectorExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitConvertVectorExpr(const ConvertVectorExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitChooseExpr(const ChooseExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitGNUNullExpr(const GNUNullExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitVAArgExpr(const VAArgExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitInitListExpr(const InitListExpr *S) {
if (S->getSyntacticForm()) {
VisitInitListExpr(S->getSyntacticForm());
return;
}
VisitExpr(S);
}
void StmtProfiler::VisitDesignatedInitExpr(const DesignatedInitExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->usesGNUSyntax());
for (const DesignatedInitExpr::Designator &D : S->designators()) {
if (D.isFieldDesignator()) {
ID.AddInteger(0);
VisitName(D.getFieldName());
continue;
}
if (D.isArrayDesignator()) {
ID.AddInteger(1);
} else {
assert(D.isArrayRangeDesignator());
ID.AddInteger(2);
}
ID.AddInteger(D.getFirstExprIndex());
}
}
// Seems that if VisitInitListExpr() only works on the syntactic form of an
// InitListExpr, then a DesignatedInitUpdateExpr is not encountered.
void StmtProfiler::VisitDesignatedInitUpdateExpr(
const DesignatedInitUpdateExpr *S) {
llvm_unreachable("Unexpected DesignatedInitUpdateExpr in syntactic form of "
"initializer");
}
void StmtProfiler::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitNoInitExpr(const NoInitExpr *S) {
llvm_unreachable("Unexpected NoInitExpr in syntactic form of initializer");
}
void StmtProfiler::VisitImplicitValueInitExpr(const ImplicitValueInitExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitExtVectorElementExpr(const ExtVectorElementExpr *S) {
VisitExpr(S);
VisitName(&S->getAccessor());
}
void StmtProfiler::VisitBlockExpr(const BlockExpr *S) {
VisitExpr(S);
VisitDecl(S->getBlockDecl());
}
void StmtProfiler::VisitGenericSelectionExpr(const GenericSelectionExpr *S) {
VisitExpr(S);
for (const GenericSelectionExpr::ConstAssociation Assoc :
S->associations()) {
QualType T = Assoc.getType();
if (T.isNull())
ID.AddPointer(nullptr);
else
VisitType(T);
VisitExpr(Assoc.getAssociationExpr());
}
}
void StmtProfiler::VisitPseudoObjectExpr(const PseudoObjectExpr *S) {
VisitExpr(S);
for (PseudoObjectExpr::const_semantics_iterator
i = S->semantics_begin(), e = S->semantics_end(); i != e; ++i)
// Normally, we would not profile the source expressions of OVEs.
if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(*i))
Visit(OVE->getSourceExpr());
}
void StmtProfiler::VisitAtomicExpr(const AtomicExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getOp());
}
void StmtProfiler::VisitConceptSpecializationExpr(
const ConceptSpecializationExpr *S) {
VisitExpr(S);
VisitDecl(S->getNamedConcept());
for (const TemplateArgument &Arg : S->getTemplateArguments())
VisitTemplateArgument(Arg);
}
void StmtProfiler::VisitRequiresExpr(const RequiresExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getLocalParameters().size());
for (ParmVarDecl *LocalParam : S->getLocalParameters())
VisitDecl(LocalParam);
ID.AddInteger(S->getRequirements().size());
for (concepts::Requirement *Req : S->getRequirements()) {
if (auto *TypeReq = dyn_cast<concepts::TypeRequirement>(Req)) {
ID.AddInteger(concepts::Requirement::RK_Type);
ID.AddBoolean(TypeReq->isSubstitutionFailure());
if (!TypeReq->isSubstitutionFailure())
VisitType(TypeReq->getType()->getType());
} else if (auto *ExprReq = dyn_cast<concepts::ExprRequirement>(Req)) {
ID.AddInteger(concepts::Requirement::RK_Compound);
ID.AddBoolean(ExprReq->isExprSubstitutionFailure());
if (!ExprReq->isExprSubstitutionFailure())
Visit(ExprReq->getExpr());
// C++2a [expr.prim.req.compound]p1 Example:
// [...] The compound-requirement in C1 requires that x++ is a valid
// expression. It is equivalent to the simple-requirement x++; [...]
// We therefore do not profile isSimple() here.
ID.AddBoolean(ExprReq->getNoexceptLoc().isValid());
const concepts::ExprRequirement::ReturnTypeRequirement &RetReq =
ExprReq->getReturnTypeRequirement();
if (RetReq.isEmpty()) {
ID.AddInteger(0);
} else if (RetReq.isTypeConstraint()) {
ID.AddInteger(1);
Visit(RetReq.getTypeConstraint()->getImmediatelyDeclaredConstraint());
} else {
assert(RetReq.isSubstitutionFailure());
ID.AddInteger(2);
}
} else {
ID.AddInteger(concepts::Requirement::RK_Nested);
auto *NestedReq = cast<concepts::NestedRequirement>(Req);
ID.AddBoolean(NestedReq->isSubstitutionFailure());
if (!NestedReq->isSubstitutionFailure())
Visit(NestedReq->getConstraintExpr());
}
}
}
static Stmt::StmtClass DecodeOperatorCall(const CXXOperatorCallExpr *S,
UnaryOperatorKind &UnaryOp,
BinaryOperatorKind &BinaryOp) {
switch (S->getOperator()) {
case OO_None:
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
case OO_Arrow:
case OO_Call:
case OO_Conditional:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("Invalid operator call kind");
case OO_Plus:
if (S->getNumArgs() == 1) {
UnaryOp = UO_Plus;
return Stmt::UnaryOperatorClass;
}
BinaryOp = BO_Add;
return Stmt::BinaryOperatorClass;
case OO_Minus:
if (S->getNumArgs() == 1) {
UnaryOp = UO_Minus;
return Stmt::UnaryOperatorClass;
}
BinaryOp = BO_Sub;
return Stmt::BinaryOperatorClass;
case OO_Star:
if (S->getNumArgs() == 1) {
UnaryOp = UO_Deref;
return Stmt::UnaryOperatorClass;
}
BinaryOp = BO_Mul;
return Stmt::BinaryOperatorClass;
case OO_Slash:
BinaryOp = BO_Div;
return Stmt::BinaryOperatorClass;
case OO_Percent:
BinaryOp = BO_Rem;
return Stmt::BinaryOperatorClass;
case OO_Caret:
BinaryOp = BO_Xor;
return Stmt::BinaryOperatorClass;
case OO_Amp:
if (S->getNumArgs() == 1) {
UnaryOp = UO_AddrOf;
return Stmt::UnaryOperatorClass;
}
BinaryOp = BO_And;
return Stmt::BinaryOperatorClass;
case OO_Pipe:
BinaryOp = BO_Or;
return Stmt::BinaryOperatorClass;
case OO_Tilde:
UnaryOp = UO_Not;
return Stmt::UnaryOperatorClass;
case OO_Exclaim:
UnaryOp = UO_LNot;
return Stmt::UnaryOperatorClass;
case OO_Equal:
BinaryOp = BO_Assign;
return Stmt::BinaryOperatorClass;
case OO_Less:
BinaryOp = BO_LT;
return Stmt::BinaryOperatorClass;
case OO_Greater:
BinaryOp = BO_GT;
return Stmt::BinaryOperatorClass;
case OO_PlusEqual:
BinaryOp = BO_AddAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_MinusEqual:
BinaryOp = BO_SubAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_StarEqual:
BinaryOp = BO_MulAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_SlashEqual:
BinaryOp = BO_DivAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_PercentEqual:
BinaryOp = BO_RemAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_CaretEqual:
BinaryOp = BO_XorAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_AmpEqual:
BinaryOp = BO_AndAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_PipeEqual:
BinaryOp = BO_OrAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_LessLess:
BinaryOp = BO_Shl;
return Stmt::BinaryOperatorClass;
case OO_GreaterGreater:
BinaryOp = BO_Shr;
return Stmt::BinaryOperatorClass;
case OO_LessLessEqual:
BinaryOp = BO_ShlAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_GreaterGreaterEqual:
BinaryOp = BO_ShrAssign;
return Stmt::CompoundAssignOperatorClass;
case OO_EqualEqual:
BinaryOp = BO_EQ;
return Stmt::BinaryOperatorClass;
case OO_ExclaimEqual:
BinaryOp = BO_NE;
return Stmt::BinaryOperatorClass;
case OO_LessEqual:
BinaryOp = BO_LE;
return Stmt::BinaryOperatorClass;
case OO_GreaterEqual:
BinaryOp = BO_GE;
return Stmt::BinaryOperatorClass;
case OO_Spaceship:
BinaryOp = BO_Cmp;
return Stmt::BinaryOperatorClass;
case OO_AmpAmp:
BinaryOp = BO_LAnd;
return Stmt::BinaryOperatorClass;
case OO_PipePipe:
BinaryOp = BO_LOr;
return Stmt::BinaryOperatorClass;
case OO_PlusPlus:
UnaryOp = S->getNumArgs() == 1? UO_PreInc
: UO_PostInc;
return Stmt::UnaryOperatorClass;
case OO_MinusMinus:
UnaryOp = S->getNumArgs() == 1? UO_PreDec
: UO_PostDec;
return Stmt::UnaryOperatorClass;
case OO_Comma:
BinaryOp = BO_Comma;
return Stmt::BinaryOperatorClass;
case OO_ArrowStar:
BinaryOp = BO_PtrMemI;
return Stmt::BinaryOperatorClass;
case OO_Subscript:
return Stmt::ArraySubscriptExprClass;
case OO_Coawait:
UnaryOp = UO_Coawait;
return Stmt::UnaryOperatorClass;
}
llvm_unreachable("Invalid overloaded operator expression");
}
#if defined(_MSC_VER) && !defined(__clang__)
#if _MSC_VER == 1911
// Work around https://developercommunity.visualstudio.com/content/problem/84002/clang-cl-when-built-with-vc-2017-crashes-cause-vc.html
// MSVC 2017 update 3 miscompiles this function, and a clang built with it
// will crash in stage 2 of a bootstrap build.
#pragma optimize("", off)
#endif
#endif
void StmtProfiler::VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
if (S->isTypeDependent()) {
// Type-dependent operator calls are profiled like their underlying
// syntactic operator.
//
// An operator call to operator-> is always implicit, so just skip it. The
// enclosing MemberExpr will profile the actual member access.
if (S->getOperator() == OO_Arrow)
return Visit(S->getArg(0));
UnaryOperatorKind UnaryOp = UO_Extension;
BinaryOperatorKind BinaryOp = BO_Comma;
Stmt::StmtClass SC = DecodeOperatorCall(S, UnaryOp, BinaryOp);
ID.AddInteger(SC);
for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
Visit(S->getArg(I));
if (SC == Stmt::UnaryOperatorClass)
ID.AddInteger(UnaryOp);
else if (SC == Stmt::BinaryOperatorClass ||
SC == Stmt::CompoundAssignOperatorClass)
ID.AddInteger(BinaryOp);
else
assert(SC == Stmt::ArraySubscriptExprClass);
return;
}
VisitCallExpr(S);
ID.AddInteger(S->getOperator());
}
void StmtProfiler::VisitCXXRewrittenBinaryOperator(
const CXXRewrittenBinaryOperator *S) {
// If a rewritten operator were ever to be type-dependent, we should profile
// it following its syntactic operator.
assert(!S->isTypeDependent() &&
"resolved rewritten operator should never be type-dependent");
ID.AddBoolean(S->isReversed());
VisitExpr(S->getSemanticForm());
}
#if defined(_MSC_VER) && !defined(__clang__)
#if _MSC_VER == 1911
#pragma optimize("", on)
#endif
#endif
void StmtProfiler::VisitCXXMemberCallExpr(const CXXMemberCallExpr *S) {
VisitCallExpr(S);
}
void StmtProfiler::VisitCUDAKernelCallExpr(const CUDAKernelCallExpr *S) {
VisitCallExpr(S);
}
void StmtProfiler::VisitAsTypeExpr(const AsTypeExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCXXNamedCastExpr(const CXXNamedCastExpr *S) {
VisitExplicitCastExpr(S);
}
void StmtProfiler::VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
VisitCXXNamedCastExpr(S);
}
void StmtProfiler::VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *S) {
VisitCXXNamedCastExpr(S);
}
void
StmtProfiler::VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *S) {
VisitCXXNamedCastExpr(S);
}
void StmtProfiler::VisitCXXConstCastExpr(const CXXConstCastExpr *S) {
VisitCXXNamedCastExpr(S);
}
void StmtProfiler::VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *S) {
VisitExpr(S);
VisitType(S->getTypeInfoAsWritten()->getType());
}
void StmtProfiler::VisitUserDefinedLiteral(const UserDefinedLiteral *S) {
VisitCallExpr(S);
}
void StmtProfiler::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->getValue());
}
void StmtProfiler::VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCXXStdInitializerListExpr(
const CXXStdInitializerListExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCXXTypeidExpr(const CXXTypeidExpr *S) {
VisitExpr(S);
if (S->isTypeOperand())
VisitType(S->getTypeOperandSourceInfo()->getType());
}
void StmtProfiler::VisitCXXUuidofExpr(const CXXUuidofExpr *S) {
VisitExpr(S);
if (S->isTypeOperand())
VisitType(S->getTypeOperandSourceInfo()->getType());
}
void StmtProfiler::VisitMSPropertyRefExpr(const MSPropertyRefExpr *S) {
VisitExpr(S);
VisitDecl(S->getPropertyDecl());
}
void StmtProfiler::VisitMSPropertySubscriptExpr(
const MSPropertySubscriptExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCXXThisExpr(const CXXThisExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->isImplicit());
}
void StmtProfiler::VisitCXXThrowExpr(const CXXThrowExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *S) {
VisitExpr(S);
VisitDecl(S->getParam());
}
void StmtProfiler::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
VisitExpr(S);
VisitDecl(S->getField());
}
void StmtProfiler::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
VisitExpr(S);
VisitDecl(
const_cast<CXXDestructorDecl *>(S->getTemporary()->getDestructor()));
}
void StmtProfiler::VisitCXXConstructExpr(const CXXConstructExpr *S) {
VisitExpr(S);
VisitDecl(S->getConstructor());
ID.AddBoolean(S->isElidable());
}
P0136R1, DR1573, DR1645, DR1715, DR1736, DR1903, DR1941, DR1959, DR1991: Replace inheriting constructors implementation with new approach, voted into C++ last year as a DR against C++11. Instead of synthesizing a set of derived class constructors for each inherited base class constructor, we make the constructors of the base class visible to constructor lookup in the derived class, using the normal rules for using-declarations. For constructors, UsingShadowDecl now has a ConstructorUsingShadowDecl derived class that tracks the requisite additional information. We create shadow constructors (not found by name lookup) in the derived class to model the actual initialization, and have a new expression node, CXXInheritedCtorInitExpr, to model the initialization of a base class from such a constructor. (This initialization is special because it performs real perfect forwarding of arguments.) In cases where argument forwarding is not possible (for inalloca calls, variadic calls, and calls with callee parameter cleanup), the shadow inheriting constructor is not emitted and instead we directly emit the initialization code into the caller of the inherited constructor. Note that this new model is not perfectly compatible with the old model in some corner cases. In particular: * if B inherits a private constructor from A, and C uses that constructor to construct a B, then we previously required that A befriends B and B befriends C, but the new rules require A to befriend C directly, and * if a derived class has its own constructors (and so its implicit default constructor is suppressed), it may still inherit a default constructor from a base class llvm-svn: 274049
2016-06-29 03:03:57 +08:00
void StmtProfiler::VisitCXXInheritedCtorInitExpr(
const CXXInheritedCtorInitExpr *S) {
VisitExpr(S);
VisitDecl(S->getConstructor());
}
void StmtProfiler::VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *S) {
VisitExplicitCastExpr(S);
}
void
StmtProfiler::VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *S) {
VisitCXXConstructExpr(S);
}
void
StmtProfiler::VisitLambdaExpr(const LambdaExpr *S) {
VisitExpr(S);
for (LambdaExpr::capture_iterator C = S->explicit_capture_begin(),
CEnd = S->explicit_capture_end();
C != CEnd; ++C) {
if (C->capturesVLAType())
continue;
ID.AddInteger(C->getCaptureKind());
switch (C->getCaptureKind()) {
case LCK_StarThis:
case LCK_This:
break;
case LCK_ByRef:
case LCK_ByCopy:
VisitDecl(C->getCapturedVar());
ID.AddBoolean(C->isPackExpansion());
break;
case LCK_VLAType:
llvm_unreachable("VLA type in explicit captures.");
}
}
// Note: If we actually needed to be able to match lambda
// expressions, we would have to consider parameters and return type
// here, among other things.
VisitStmt(S->getBody());
}
void
StmtProfiler::VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->isGlobalDelete());
ID.AddBoolean(S->isArrayForm());
VisitDecl(S->getOperatorDelete());
}
void StmtProfiler::VisitCXXNewExpr(const CXXNewExpr *S) {
VisitExpr(S);
VisitType(S->getAllocatedType());
VisitDecl(S->getOperatorNew());
VisitDecl(S->getOperatorDelete());
ID.AddBoolean(S->isArray());
ID.AddInteger(S->getNumPlacementArgs());
ID.AddBoolean(S->isGlobalNew());
ID.AddBoolean(S->isParenTypeId());
ID.AddInteger(S->getInitializationStyle());
}
void
StmtProfiler::VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->isArrow());
VisitNestedNameSpecifier(S->getQualifier());
ID.AddBoolean(S->getScopeTypeInfo() != nullptr);
if (S->getScopeTypeInfo())
VisitType(S->getScopeTypeInfo()->getType());
ID.AddBoolean(S->getDestroyedTypeInfo() != nullptr);
if (S->getDestroyedTypeInfo())
VisitType(S->getDestroyedType());
else
VisitIdentifierInfo(S->getDestroyedTypeIdentifier());
}
void StmtProfiler::VisitOverloadExpr(const OverloadExpr *S) {
VisitExpr(S);
VisitNestedNameSpecifier(S->getQualifier());
VisitName(S->getName(), /*TreatAsDecl*/ true);
ID.AddBoolean(S->hasExplicitTemplateArgs());
if (S->hasExplicitTemplateArgs())
VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
}
void
StmtProfiler::VisitUnresolvedLookupExpr(const UnresolvedLookupExpr *S) {
VisitOverloadExpr(S);
}
void StmtProfiler::VisitTypeTraitExpr(const TypeTraitExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getTrait());
ID.AddInteger(S->getNumArgs());
for (unsigned I = 0, N = S->getNumArgs(); I != N; ++I)
VisitType(S->getArg(I)->getType());
}
void StmtProfiler::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getTrait());
VisitType(S->getQueriedType());
}
void StmtProfiler::VisitExpressionTraitExpr(const ExpressionTraitExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getTrait());
VisitExpr(S->getQueriedExpression());
}
void StmtProfiler::VisitDependentScopeDeclRefExpr(
const DependentScopeDeclRefExpr *S) {
VisitExpr(S);
VisitName(S->getDeclName());
VisitNestedNameSpecifier(S->getQualifier());
ID.AddBoolean(S->hasExplicitTemplateArgs());
if (S->hasExplicitTemplateArgs())
VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
}
void StmtProfiler::VisitExprWithCleanups(const ExprWithCleanups *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCXXUnresolvedConstructExpr(
const CXXUnresolvedConstructExpr *S) {
VisitExpr(S);
VisitType(S->getTypeAsWritten());
ID.AddInteger(S->isListInitialization());
}
void StmtProfiler::VisitCXXDependentScopeMemberExpr(
const CXXDependentScopeMemberExpr *S) {
ID.AddBoolean(S->isImplicitAccess());
if (!S->isImplicitAccess()) {
VisitExpr(S);
ID.AddBoolean(S->isArrow());
}
VisitNestedNameSpecifier(S->getQualifier());
VisitName(S->getMember());
ID.AddBoolean(S->hasExplicitTemplateArgs());
if (S->hasExplicitTemplateArgs())
VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
}
void StmtProfiler::VisitUnresolvedMemberExpr(const UnresolvedMemberExpr *S) {
ID.AddBoolean(S->isImplicitAccess());
if (!S->isImplicitAccess()) {
VisitExpr(S);
ID.AddBoolean(S->isArrow());
}
VisitNestedNameSpecifier(S->getQualifier());
VisitName(S->getMemberName());
ID.AddBoolean(S->hasExplicitTemplateArgs());
if (S->hasExplicitTemplateArgs())
VisitTemplateArguments(S->getTemplateArgs(), S->getNumTemplateArgs());
}
void StmtProfiler::VisitCXXNoexceptExpr(const CXXNoexceptExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitPackExpansionExpr(const PackExpansionExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitSizeOfPackExpr(const SizeOfPackExpr *S) {
VisitExpr(S);
VisitDecl(S->getPack());
if (S->isPartiallySubstituted()) {
auto Args = S->getPartialArguments();
ID.AddInteger(Args.size());
for (const auto &TA : Args)
VisitTemplateArgument(TA);
} else {
ID.AddInteger(0);
}
}
void StmtProfiler::VisitSubstNonTypeTemplateParmPackExpr(
const SubstNonTypeTemplateParmPackExpr *S) {
VisitExpr(S);
VisitDecl(S->getParameterPack());
VisitTemplateArgument(S->getArgumentPack());
}
void StmtProfiler::VisitSubstNonTypeTemplateParmExpr(
const SubstNonTypeTemplateParmExpr *E) {
// Profile exactly as the replacement expression.
Visit(E->getReplacement());
}
void StmtProfiler::VisitFunctionParmPackExpr(const FunctionParmPackExpr *S) {
VisitExpr(S);
VisitDecl(S->getParameterPack());
ID.AddInteger(S->getNumExpansions());
for (FunctionParmPackExpr::iterator I = S->begin(), E = S->end(); I != E; ++I)
VisitDecl(*I);
}
void StmtProfiler::VisitMaterializeTemporaryExpr(
const MaterializeTemporaryExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCXXFoldExpr(const CXXFoldExpr *S) {
VisitExpr(S);
ID.AddInteger(S->getOperator());
}
void StmtProfiler::VisitCoroutineBodyStmt(const CoroutineBodyStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitCoreturnStmt(const CoreturnStmt *S) {
VisitStmt(S);
}
void StmtProfiler::VisitCoawaitExpr(const CoawaitExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitDependentCoawaitExpr(const DependentCoawaitExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitCoyieldExpr(const CoyieldExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
VisitExpr(E);
}
void StmtProfiler::VisitTypoExpr(const TypoExpr *E) {
VisitExpr(E);
}
void StmtProfiler::VisitSourceLocExpr(const SourceLocExpr *E) {
VisitExpr(E);
}
[AST] Add RecoveryExpr to retain expressions on semantic errors Normally clang avoids creating expressions when it encounters semantic errors, even if the parser knows which expression to produce. This works well for the compiler. However, this is not ideal for source-level tools that have to deal with broken code, e.g. clangd is not able to provide navigation features even for names that compiler knows how to resolve. The new RecoveryExpr aims to capture the minimal set of information useful for the tools that need to deal with incorrect code: source range of the expression being dropped, subexpressions of the expression. We aim to make constructing RecoveryExprs as simple as possible to ensure writing code to avoid dropping expressions is easy. Producing RecoveryExprs can result in new code paths being taken in the frontend. In particular, clang can produce some new diagnostics now and we aim to suppress bogus ones based on Expr::containsErrors. We deliberately produce RecoveryExprs only in the parser for now to minimize the code affected by this patch. Producing RecoveryExprs in Sema potentially allows to preserve more information (e.g. type of an expression), but also results in more code being affected. E.g. SFINAE checks will have to take presence of RecoveryExprs into account. Initial implementation only works in C++ mode, as it relies on compiler postponing diagnostics on dependent expressions. C and ObjC often do not do this, so they require more work to make sure we do not produce too many bogus diagnostics on the new expressions. See documentation of RecoveryExpr for more details. original patch from Ilya This change is based on https://reviews.llvm.org/D61722 Reviewers: sammccall, rsmith Reviewed By: sammccall, rsmith Tags: #clang Differential Revision: https://reviews.llvm.org/D69330
2020-03-19 23:30:40 +08:00
void StmtProfiler::VisitRecoveryExpr(const RecoveryExpr *E) { VisitExpr(E); }
void StmtProfiler::VisitObjCStringLiteral(const ObjCStringLiteral *S) {
VisitExpr(S);
}
void StmtProfiler::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
VisitExpr(E);
}
void StmtProfiler::VisitObjCArrayLiteral(const ObjCArrayLiteral *E) {
VisitExpr(E);
}
void StmtProfiler::VisitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E) {
VisitExpr(E);
}
void StmtProfiler::VisitObjCEncodeExpr(const ObjCEncodeExpr *S) {
VisitExpr(S);
VisitType(S->getEncodedType());
}
void StmtProfiler::VisitObjCSelectorExpr(const ObjCSelectorExpr *S) {
VisitExpr(S);
VisitName(S->getSelector());
}
void StmtProfiler::VisitObjCProtocolExpr(const ObjCProtocolExpr *S) {
VisitExpr(S);
VisitDecl(S->getProtocol());
}
void StmtProfiler::VisitObjCIvarRefExpr(const ObjCIvarRefExpr *S) {
VisitExpr(S);
VisitDecl(S->getDecl());
ID.AddBoolean(S->isArrow());
ID.AddBoolean(S->isFreeIvar());
}
void StmtProfiler::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *S) {
VisitExpr(S);
if (S->isImplicitProperty()) {
VisitDecl(S->getImplicitPropertyGetter());
VisitDecl(S->getImplicitPropertySetter());
} else {
VisitDecl(S->getExplicitProperty());
}
if (S->isSuperReceiver()) {
ID.AddBoolean(S->isSuperReceiver());
VisitType(S->getSuperReceiverType());
}
}
void StmtProfiler::VisitObjCSubscriptRefExpr(const ObjCSubscriptRefExpr *S) {
VisitExpr(S);
VisitDecl(S->getAtIndexMethodDecl());
VisitDecl(S->setAtIndexMethodDecl());
}
void StmtProfiler::VisitObjCMessageExpr(const ObjCMessageExpr *S) {
VisitExpr(S);
VisitName(S->getSelector());
VisitDecl(S->getMethodDecl());
}
void StmtProfiler::VisitObjCIsaExpr(const ObjCIsaExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->isArrow());
}
void StmtProfiler::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->getValue());
}
void StmtProfiler::VisitObjCIndirectCopyRestoreExpr(
const ObjCIndirectCopyRestoreExpr *S) {
VisitExpr(S);
ID.AddBoolean(S->shouldCopy());
}
void StmtProfiler::VisitObjCBridgedCastExpr(const ObjCBridgedCastExpr *S) {
VisitExplicitCastExpr(S);
ID.AddBoolean(S->getBridgeKind());
}
void StmtProfiler::VisitObjCAvailabilityCheckExpr(
const ObjCAvailabilityCheckExpr *S) {
VisitExpr(S);
}
void StmtProfiler::VisitTemplateArguments(const TemplateArgumentLoc *Args,
unsigned NumArgs) {
ID.AddInteger(NumArgs);
for (unsigned I = 0; I != NumArgs; ++I)
VisitTemplateArgument(Args[I].getArgument());
}
void StmtProfiler::VisitTemplateArgument(const TemplateArgument &Arg) {
// Mostly repetitive with TemplateArgument::Profile!
ID.AddInteger(Arg.getKind());
switch (Arg.getKind()) {
case TemplateArgument::Null:
break;
case TemplateArgument::Type:
VisitType(Arg.getAsType());
break;
case TemplateArgument::Template:
case TemplateArgument::TemplateExpansion:
VisitTemplateName(Arg.getAsTemplateOrTemplatePattern());
break;
case TemplateArgument::Declaration:
VisitDecl(Arg.getAsDecl());
break;
case TemplateArgument::NullPtr:
VisitType(Arg.getNullPtrType());
break;
case TemplateArgument::Integral:
Arg.getAsIntegral().Profile(ID);
VisitType(Arg.getIntegralType());
break;
case TemplateArgument::Expression:
Visit(Arg.getAsExpr());
break;
case TemplateArgument::Pack:
for (const auto &P : Arg.pack_elements())
VisitTemplateArgument(P);
break;
}
}
void Stmt::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
bool Canonical) const {
StmtProfilerWithPointers Profiler(ID, Context, Canonical);
Profiler.Visit(this);
}
void Stmt::ProcessODRHash(llvm::FoldingSetNodeID &ID,
class ODRHash &Hash) const {
StmtProfilerWithoutPointers Profiler(ID, Hash);
Profiler.Visit(this);
}