llvm-project/lldb/source/Core/DataExtractor.cpp

2265 lines
78 KiB
C++
Raw Normal View History

//===-- DataExtractor.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include <assert.h>
#include <stddef.h>
#include <bitset>
#include <limits>
#include <sstream>
#include <string>
#include "clang/AST/ASTContext.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MD5.h"
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/DataExtractor.h"
#include "lldb/Core/DataBuffer.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Stream.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/UUID.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Host/Endian.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/ExecutionContextScope.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/Target.h"
using namespace lldb;
using namespace lldb_private;
static inline uint16_t
ReadInt16(const unsigned char* ptr, offset_t offset)
{
uint16_t value;
memcpy (&value, ptr + offset, 2);
return value;
}
static inline uint32_t
ReadInt32 (const unsigned char* ptr, offset_t offset = 0)
{
uint32_t value;
memcpy (&value, ptr + offset, 4);
return value;
}
static inline uint64_t
ReadInt64(const unsigned char* ptr, offset_t offset = 0)
{
uint64_t value;
memcpy (&value, ptr + offset, 8);
return value;
}
static inline uint16_t
ReadInt16(const void* ptr)
{
uint16_t value;
memcpy (&value, ptr, 2);
return value;
}
static inline uint16_t
ReadSwapInt16(const unsigned char* ptr, offset_t offset)
{
uint16_t value;
memcpy (&value, ptr + offset, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t
ReadSwapInt32 (const unsigned char* ptr, offset_t offset)
{
uint32_t value;
memcpy (&value, ptr + offset, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t
ReadSwapInt64(const unsigned char* ptr, offset_t offset)
{
uint64_t value;
memcpy (&value, ptr + offset, 8);
return llvm::ByteSwap_64(value);
}
static inline uint16_t
ReadSwapInt16(const void* ptr)
{
uint16_t value;
memcpy (&value, ptr, 2);
return llvm::ByteSwap_16(value);
}
static inline uint32_t
ReadSwapInt32 (const void* ptr)
{
uint32_t value;
memcpy (&value, ptr, 4);
return llvm::ByteSwap_32(value);
}
static inline uint64_t
ReadSwapInt64(const void* ptr)
{
uint64_t value;
memcpy (&value, ptr, 8);
return llvm::ByteSwap_64(value);
}
#define NON_PRINTABLE_CHAR '.'
//----------------------------------------------------------------------
// Default constructor.
//----------------------------------------------------------------------
DataExtractor::DataExtractor () :
m_start (NULL),
m_end (NULL),
m_byte_order(lldb::endian::InlHostByteOrder()),
m_addr_size (4),
m_data_sp (),
m_target_byte_size(1)
{
}
//----------------------------------------------------------------------
// This constructor allows us to use data that is owned by someone else.
// The data must stay around as long as this object is valid.
//----------------------------------------------------------------------
DataExtractor::DataExtractor (const void* data, offset_t length, ByteOrder endian, uint32_t addr_size, uint32_t target_byte_size/*=1*/) :
m_start ((uint8_t*)data),
m_end ((uint8_t*)data + length),
m_byte_order(endian),
m_addr_size (addr_size),
m_data_sp (),
m_target_byte_size(target_byte_size)
{
}
//----------------------------------------------------------------------
// Make a shared pointer reference to the shared data in "data_sp" and
// set the endian swapping setting to "swap", and the address size to
// "addr_size". The shared data reference will ensure the data lives
// as long as any DataExtractor objects exist that have a reference to
// this data.
//----------------------------------------------------------------------
DataExtractor::DataExtractor (const DataBufferSP& data_sp, ByteOrder endian, uint32_t addr_size, uint32_t target_byte_size/*=1*/) :
m_start (NULL),
m_end (NULL),
m_byte_order(endian),
m_addr_size (addr_size),
m_data_sp (),
m_target_byte_size(target_byte_size)
{
SetData (data_sp);
}
//----------------------------------------------------------------------
// Initialize this object with a subset of the data bytes in "data".
// If "data" contains shared data, then a reference to this shared
// data will added and the shared data will stay around as long
// as any object contains a reference to that data. The endian
// swap and address size settings are copied from "data".
//----------------------------------------------------------------------
DataExtractor::DataExtractor (const DataExtractor& data, offset_t offset, offset_t length, uint32_t target_byte_size/*=1*/) :
m_start(NULL),
m_end(NULL),
m_byte_order(data.m_byte_order),
m_addr_size(data.m_addr_size),
m_data_sp(),
m_target_byte_size(target_byte_size)
{
if (data.ValidOffset(offset))
{
offset_t bytes_available = data.GetByteSize() - offset;
if (length > bytes_available)
length = bytes_available;
SetData(data, offset, length);
}
}
2011-05-30 08:49:24 +08:00
DataExtractor::DataExtractor (const DataExtractor& rhs) :
m_start (rhs.m_start),
m_end (rhs.m_end),
m_byte_order (rhs.m_byte_order),
m_addr_size (rhs.m_addr_size),
m_data_sp (rhs.m_data_sp),
m_target_byte_size(rhs.m_target_byte_size)
2011-05-30 08:49:24 +08:00
{
}
//----------------------------------------------------------------------
// Assignment operator
//----------------------------------------------------------------------
const DataExtractor&
DataExtractor::operator= (const DataExtractor& rhs)
{
if (this != &rhs)
{
2011-05-30 08:49:24 +08:00
m_start = rhs.m_start;
m_end = rhs.m_end;
m_byte_order = rhs.m_byte_order;
m_addr_size = rhs.m_addr_size;
2011-05-30 08:49:24 +08:00
m_data_sp = rhs.m_data_sp;
}
return *this;
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
DataExtractor::~DataExtractor ()
{
}
//------------------------------------------------------------------
// Clears the object contents back to a default invalid state, and
// release any references to shared data that this object may
// contain.
//------------------------------------------------------------------
void
DataExtractor::Clear ()
{
m_start = NULL;
m_end = NULL;
m_byte_order = lldb::endian::InlHostByteOrder();
m_addr_size = 4;
m_data_sp.reset();
}
//------------------------------------------------------------------
// If this object contains shared data, this function returns the
// offset into that shared data. Else zero is returned.
//------------------------------------------------------------------
size_t
DataExtractor::GetSharedDataOffset () const
{
if (m_start != NULL)
{
const DataBuffer * data = m_data_sp.get();
if (data != NULL)
{
const uint8_t * data_bytes = data->GetBytes();
if (data_bytes != NULL)
{
assert(m_start >= data_bytes);
return m_start - data_bytes;
}
}
}
return 0;
}
//----------------------------------------------------------------------
// Set the data with which this object will extract from to data
// starting at BYTES and set the length of the data to LENGTH bytes
// long. The data is externally owned must be around at least as
// long as this object points to the data. No copy of the data is
// made, this object just refers to this data and can extract from
// it. If this object refers to any shared data upon entry, the
// reference to that data will be released. Is SWAP is set to true,
// any data extracted will be endian swapped.
//----------------------------------------------------------------------
lldb::offset_t
DataExtractor::SetData (const void *bytes, offset_t length, ByteOrder endian)
{
m_byte_order = endian;
m_data_sp.reset();
if (bytes == NULL || length == 0)
{
m_start = NULL;
m_end = NULL;
}
else
{
m_start = (uint8_t *)bytes;
m_end = m_start + length;
}
return GetByteSize();
}
//----------------------------------------------------------------------
// Assign the data for this object to be a subrange in "data"
// starting "data_offset" bytes into "data" and ending "data_length"
// bytes later. If "data_offset" is not a valid offset into "data",
// then this object will contain no bytes. If "data_offset" is
// within "data" yet "data_length" is too large, the length will be
// capped at the number of bytes remaining in "data". If "data"
// contains a shared pointer to other data, then a ref counted
// pointer to that data will be made in this object. If "data"
// doesn't contain a shared pointer to data, then the bytes referred
// to in "data" will need to exist at least as long as this object
// refers to those bytes. The address size and endian swap settings
// are copied from the current values in "data".
//----------------------------------------------------------------------
lldb::offset_t
DataExtractor::SetData (const DataExtractor& data, offset_t data_offset, offset_t data_length)
{
m_addr_size = data.m_addr_size;
// If "data" contains shared pointer to data, then we can use that
if (data.m_data_sp.get())
{
m_byte_order = data.m_byte_order;
return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset, data_length);
}
// We have a DataExtractor object that just has a pointer to bytes
if (data.ValidOffset(data_offset))
{
if (data_length > data.GetByteSize() - data_offset)
data_length = data.GetByteSize() - data_offset;
return SetData (data.GetDataStart() + data_offset, data_length, data.GetByteOrder());
}
return 0;
}
//----------------------------------------------------------------------
// Assign the data for this object to be a subrange of the shared
// data in "data_sp" starting "data_offset" bytes into "data_sp"
// and ending "data_length" bytes later. If "data_offset" is not
// a valid offset into "data_sp", then this object will contain no
// bytes. If "data_offset" is within "data_sp" yet "data_length" is
// too large, the length will be capped at the number of bytes
// remaining in "data_sp". A ref counted pointer to the data in
// "data_sp" will be made in this object IF the number of bytes this
// object refers to in greater than zero (if at least one byte was
// available starting at "data_offset") to ensure the data stays
// around as long as it is needed. The address size and endian swap
// settings will remain unchanged from their current settings.
//----------------------------------------------------------------------
lldb::offset_t
DataExtractor::SetData (const DataBufferSP& data_sp, offset_t data_offset, offset_t data_length)
{
m_start = m_end = NULL;
if (data_length > 0)
{
m_data_sp = data_sp;
if (data_sp.get())
{
const size_t data_size = data_sp->GetByteSize();
if (data_offset < data_size)
{
m_start = data_sp->GetBytes() + data_offset;
const size_t bytes_left = data_size - data_offset;
// Cap the length of we asked for too many
if (data_length <= bytes_left)
m_end = m_start + data_length; // We got all the bytes we wanted
else
m_end = m_start + bytes_left; // Not all the bytes requested were available in the shared data
}
}
}
size_t new_size = GetByteSize();
// Don't hold a shared pointer to the data buffer if we don't share
// any valid bytes in the shared buffer.
if (new_size == 0)
m_data_sp.reset();
return new_size;
}
//----------------------------------------------------------------------
// Extract a single unsigned char from the binary data and update
// the offset pointed to by "offset_ptr".
//
// RETURNS the byte that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint8_t
DataExtractor::GetU8 (offset_t *offset_ptr) const
{
const uint8_t *data = (const uint8_t *)GetData (offset_ptr, 1);
if (data)
return *data;
return 0;
}
//----------------------------------------------------------------------
// Extract "count" unsigned chars from the binary data and update the
// offset pointed to by "offset_ptr". The extracted data is copied into
// "dst".
//
// RETURNS the non-NULL buffer pointer upon successful extraction of
// all the requested bytes, or NULL when the data is not available in
2014-06-27 10:42:12 +08:00
// the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *
DataExtractor::GetU8 (offset_t *offset_ptr, void *dst, uint32_t count) const
{
const uint8_t *data = (const uint8_t *)GetData (offset_ptr, count);
if (data)
{
// Copy the data into the buffer
memcpy (dst, data, count);
// Return a non-NULL pointer to the converted data as an indicator of success
return dst;
}
return NULL;
}
//----------------------------------------------------------------------
// Extract a single uint16_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint16_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint16_t
DataExtractor::GetU16 (offset_t *offset_ptr) const
{
uint16_t val = 0;
const uint8_t *data = (const uint8_t *)GetData (offset_ptr, sizeof(val));
if (data)
{
if (m_byte_order != lldb::endian::InlHostByteOrder())
val = ReadSwapInt16(data);
else
val = ReadInt16 (data);
}
return val;
}
uint16_t
DataExtractor::GetU16_unchecked (offset_t *offset_ptr) const
{
uint16_t val;
if (m_byte_order == lldb::endian::InlHostByteOrder())
val = ReadInt16 (m_start, *offset_ptr);
else
val = ReadSwapInt16(m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint32_t
DataExtractor::GetU32_unchecked (offset_t *offset_ptr) const
{
uint32_t val;
if (m_byte_order == lldb::endian::InlHostByteOrder())
val = ReadInt32 (m_start, *offset_ptr);
else
val = ReadSwapInt32 (m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
uint64_t
DataExtractor::GetU64_unchecked (offset_t *offset_ptr) const
{
uint64_t val;
if (m_byte_order == lldb::endian::InlHostByteOrder())
val = ReadInt64 (m_start, *offset_ptr);
else
val = ReadSwapInt64 (m_start, *offset_ptr);
*offset_ptr += sizeof(val);
return val;
}
//----------------------------------------------------------------------
// Extract "count" uint16_t values from the binary data and update
// the offset pointed to by "offset_ptr". The extracted data is
// copied into "dst".
//
// RETURNS the non-NULL buffer pointer upon successful extraction of
// all the requested bytes, or NULL when the data is not available
2014-06-27 10:42:12 +08:00
// in the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *
DataExtractor::GetU16 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
{
const size_t src_size = sizeof(uint16_t) * count;
const uint16_t *src = (const uint16_t *)GetData (offset_ptr, src_size);
if (src)
{
if (m_byte_order != lldb::endian::InlHostByteOrder())
{
uint16_t *dst_pos = (uint16_t *)void_dst;
uint16_t *dst_end = dst_pos + count;
const uint16_t *src_pos = src;
while (dst_pos < dst_end)
{
*dst_pos = ReadSwapInt16 (src_pos);
++dst_pos;
++src_pos;
}
}
else
{
memcpy (void_dst, src, src_size);
}
// Return a non-NULL pointer to the converted data as an indicator of success
return void_dst;
}
return NULL;
}
//----------------------------------------------------------------------
// Extract a single uint32_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint32_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint32_t
DataExtractor::GetU32 (offset_t *offset_ptr) const
{
uint32_t val = 0;
const uint8_t *data = (const uint8_t *)GetData (offset_ptr, sizeof(val));
if (data)
{
if (m_byte_order != lldb::endian::InlHostByteOrder())
{
val = ReadSwapInt32 (data);
}
else
{
memcpy (&val, data, 4);
}
}
return val;
}
//----------------------------------------------------------------------
// Extract "count" uint32_t values from the binary data and update
// the offset pointed to by "offset_ptr". The extracted data is
// copied into "dst".
//
// RETURNS the non-NULL buffer pointer upon successful extraction of
// all the requested bytes, or NULL when the data is not available
2014-06-27 10:42:12 +08:00
// in the buffer due to being out of bounds, or insufficient data.
//----------------------------------------------------------------------
void *
DataExtractor::GetU32 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
{
const size_t src_size = sizeof(uint32_t) * count;
const uint32_t *src = (const uint32_t *)GetData (offset_ptr, src_size);
if (src)
{
if (m_byte_order != lldb::endian::InlHostByteOrder())
{
uint32_t *dst_pos = (uint32_t *)void_dst;
uint32_t *dst_end = dst_pos + count;
const uint32_t *src_pos = src;
while (dst_pos < dst_end)
{
*dst_pos = ReadSwapInt32 (src_pos);
++dst_pos;
++src_pos;
}
}
else
{
memcpy (void_dst, src, src_size);
}
// Return a non-NULL pointer to the converted data as an indicator of success
return void_dst;
}
return NULL;
}
//----------------------------------------------------------------------
// Extract a single uint64_t from the data and update the offset
// pointed to by "offset_ptr".
//
// RETURNS the uint64_t that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint64_t
DataExtractor::GetU64 (offset_t *offset_ptr) const
{
uint64_t val = 0;
const uint8_t *data = (const uint8_t *)GetData (offset_ptr, sizeof(val));
if (data)
{
if (m_byte_order != lldb::endian::InlHostByteOrder())
{
val = ReadSwapInt64 (data);
}
else
{
memcpy (&val, data, 8);
}
}
return val;
}
//----------------------------------------------------------------------
// GetU64
//
// Get multiple consecutive 64 bit values. Return true if the entire
// read succeeds and increment the offset pointed to by offset_ptr, else
// return false and leave the offset pointed to by offset_ptr unchanged.
//----------------------------------------------------------------------
void *
DataExtractor::GetU64 (offset_t *offset_ptr, void *void_dst, uint32_t count) const
{
const size_t src_size = sizeof(uint64_t) * count;
const uint64_t *src = (const uint64_t *)GetData (offset_ptr, src_size);
if (src)
{
if (m_byte_order != lldb::endian::InlHostByteOrder())
{
uint64_t *dst_pos = (uint64_t *)void_dst;
uint64_t *dst_end = dst_pos + count;
const uint64_t *src_pos = src;
while (dst_pos < dst_end)
{
*dst_pos = ReadSwapInt64 (src_pos);
++dst_pos;
++src_pos;
}
}
else
{
memcpy (void_dst, src, src_size);
}
// Return a non-NULL pointer to the converted data as an indicator of success
return void_dst;
}
return NULL;
}
//----------------------------------------------------------------------
// Extract a single integer value from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted integer
// is specified by the "byte_size" argument. "byte_size" should have
// a value between 1 and 4 since the return value is only 32 bits
// wide. Any "byte_size" values less than 1 or greater than 4 will
// result in nothing being extracted, and zero being returned.
//
// RETURNS the integer value that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint32_t
DataExtractor::GetMaxU32 (offset_t *offset_ptr, size_t byte_size) const
{
switch (byte_size)
{
case 1: return GetU8 (offset_ptr); break;
case 2: return GetU16(offset_ptr); break;
case 4: return GetU32(offset_ptr); break;
default:
assert("GetMaxU32 unhandled case!" == NULL);
break;
}
return 0;
}
//----------------------------------------------------------------------
// Extract a single integer value from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted integer
// is specified by the "byte_size" argument. "byte_size" should have
// a value >= 1 and <= 8 since the return value is only 64 bits
// wide. Any "byte_size" values less than 1 or greater than 8 will
// result in nothing being extracted, and zero being returned.
//
// RETURNS the integer value that was extracted, or zero on failure.
//----------------------------------------------------------------------
uint64_t
DataExtractor::GetMaxU64 (offset_t *offset_ptr, size_t size) const
{
switch (size)
{
case 1: return GetU8 (offset_ptr); break;
case 2: return GetU16(offset_ptr); break;
case 4: return GetU32(offset_ptr); break;
case 8: return GetU64(offset_ptr); break;
default:
assert("GetMax64 unhandled case!" == NULL);
break;
}
return 0;
}
uint64_t
DataExtractor::GetMaxU64_unchecked (offset_t *offset_ptr, size_t size) const
{
switch (size)
{
case 1: return GetU8_unchecked (offset_ptr); break;
case 2: return GetU16_unchecked (offset_ptr); break;
case 4: return GetU32_unchecked (offset_ptr); break;
case 8: return GetU64_unchecked (offset_ptr); break;
default:
assert("GetMax64 unhandled case!" == NULL);
break;
}
return 0;
}
int64_t
DataExtractor::GetMaxS64 (offset_t *offset_ptr, size_t size) const
{
switch (size)
{
case 1: return (int8_t)GetU8 (offset_ptr); break;
case 2: return (int16_t)GetU16(offset_ptr); break;
case 4: return (int32_t)GetU32(offset_ptr); break;
case 8: return (int64_t)GetU64(offset_ptr); break;
default:
assert("GetMax64 unhandled case!" == NULL);
break;
}
return 0;
}
uint64_t
DataExtractor::GetMaxU64Bitfield (offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
{
uint64_t uval64 = GetMaxU64 (offset_ptr, size);
if (bitfield_bit_size > 0)
{
if (bitfield_bit_offset > 0)
uval64 >>= bitfield_bit_offset;
uint64_t bitfield_mask = ((1ul << bitfield_bit_size) - 1);
if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
return uval64;
uval64 &= bitfield_mask;
}
return uval64;
}
int64_t
DataExtractor::GetMaxS64Bitfield (offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
{
int64_t sval64 = GetMaxS64 (offset_ptr, size);
if (bitfield_bit_size > 0)
{
if (bitfield_bit_offset > 0)
sval64 >>= bitfield_bit_offset;
uint64_t bitfield_mask = (((uint64_t)1) << bitfield_bit_size) - 1;
sval64 &= bitfield_mask;
// sign extend if needed
if (sval64 & (((uint64_t)1) << (bitfield_bit_size - 1)))
sval64 |= ~bitfield_mask;
}
return sval64;
}
float
DataExtractor::GetFloat (offset_t *offset_ptr) const
{
typedef float float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
if (src)
{
if (m_byte_order != lldb::endian::InlHostByteOrder())
{
const uint8_t *src_data = (const uint8_t *)src;
uint8_t *dst_data = (uint8_t *)&val;
for (size_t i=0; i<sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
}
else
{
val = *src;
}
}
return val;
}
double
DataExtractor::GetDouble (offset_t *offset_ptr) const
{
typedef double float_type;
float_type val = 0.0;
const size_t src_size = sizeof(float_type);
const float_type *src = (const float_type *)GetData (offset_ptr, src_size);
if (src)
{
if (m_byte_order != lldb::endian::InlHostByteOrder())
{
const uint8_t *src_data = (const uint8_t *)src;
uint8_t *dst_data = (uint8_t *)&val;
for (size_t i=0; i<sizeof(float_type); ++i)
dst_data[sizeof(float_type) - 1 - i] = src_data[i];
}
else
{
val = *src;
}
}
return val;
}
long double
DataExtractor::GetLongDouble (offset_t *offset_ptr) const
{
long double val = 0.0;
#if defined (__i386__) || defined (__amd64__) || defined (__x86_64__) || defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
*offset_ptr += CopyByteOrderedData (*offset_ptr, 10, &val, sizeof(val), lldb::endian::InlHostByteOrder());
#else
*offset_ptr += CopyByteOrderedData (*offset_ptr, sizeof(val), &val, sizeof(val), lldb::endian::InlHostByteOrder());
#endif
return val;
}
//------------------------------------------------------------------
// Extract a single address from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted address
// comes from the "this->m_addr_size" member variable and should be
// set correctly prior to extracting any address values.
//
// RETURNS the address that was extracted, or zero on failure.
//------------------------------------------------------------------
uint64_t
DataExtractor::GetAddress (offset_t *offset_ptr) const
{
return GetMaxU64 (offset_ptr, m_addr_size);
}
uint64_t
DataExtractor::GetAddress_unchecked (offset_t *offset_ptr) const
{
return GetMaxU64_unchecked (offset_ptr, m_addr_size);
}
//------------------------------------------------------------------
// Extract a single pointer from the data and update the offset
// pointed to by "offset_ptr". The size of the extracted pointer
// comes from the "this->m_addr_size" member variable and should be
// set correctly prior to extracting any pointer values.
//
// RETURNS the pointer that was extracted, or zero on failure.
//------------------------------------------------------------------
uint64_t
DataExtractor::GetPointer (offset_t *offset_ptr) const
{
return GetMaxU64 (offset_ptr, m_addr_size);
}
//----------------------------------------------------------------------
// GetDwarfEHPtr
//
// Used for calls when the value type is specified by a DWARF EH Frame
// pointer encoding.
//----------------------------------------------------------------------
uint64_t
DataExtractor::GetGNUEHPointer (offset_t *offset_ptr, uint32_t eh_ptr_enc, lldb::addr_t pc_rel_addr, lldb::addr_t text_addr, lldb::addr_t data_addr)//, BSDRelocs *data_relocs) const
{
if (eh_ptr_enc == DW_EH_PE_omit)
return ULLONG_MAX; // Value isn't in the buffer...
uint64_t baseAddress = 0;
uint64_t addressValue = 0;
const uint32_t addr_size = GetAddressByteSize();
bool signExtendValue = false;
// Decode the base part or adjust our offset
switch (eh_ptr_enc & 0x70)
{
case DW_EH_PE_pcrel:
signExtendValue = true;
baseAddress = *offset_ptr;
if (pc_rel_addr != LLDB_INVALID_ADDRESS)
baseAddress += pc_rel_addr;
// else
// Log::GlobalWarning ("PC relative pointer encoding found with invalid pc relative address.");
break;
case DW_EH_PE_textrel:
signExtendValue = true;
if (text_addr != LLDB_INVALID_ADDRESS)
baseAddress = text_addr;
// else
// Log::GlobalWarning ("text relative pointer encoding being decoded with invalid text section address, setting base address to zero.");
break;
case DW_EH_PE_datarel:
signExtendValue = true;
if (data_addr != LLDB_INVALID_ADDRESS)
baseAddress = data_addr;
// else
// Log::GlobalWarning ("data relative pointer encoding being decoded with invalid data section address, setting base address to zero.");
break;
case DW_EH_PE_funcrel:
signExtendValue = true;
break;
case DW_EH_PE_aligned:
{
// SetPointerSize should be called prior to extracting these so the
// pointer size is cached
assert(addr_size != 0);
if (addr_size)
{
// Align to a address size boundary first
uint32_t alignOffset = *offset_ptr % addr_size;
if (alignOffset)
offset_ptr += addr_size - alignOffset;
}
}
break;
default:
break;
}
// Decode the value part
switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING)
{
case DW_EH_PE_absptr :
{
addressValue = GetAddress (offset_ptr);
// if (data_relocs)
// addressValue = data_relocs->Relocate(*offset_ptr - addr_size, *this, addressValue);
}
break;
case DW_EH_PE_uleb128 : addressValue = GetULEB128(offset_ptr); break;
case DW_EH_PE_udata2 : addressValue = GetU16(offset_ptr); break;
case DW_EH_PE_udata4 : addressValue = GetU32(offset_ptr); break;
case DW_EH_PE_udata8 : addressValue = GetU64(offset_ptr); break;
case DW_EH_PE_sleb128 : addressValue = GetSLEB128(offset_ptr); break;
case DW_EH_PE_sdata2 : addressValue = (int16_t)GetU16(offset_ptr); break;
case DW_EH_PE_sdata4 : addressValue = (int32_t)GetU32(offset_ptr); break;
case DW_EH_PE_sdata8 : addressValue = (int64_t)GetU64(offset_ptr); break;
default:
// Unhandled encoding type
assert(eh_ptr_enc);
break;
}
// Since we promote everything to 64 bit, we may need to sign extend
if (signExtendValue && addr_size < sizeof(baseAddress))
{
uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
if (sign_bit & addressValue)
{
uint64_t mask = ~sign_bit + 1;
addressValue |= mask;
}
}
return baseAddress + addressValue;
}
size_t
DataExtractor::ExtractBytes (offset_t offset, offset_t length, ByteOrder dst_byte_order, void *dst) const
{
const uint8_t *src = PeekData (offset, length);
if (src)
{
if (dst_byte_order != GetByteOrder())
{
// Validate that only a word- or register-sized dst is byte swapped
assert (length == 1 || length == 2 || length == 4 || length == 8 ||
length == 10 || length == 16 || length == 32);
for (uint32_t i=0; i<length; ++i)
((uint8_t*)dst)[i] = src[length - i - 1];
}
else
::memcpy (dst, src, length);
return length;
}
return 0;
}
// Extract data as it exists in target memory
lldb::offset_t
DataExtractor::CopyData (offset_t offset,
offset_t length,
void *dst) const
{
const uint8_t *src = PeekData (offset, length);
if (src)
{
::memcpy (dst, src, length);
return length;
}
return 0;
}
2011-05-10 04:18:18 +08:00
// Extract data and swap if needed when doing the copy
lldb::offset_t
DataExtractor::CopyByteOrderedData (offset_t src_offset,
offset_t src_len,
2011-05-10 04:18:18 +08:00
void *dst_void_ptr,
offset_t dst_len,
2011-05-10 04:18:18 +08:00
ByteOrder dst_byte_order) const
{
// Validate the source info
if (!ValidOffsetForDataOfSize(src_offset, src_len))
assert (ValidOffsetForDataOfSize(src_offset, src_len));
2011-05-10 04:18:18 +08:00
assert (src_len > 0);
assert (m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
// Validate the destination info
assert (dst_void_ptr != NULL);
assert (dst_len > 0);
assert (dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
// Validate that only a word- or register-sized dst is byte swapped
assert (dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
dst_len == 32);
2011-05-10 04:18:18 +08:00
// Must have valid byte orders set in this object and for destination
if (!(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle) ||
!(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
return 0;
uint32_t i;
uint8_t* dst = (uint8_t*)dst_void_ptr;
const uint8_t* src = (const uint8_t *)PeekData (src_offset, src_len);
if (src)
{
Added new lldb_private::Process memory read/write functions to stop a bunch of duplicated code from appearing all over LLDB: lldb::addr_t Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error); bool Process::WritePointerToMemory (lldb::addr_t vm_addr, lldb::addr_t ptr_value, Error &error); size_t Process::ReadScalarIntegerFromMemory (lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Error &error); size_t Process::WriteScalarToMemory (lldb::addr_t vm_addr, const Scalar &scalar, uint32_t size, Error &error); in lldb_private::Process the following functions were renamed: From: uint64_t Process::ReadUnsignedInteger (lldb::addr_t load_addr, size_t byte_size, Error &error); To: uint64_t Process::ReadUnsignedIntegerFromMemory (lldb::addr_t load_addr, size_t byte_size, uint64_t fail_value, Error &error); Cleaned up a lot of code that was manually doing what the above functions do to use the functions listed above. Added the ability to get a scalar value as a buffer that can be written down to a process (byte swapping the Scalar value if needed): uint32_t Scalar::GetAsMemoryData (void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const; The "dst_len" can be smaller that the size of the scalar and the least significant bytes will be written. "dst_len" can also be larger and the most significant bytes will be padded with zeroes. Centralized the code that adds or removes address bits for callable and opcode addresses into lldb_private::Target: lldb::addr_t Target::GetCallableLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; lldb::addr_t Target::GetOpcodeLoadAddress (lldb::addr_t load_addr, AddressClass addr_class) const; All necessary lldb_private::Address functions now use the target versions so changes should only need to happen in one place if anything needs updating. Fixed up a lot of places that were calling : addr_t Address::GetLoadAddress(Target*); to call the Address::GetCallableLoadAddress() or Address::GetOpcodeLoadAddress() as needed. There were many places in the breakpoint code where things could go wrong for ARM if these weren't used. llvm-svn: 131878
2011-05-23 06:46:53 +08:00
if (dst_len >= src_len)
2011-05-10 04:18:18 +08:00
{
// We are copying the entire value from src into dst.
// Calculate how many, if any, zeroes we need for the most
// significant bytes if "dst_len" is greater than "src_len"...
const size_t num_zeroes = dst_len - src_len;
2011-05-10 04:18:18 +08:00
if (dst_byte_order == eByteOrderBig)
{
// Big endian, so we lead with zeroes...
if (num_zeroes > 0)
::memset (dst, 0, num_zeroes);
// Then either copy or swap the rest
if (m_byte_order == eByteOrderBig)
{
::memcpy (dst + num_zeroes, src, src_len);
}
else
{
for (i=0; i<src_len; ++i)
dst[i+num_zeroes] = src[src_len - 1 - i];
}
}
else
{
// Little endian destination, so we lead the value bytes
if (m_byte_order == eByteOrderBig)
{
for (i=0; i<src_len; ++i)
dst[i] = src[src_len - 1 - i];
}
else
{
::memcpy (dst, src, src_len);
}
// And zero the rest...
if (num_zeroes > 0)
::memset (dst + src_len, 0, num_zeroes);
}
return src_len;
}
else
{
// We are only copying some of the value from src into dst..
if (dst_byte_order == eByteOrderBig)
{
// Big endian dst
if (m_byte_order == eByteOrderBig)
{
// Big endian dst, with big endian src
::memcpy (dst, src + (src_len - dst_len), dst_len);
}
else
{
// Big endian dst, with little endian src
for (i=0; i<dst_len; ++i)
dst[i] = src[dst_len - 1 - i];
}
}
else
{
// Little endian dst
if (m_byte_order == eByteOrderBig)
{
// Little endian dst, with big endian src
for (i=0; i<dst_len; ++i)
dst[i] = src[src_len - 1 - i];
}
else
{
// Little endian dst, with big endian src
::memcpy (dst, src, dst_len);
}
}
return dst_len;
}
}
return 0;
}
//----------------------------------------------------------------------
// Extracts a variable length NULL terminated C string from
// the data at the offset pointed to by "offset_ptr". The
// "offset_ptr" will be updated with the offset of the byte that
// follows the NULL terminator byte.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if
2014-06-27 10:42:12 +08:00
// "length" is non-zero and there aren't enough available
// bytes, NULL will be returned and "offset_ptr" will not be
// updated.
//----------------------------------------------------------------------
const char*
DataExtractor::GetCStr (offset_t *offset_ptr) const
{
const char *cstr = (const char *)PeekData (*offset_ptr, 1);
if (cstr)
{
const char *cstr_end = cstr;
const char *end = (const char *)m_end;
while (cstr_end < end && *cstr_end)
++cstr_end;
// Now we are either at the end of the data or we point to the
// NULL C string terminator with cstr_end...
if (*cstr_end == '\0')
{
// Advance the offset with one extra byte for the NULL terminator
*offset_ptr += (cstr_end - cstr + 1);
return cstr;
}
// We reached the end of the data without finding a NULL C string
// terminator. Fall through and return NULL otherwise anyone that
2014-06-27 10:42:12 +08:00
// would have used the result as a C string can wander into
// unknown memory...
}
return NULL;
}
//----------------------------------------------------------------------
// Extracts a NULL terminated C string from the fixed length field of
// length "len" at the offset pointed to by "offset_ptr".
// The "offset_ptr" will be updated with the offset of the byte that
// follows the fixed length field.
//
// If the offset pointed to by "offset_ptr" is out of bounds, or if
// the offset plus the length of the field is out of bounds, or if the
// field does not contain a NULL terminator byte, NULL will be returned
// and "offset_ptr" will not be updated.
//----------------------------------------------------------------------
const char*
DataExtractor::GetCStr (offset_t *offset_ptr, offset_t len) const
{
const char *cstr = (const char *)PeekData (*offset_ptr, len);
if (cstr)
{
if (memchr (cstr, '\0', len) == NULL)
{
return NULL;
}
*offset_ptr += len;
return cstr;
}
return NULL;
}
//------------------------------------------------------------------
// Peeks at a string in the contained data. No verification is done
// to make sure the entire string lies within the bounds of this
// object's data, only "offset" is verified to be a valid offset.
//
// Returns a valid C string pointer if "offset" is a valid offset in
// this object's data, else NULL is returned.
//------------------------------------------------------------------
const char *
DataExtractor::PeekCStr (offset_t offset) const
{
return (const char *)PeekData (offset, 1);
}
//----------------------------------------------------------------------
// Extracts an unsigned LEB128 number from this object's data
// starting at the offset pointed to by "offset_ptr". The offset
// pointed to by "offset_ptr" will be updated with the offset of the
// byte following the last extracted byte.
//
// Returned the extracted integer value.
//----------------------------------------------------------------------
uint64_t
DataExtractor::GetULEB128 (offset_t *offset_ptr) const
{
const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
if (src == NULL)
return 0;
const uint8_t *end = m_end;
if (src < end)
{
uint64_t result = *src++;
if (result >= 0x80)
{
result &= 0x7f;
int shift = 7;
while (src < end)
{
uint8_t byte = *src++;
result |= (byte & 0x7f) << shift;
if ((byte & 0x80) == 0)
break;
shift += 7;
}
}
*offset_ptr = src - m_start;
return result;
}
return 0;
}
//----------------------------------------------------------------------
// Extracts an signed LEB128 number from this object's data
// starting at the offset pointed to by "offset_ptr". The offset
// pointed to by "offset_ptr" will be updated with the offset of the
// byte following the last extracted byte.
//
// Returned the extracted integer value.
//----------------------------------------------------------------------
int64_t
DataExtractor::GetSLEB128 (offset_t *offset_ptr) const
{
const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
if (src == NULL)
return 0;
const uint8_t *end = m_end;
if (src < end)
{
int64_t result = 0;
int shift = 0;
int size = sizeof (int64_t) * 8;
uint8_t byte = 0;
int bytecount = 0;
while (src < end)
{
bytecount++;
byte = *src++;
result |= (byte & 0x7f) << shift;
shift += 7;
if ((byte & 0x80) == 0)
break;
}
// Sign bit of byte is 2nd high order bit (0x40)
if (shift < size && (byte & 0x40))
result |= - (1 << shift);
*offset_ptr += bytecount;
return result;
}
return 0;
}
//----------------------------------------------------------------------
// Skips a ULEB128 number (signed or unsigned) from this object's
// data starting at the offset pointed to by "offset_ptr". The
// offset pointed to by "offset_ptr" will be updated with the offset
// of the byte following the last extracted byte.
//
// Returns the number of bytes consumed during the extraction.
//----------------------------------------------------------------------
uint32_t
DataExtractor::Skip_LEB128 (offset_t *offset_ptr) const
{
uint32_t bytes_consumed = 0;
const uint8_t *src = (const uint8_t *)PeekData (*offset_ptr, 1);
if (src == NULL)
return 0;
const uint8_t *end = m_end;
if (src < end)
{
const uint8_t *src_pos = src;
while ((src_pos < end) && (*src_pos++ & 0x80))
++bytes_consumed;
*offset_ptr += src_pos - src;
}
return bytes_consumed;
}
static bool
GetAPInt (const DataExtractor &data, lldb::offset_t *offset_ptr, lldb::offset_t byte_size, llvm::APInt &result)
{
llvm::SmallVector<uint64_t, 2> uint64_array;
lldb::offset_t bytes_left = byte_size;
uint64_t u64;
const lldb::ByteOrder byte_order = data.GetByteOrder();
if (byte_order == lldb::eByteOrderLittle)
{
while (bytes_left > 0)
{
if (bytes_left >= 8)
{
u64 = data.GetU64(offset_ptr);
bytes_left -= 8;
}
else
{
u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
bytes_left = 0;
}
uint64_array.push_back(u64);
}
result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
return true;
}
else if (byte_order == lldb::eByteOrderBig)
{
lldb::offset_t be_offset = *offset_ptr + byte_size;
lldb::offset_t temp_offset;
while (bytes_left > 0)
{
if (bytes_left >= 8)
{
be_offset -= 8;
temp_offset = be_offset;
u64 = data.GetU64(&temp_offset);
bytes_left -= 8;
}
else
{
be_offset -= bytes_left;
temp_offset = be_offset;
u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
bytes_left = 0;
}
uint64_array.push_back(u64);
}
*offset_ptr += byte_size;
result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
return true;
}
return false;
}
static lldb::offset_t
DumpAPInt (Stream *s, const DataExtractor &data, lldb::offset_t offset, lldb::offset_t byte_size, bool is_signed, unsigned radix)
{
llvm::APInt apint;
if (GetAPInt (data, &offset, byte_size, apint))
{
std::string apint_str(apint.toString(radix, is_signed));
switch (radix)
{
case 2:
s->Write ("0b", 2);
break;
case 8:
s->Write ("0", 1);
break;
case 10:
break;
}
s->Write(apint_str.c_str(), apint_str.size());
}
return offset;
}
static float half2float (uint16_t half)
{
#ifdef _MSC_VER
llvm_unreachable("half2float not implemented for MSVC");
#else
union{ float f; uint32_t u;}u;
int32_t v = (int16_t) half;
if( 0 == (v & 0x7c00))
{
u.u = v & 0x80007FFFU;
return u.f * ldexpf(1, 125);
}
v <<= 13;
u.u = v | 0x70000000U;
return u.f * ldexpf(1, -112);
#endif
}
lldb::offset_t
DataExtractor::Dump (Stream *s,
offset_t start_offset,
lldb::Format item_format,
size_t item_byte_size,
size_t item_count,
size_t num_per_line,
uint64_t base_addr,
uint32_t item_bit_size, // If zero, this is not a bitfield value, if non-zero, the value is a bitfield
uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the shift amount to apply to a bitfield
ExecutionContextScope *exe_scope) const
{
if (s == NULL)
return start_offset;
if (item_format == eFormatPointer)
{
if (item_byte_size != 4 && item_byte_size != 8)
item_byte_size = s->GetAddressByteSize();
}
offset_t offset = start_offset;
if (item_format == eFormatInstruction)
{
TargetSP target_sp;
if (exe_scope)
target_sp = exe_scope->CalculateTarget();
if (target_sp)
{
DisassemblerSP disassembler_sp (Disassembler::FindPlugin(target_sp->GetArchitecture(), NULL, NULL));
if (disassembler_sp)
{
lldb::addr_t addr = base_addr + start_offset;
lldb_private::Address so_addr;
bool data_from_file = true;
if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr))
{
data_from_file = false;
}
else
{
if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr))
so_addr.SetRawAddress(addr);
}
size_t bytes_consumed = disassembler_sp->DecodeInstructions (so_addr, *this, start_offset, item_count, false, data_from_file);
if (bytes_consumed)
{
offset += bytes_consumed;
const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
const bool show_bytes = true;
ExecutionContext exe_ctx;
exe_scope->CalculateExecutionContext(exe_ctx);
disassembler_sp->GetInstructionList().Dump (s, show_address, show_bytes, &exe_ctx);
// FIXME: The DisassemblerLLVMC has a reference cycle and won't go away if it has any active instructions.
// I'll fix that but for now, just clear the list and it will go away nicely.
disassembler_sp->GetInstructionList().Clear();
}
}
}
else
s->Printf ("invalid target");
return offset;
}
if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8)
item_format = eFormatHex;
lldb::offset_t line_start_offset = start_offset;
for (uint32_t count = 0; ValidOffset(offset) && count < item_count; ++count)
{
if ((count % num_per_line) == 0)
{
if (count > 0)
{
if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
{
s->Printf("%*s", static_cast<int>((num_per_line - (offset - line_start_offset)) * 3 + 2), "");
Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0);
}
s->EOL();
}
if (base_addr != LLDB_INVALID_ADDRESS)
s->Printf ("0x%8.8" PRIx64 ": ",
(uint64_t)(base_addr + (offset - start_offset)/m_target_byte_size ));
line_start_offset = offset;
}
else
if (item_format != eFormatChar &&
item_format != eFormatCharPrintable &&
item_format != eFormatCharArray &&
count > 0)
{
s->PutChar(' ');
}
uint32_t i;
switch (item_format)
{
case eFormatBoolean:
if (item_byte_size <= 8)
s->Printf ("%s", GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false");
else
{
s->Printf("error: unsupported byte size (%" PRIu64 ") for boolean format", (uint64_t)item_byte_size);
return offset;
}
break;
case eFormatBinary:
if (item_byte_size <= 8)
{
uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
// Avoid std::bitset<64>::to_string() since it is missing in
// earlier C++ libraries
std::string binary_value(64, '0');
std::bitset<64> bits(uval64);
for (i = 0; i < 64; ++i)
if (bits[i])
binary_value[64 - 1 - i] = '1';
if (item_bit_size > 0)
s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
else if (item_byte_size > 0 && item_byte_size <= 8)
s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
}
else
{
const bool is_signed = false;
const unsigned radix = 2;
offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatBytes:
case eFormatBytesWithASCII:
for (i=0; i<item_byte_size; ++i)
{
s->Printf ("%2.2x", GetU8(&offset));
}
// Put an extra space between the groups of bytes if more than one
// is being dumped in a group (item_byte_size is more than 1).
if (item_byte_size > 1)
s->PutChar(' ');
break;
case eFormatChar:
case eFormatCharPrintable:
case eFormatCharArray:
{
// If we are only printing one character surround it with single
// quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
const uint64_t ch = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
if (isprint(ch))
s->Printf ("%c", (char)ch);
else if (item_format != eFormatCharPrintable)
{
switch (ch)
{
case '\033': s->Printf ("\\e"); break;
case '\a': s->Printf ("\\a"); break;
case '\b': s->Printf ("\\b"); break;
case '\f': s->Printf ("\\f"); break;
case '\n': s->Printf ("\\n"); break;
case '\r': s->Printf ("\\r"); break;
case '\t': s->Printf ("\\t"); break;
case '\v': s->Printf ("\\v"); break;
case '\0': s->Printf ("\\0"); break;
default:
if (item_byte_size == 1)
s->Printf ("\\x%2.2x", (uint8_t)ch);
else
s->Printf ("%" PRIu64, ch);
break;
}
}
else
{
s->PutChar(NON_PRINTABLE_CHAR);
}
// If we are only printing one character surround it with single quotes
if (item_count == 1 && item_format == eFormatChar)
s->PutChar('\'');
}
break;
case eFormatEnum: // Print enum value as a signed integer when we don't get the enum type
case eFormatDecimal:
if (item_byte_size <= 8)
s->Printf ("%" PRId64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
else
{
const bool is_signed = true;
const unsigned radix = 10;
offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatUnsigned:
if (item_byte_size <= 8)
s->Printf ("%" PRIu64, GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
else
{
const bool is_signed = false;
const unsigned radix = 10;
offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatOctal:
if (item_byte_size <= 8)
s->Printf ("0%" PRIo64, GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
else
{
const bool is_signed = false;
const unsigned radix = 8;
offset = DumpAPInt (s, *this, offset, item_byte_size, is_signed, radix);
}
break;
case eFormatOSType:
{
uint64_t uval64 = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
s->PutChar('\'');
for (i=0; i<item_byte_size; ++i)
{
uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
if (isprint(ch))
s->Printf ("%c", ch);
else
{
switch (ch)
{
case '\033': s->Printf ("\\e"); break;
case '\a': s->Printf ("\\a"); break;
case '\b': s->Printf ("\\b"); break;
case '\f': s->Printf ("\\f"); break;
case '\n': s->Printf ("\\n"); break;
case '\r': s->Printf ("\\r"); break;
case '\t': s->Printf ("\\t"); break;
case '\v': s->Printf ("\\v"); break;
case '\0': s->Printf ("\\0"); break;
default: s->Printf ("\\x%2.2x", ch); break;
}
}
}
s->PutChar('\'');
}
break;
case eFormatCString:
{
const char *cstr = GetCStr(&offset);
if (!cstr)
{
s->Printf("NULL");
offset = LLDB_INVALID_OFFSET;
}
else
{
s->PutChar('\"');
while (const char c = *cstr)
{
if (isprint(c))
{
s->PutChar(c);
}
else
{
switch (c)
{
case '\033': s->Printf ("\\e"); break;
case '\a': s->Printf ("\\a"); break;
case '\b': s->Printf ("\\b"); break;
case '\f': s->Printf ("\\f"); break;
case '\n': s->Printf ("\\n"); break;
case '\r': s->Printf ("\\r"); break;
case '\t': s->Printf ("\\t"); break;
case '\v': s->Printf ("\\v"); break;
default: s->Printf ("\\x%2.2x", c); break;
}
}
++cstr;
}
s->PutChar('\"');
}
}
break;
case eFormatPointer:
s->Address(GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof (addr_t));
break;
case eFormatComplexInteger:
{
size_t complex_int_byte_size = item_byte_size / 2;
if (complex_int_byte_size > 0 && complex_int_byte_size <= 8)
{
s->Printf("%" PRIu64, GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
s->Printf(" + %" PRIu64 "i", GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
}
else
{
s->Printf("error: unsupported byte size (%" PRIu64 ") for complex integer format", (uint64_t)item_byte_size);
return offset;
}
}
break;
case eFormatComplex:
if (sizeof(float) * 2 == item_byte_size)
{
float f32_1 = GetFloat (&offset);
float f32_2 = GetFloat (&offset);
s->Printf ("%g + %gi", f32_1, f32_2);
break;
}
else if (sizeof(double) * 2 == item_byte_size)
{
double d64_1 = GetDouble (&offset);
double d64_2 = GetDouble (&offset);
s->Printf ("%lg + %lgi", d64_1, d64_2);
break;
}
else if (sizeof(long double) * 2 == item_byte_size)
{
long double ld64_1 = GetLongDouble (&offset);
long double ld64_2 = GetLongDouble (&offset);
s->Printf ("%Lg + %Lgi", ld64_1, ld64_2);
break;
}
else
{
s->Printf("error: unsupported byte size (%" PRIu64 ") for complex float format", (uint64_t)item_byte_size);
return offset;
}
break;
default:
case eFormatDefault:
case eFormatHex:
case eFormatHexUppercase:
{
bool wantsuppercase = (item_format == eFormatHexUppercase);
switch (item_byte_size)
{
case 1:
case 2:
case 4:
case 8:
s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset));
break;
default:
{
assert (item_bit_size == 0 && item_bit_offset == 0);
const uint8_t *bytes = (const uint8_t* )GetData(&offset, item_byte_size);
if (bytes)
{
s->PutCString("0x");
uint32_t idx;
if (m_byte_order == eByteOrderBig)
{
for (idx = 0; idx < item_byte_size; ++idx)
s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
}
else
{
for (idx = 0; idx < item_byte_size; ++idx)
s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]);
}
}
}
break;
}
}
break;
case eFormatFloat:
{
TargetSP target_sp;
bool used_apfloat = false;
if (exe_scope)
target_sp = exe_scope->CalculateTarget();
if (target_sp)
{
ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext();
if (clang_ast)
{
clang::ASTContext *ast = clang_ast->getASTContext();
if (ast)
{
llvm::SmallVector<char, 256> sv;
// Show full precision when printing float values
const unsigned format_precision = 0;
const unsigned format_max_padding = 100;
size_t item_bit_size = item_byte_size * 8;
if (item_bit_size == ast->getTypeSize(ast->FloatTy))
{
llvm::APInt apint(item_bit_size, this->GetMaxU64(&offset, item_byte_size));
llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->FloatTy), apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
else if (item_bit_size == ast->getTypeSize(ast->DoubleTy))
{
llvm::APInt apint;
if (GetAPInt (*this, &offset, item_byte_size, apint))
{
llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->DoubleTy), apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
}
else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy))
{
llvm::APInt apint;
switch (target_sp->GetArchitecture().GetMachine())
{
case llvm::Triple::x86:
case llvm::Triple::x86_64:
2014-06-27 10:42:12 +08:00
// clang will assert when constructing the apfloat if we use a 16 byte integer value
if (GetAPInt (*this, &offset, 10, apint))
{
llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->LongDoubleTy), apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
break;
default:
if (GetAPInt (*this, &offset, item_byte_size, apint))
{
llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->LongDoubleTy), apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
break;
}
}
else if (item_bit_size == ast->getTypeSize(ast->HalfTy))
{
llvm::APInt apint(item_bit_size, this->GetU16(&offset));
llvm::APFloat apfloat (ast->getFloatTypeSemantics(ast->HalfTy), apint);
apfloat.toString(sv, format_precision, format_max_padding);
}
if (!sv.empty())
{
s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data());
used_apfloat = true;
}
}
}
}
if (!used_apfloat)
{
std::ostringstream ss;
if (item_byte_size == sizeof(float) || item_byte_size == 2)
{
float f;
if (item_byte_size == 2)
{
uint16_t half = this->GetU16(&offset);
f = half2float(half);
}
else
{
f = GetFloat (&offset);
}
ss.precision(std::numeric_limits<float>::digits10);
ss << f;
}
else if (item_byte_size == sizeof(double))
{
ss.precision(std::numeric_limits<double>::digits10);
ss << GetDouble(&offset);
}
else if (item_byte_size == sizeof(long double) || item_byte_size == 10)
{
ss.precision(std::numeric_limits<long double>::digits10);
ss << GetLongDouble(&offset);
}
else
{
s->Printf("error: unsupported byte size (%" PRIu64 ") for float format", (uint64_t)item_byte_size);
return offset;
}
ss.flush();
s->Printf("%s", ss.str().c_str());
}
}
break;
case eFormatUnicode16:
s->Printf("U+%4.4x", GetU16 (&offset));
break;
case eFormatUnicode32:
s->Printf("U+0x%8.8x", GetU32 (&offset));
break;
case eFormatAddressInfo:
{
addr_t addr = GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset);
s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr);
if (exe_scope)
{
TargetSP target_sp (exe_scope->CalculateTarget());
lldb_private::Address so_addr;
if (target_sp)
{
if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr))
{
s->PutChar(' ');
so_addr.Dump (s,
exe_scope,
Address::DumpStyleResolvedDescription,
Address::DumpStyleModuleWithFileAddress);
}
else
{
so_addr.SetOffset(addr);
so_addr.Dump (s, exe_scope, Address::DumpStyleResolvedPointerDescription);
}
}
}
}
break;
case eFormatHexFloat:
if (sizeof(float) == item_byte_size)
{
char float_cstr[256];
llvm::APFloat ap_float (GetFloat (&offset));
ap_float.convertToHexString (float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven);
s->Printf ("%s", float_cstr);
break;
}
else if (sizeof(double) == item_byte_size)
{
char float_cstr[256];
llvm::APFloat ap_float (GetDouble (&offset));
ap_float.convertToHexString (float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven);
s->Printf ("%s", float_cstr);
break;
}
else
{
s->Printf("error: unsupported byte size (%" PRIu64 ") for hex float format", (uint64_t)item_byte_size);
return offset;
}
break;
// please keep the single-item formats below in sync with FormatManager::GetSingleItemFormat
// if you fail to do so, users will start getting different outputs depending on internal
// implementation details they should not care about ||
case eFormatVectorOfChar: // ||
s->PutChar('{'); // \/
offset = Dump (s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt8:
s->PutChar('{');
offset = Dump (s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt8:
s->PutChar('{');
offset = Dump (s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt16:
s->PutChar('{');
offset = Dump (s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt16:
s->PutChar('{');
offset = Dump (s, offset, eFormatHex, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt32:
s->PutChar('{');
offset = Dump (s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt32:
s->PutChar('{');
offset = Dump (s, offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfSInt64:
s->PutChar('{');
offset = Dump (s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt64:
s->PutChar('{');
offset = Dump (s, offset, eFormatHex, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat32:
s->PutChar('{');
offset = Dump (s, offset, eFormatFloat, 4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfFloat64:
s->PutChar('{');
offset = Dump (s, offset, eFormatFloat, 8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
case eFormatVectorOfUInt128:
s->PutChar('{');
offset = Dump (s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('}');
break;
}
}
if (item_format == eFormatBytesWithASCII && offset > line_start_offset)
{
s->Printf("%*s", static_cast<int>((num_per_line - (offset - line_start_offset)) * 3 + 2), "");
Dump(s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0);
}
return offset; // Return the offset at which we ended up
}
//----------------------------------------------------------------------
// Dumps bytes from this object's data to the stream "s" starting
// "start_offset" bytes into this data, and ending with the byte
// before "end_offset". "base_addr" will be added to the offset
// into the dumped data when showing the offset into the data in the
// output information. "num_per_line" objects of type "type" will
// be dumped with the option to override the format for each object
// with "type_format". "type_format" is a printf style formatting
// string. If "type_format" is NULL, then an appropriate format
// string will be used for the supplied "type". If the stream "s"
// is NULL, then the output will be send to Log().
//----------------------------------------------------------------------
lldb::offset_t
DataExtractor::PutToLog
(
Log *log,
offset_t start_offset,
offset_t length,
uint64_t base_addr,
uint32_t num_per_line,
DataExtractor::Type type,
const char *format
) const
{
if (log == NULL)
return start_offset;
offset_t offset;
offset_t end_offset;
uint32_t count;
StreamString sstr;
for (offset = start_offset, end_offset = offset + length, count = 0; ValidOffset(offset) && offset < end_offset; ++count)
{
if ((count % num_per_line) == 0)
{
// Print out any previous string
if (sstr.GetSize() > 0)
{
log->Printf("%s", sstr.GetData());
sstr.Clear();
}
// Reset string offset and fill the current line string with address:
if (base_addr != LLDB_INVALID_ADDRESS)
sstr.Printf("0x%8.8" PRIx64 ":", (uint64_t)(base_addr + (offset - start_offset)));
}
switch (type)
{
case TypeUInt8: sstr.Printf (format ? format : " %2.2x", GetU8(&offset)); break;
case TypeChar:
{
char ch = GetU8(&offset);
sstr.Printf (format ? format : " %c", isprint(ch) ? ch : ' ');
}
break;
case TypeUInt16: sstr.Printf (format ? format : " %4.4x", GetU16(&offset)); break;
case TypeUInt32: sstr.Printf (format ? format : " %8.8x", GetU32(&offset)); break;
case TypeUInt64: sstr.Printf (format ? format : " %16.16" PRIx64, GetU64(&offset)); break;
case TypePointer: sstr.Printf (format ? format : " 0x%" PRIx64, GetAddress(&offset)); break;
case TypeULEB128: sstr.Printf (format ? format : " 0x%" PRIx64, GetULEB128(&offset)); break;
case TypeSLEB128: sstr.Printf (format ? format : " %" PRId64, GetSLEB128(&offset)); break;
}
}
if (sstr.GetSize() > 0)
log->Printf("%s", sstr.GetData());
return offset; // Return the offset at which we ended up
}
//----------------------------------------------------------------------
// DumpUUID
//
// Dump out a UUID starting at 'offset' bytes into the buffer
//----------------------------------------------------------------------
void
DataExtractor::DumpUUID (Stream *s, offset_t offset) const
{
if (s)
{
const uint8_t *uuid_data = PeekData(offset, 16);
if ( uuid_data )
{
lldb_private::UUID uuid(uuid_data, 16);
uuid.Dump(s);
}
else
{
s->Printf("<not enough data for UUID at offset 0x%8.8" PRIx64 ">", offset);
}
}
}
void
DataExtractor::DumpHexBytes (Stream *s,
const void *src,
size_t src_len,
uint32_t bytes_per_line,
addr_t base_addr)
{
DataExtractor data (src, src_len, eByteOrderLittle, 4);
data.Dump (s,
0, // Offset into "src"
eFormatBytes, // Dump as hex bytes
1, // Size of each item is 1 for single bytes
src_len, // Number of bytes
bytes_per_line, // Num bytes per line
base_addr, // Base address
0, 0); // Bitfield info
}
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
size_t
DataExtractor::Copy (DataExtractor &dest_data) const
{
if (m_data_sp.get())
{
// we can pass along the SP to the data
dest_data.SetData(m_data_sp);
}
else
{
const uint8_t *base_ptr = m_start;
size_t data_size = GetByteSize();
dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
}
return GetByteSize();
}
bool
DataExtractor::Append(DataExtractor& rhs)
{
if (rhs.GetByteOrder() != GetByteOrder())
return false;
if (rhs.GetByteSize() == 0)
return true;
if (GetByteSize() == 0)
return (rhs.Copy(*this) > 0);
size_t bytes = GetByteSize() + rhs.GetByteSize();
DataBufferHeap *buffer_heap_ptr = NULL;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (buffer_sp.get() == NULL || buffer_heap_ptr == NULL)
return false;
uint8_t* bytes_ptr = buffer_heap_ptr->GetBytes();
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
SetData(buffer_sp);
return true;
}
bool
DataExtractor::Append(void* buf, offset_t length)
Redesign of the interaction between Python and frozen objects: - introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored in frozen objects ; now such reads transparently move from host to target as required - as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also removed code that enabled to recognize an expression result VO as such - introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO representing a T* or T[], and doing dereferences transparently in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData - as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it en lieu of doing the raw read itself - introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers, this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory) in public layer this returns an SBData, just like GetPointeeData() - introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values - added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing Solved a bug where global pointers to global variables were not dereferenced correctly for display New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128 Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file addresses that generate file address children UNLESS we have a live process) Updated help text for summary-string Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers Edited the syntax and help for some commands to have proper argument types llvm-svn: 139160
2011-09-07 03:20:51 +08:00
{
if (buf == NULL)
return false;
if (length == 0)
return true;
size_t bytes = GetByteSize() + length;
DataBufferHeap *buffer_heap_ptr = NULL;
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
if (buffer_sp.get() == NULL || buffer_heap_ptr == NULL)
return false;
uint8_t* bytes_ptr = buffer_heap_ptr->GetBytes();
if (GetByteSize() > 0)
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
memcpy(bytes_ptr + GetByteSize(), buf, length);
SetData(buffer_sp);
return true;
}
void
DataExtractor::Checksum (llvm::SmallVectorImpl<uint8_t> &dest,
uint64_t max_data)
{
if (max_data == 0)
max_data = GetByteSize();
else
max_data = std::min(max_data, GetByteSize());
llvm::MD5 md5;
const llvm::ArrayRef<uint8_t> data(GetDataStart(),max_data);
md5.update(data);
llvm::MD5::MD5Result result;
md5.final(result);
dest.resize(16);
std::copy(result,
result+16,
dest.begin());
}