llvm-project/clang/lib/AST/ItaniumMangle.cpp

4073 lines
136 KiB
C++
Raw Normal View History

//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements C++ name mangling according to the Itanium C++ ABI,
// which is used in GCC 3.2 and newer (and many compilers that are
// ABI-compatible with GCC):
//
// http://mentorembedded.github.io/cxx-abi/abi.html#mangling
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/ABI.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#define MANGLE_CHECKER 0
#if MANGLE_CHECKER
#include <cxxabi.h>
#endif
using namespace clang;
namespace {
/// \brief Retrieve the declaration context that should be used when mangling
/// the given declaration.
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
// The ABI assumes that lambda closure types that occur within
// default arguments live in the context of the function. However, due to
// the way in which Clang parses and creates function declarations, this is
// not the case: the lambda closure type ends up living in the context
// where the function itself resides, because the function declaration itself
// had not yet been created. Fix the context here.
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
if (RD->isLambda())
if (ParmVarDecl *ContextParam
= dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
return ContextParam->getDeclContext();
}
// Perform the same check for block literals.
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
if (ParmVarDecl *ContextParam
= dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
return ContextParam->getDeclContext();
}
const DeclContext *DC = D->getDeclContext();
if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
return getEffectiveDeclContext(CD);
if (const auto *VD = dyn_cast<VarDecl>(D))
if (VD->isExternC())
return VD->getASTContext().getTranslationUnitDecl();
if (const auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isExternC())
return FD->getASTContext().getTranslationUnitDecl();
return DC;
}
static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
return getEffectiveDeclContext(cast<Decl>(DC));
}
static bool isLocalContainerContext(const DeclContext *DC) {
return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
}
static const RecordDecl *GetLocalClassDecl(const Decl *D) {
const DeclContext *DC = getEffectiveDeclContext(D);
while (!DC->isNamespace() && !DC->isTranslationUnit()) {
if (isLocalContainerContext(DC))
return dyn_cast<RecordDecl>(D);
D = cast<Decl>(DC);
DC = getEffectiveDeclContext(D);
}
return nullptr;
}
static const FunctionDecl *getStructor(const FunctionDecl *fn) {
if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
return ftd->getTemplatedDecl();
return fn;
}
static const NamedDecl *getStructor(const NamedDecl *decl) {
const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
return (fn ? getStructor(fn) : decl);
}
static bool isLambda(const NamedDecl *ND) {
const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
if (!Record)
return false;
return Record->isLambda();
}
static const unsigned UnknownArity = ~0U;
class ItaniumMangleContextImpl : public ItaniumMangleContext {
typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
public:
explicit ItaniumMangleContextImpl(ASTContext &Context,
DiagnosticsEngine &Diags)
: ItaniumMangleContext(Context, Diags) {}
/// @name Mangler Entry Points
/// @{
bool shouldMangleCXXName(const NamedDecl *D) override;
bool shouldMangleStringLiteral(const StringLiteral *) override {
return false;
}
void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
raw_ostream &) override;
void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &ThisAdjustment,
raw_ostream &) override;
void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
raw_ostream &) override;
void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
const CXXRecordDecl *Type, raw_ostream &) override;
void mangleCXXRTTI(QualType T, raw_ostream &) override;
void mangleCXXRTTIName(QualType T, raw_ostream &) override;
void mangleTypeName(QualType T, raw_ostream &) override;
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
raw_ostream &) override;
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
raw_ostream &) override;
void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
void mangleDynamicAtExitDestructor(const VarDecl *D,
raw_ostream &Out) override;
Initial support for Win64 SEH IR emission The lowering looks a lot like normal EH lowering, with the exception that the exceptions are caught by executing filter expression code instead of matching typeinfo globals. The filter expressions are outlined into functions which are used in landingpad clauses where typeinfo would normally go. Major aspects that still need work: - Non-call exceptions in __try bodies won't work yet. The plan is to outline the __try block in the frontend to keep things simple. - Filter expressions cannot use local variables until capturing is implemented. - __finally blocks will not run after exceptions. Fixing this requires work in the LLVM SEH preparation pass. The IR lowering looks like this: // C code: bool safe_div(int n, int d, int *r) { __try { *r = normal_div(n, d); } __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) { return false; } return true; } ; LLVM IR: define i32 @filter(i8* %e, i8* %fp) { %ehptrs = bitcast i8* %e to i32** %ehrec = load i32** %ehptrs %code = load i32* %ehrec %matches = icmp eq i32 %code, i32 u0xC0000094 %matches.i32 = zext i1 %matches to i32 ret i32 %matches.i32 } define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) { %rr = invoke i32 @normal_div(i32 %n, i32 %d) to label %normal unwind to label %lpad normal: store i32 %rr, i32* %r ret i1 1 lpad: %ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*) %ehptr = extractvalue {i8*, i32} %ehvals, i32 0 %sel = extractvalue {i8*, i32} %ehvals, i32 1 %filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*)) %matches = icmp eq i32 %sel, %filter_sel br i1 %matches, label %eh.except, label %eh.resume eh.except: ret i1 false eh.resume: resume } Reviewers: rjmccall, rsmith, majnemer Differential Revision: http://reviews.llvm.org/D5607 llvm-svn: 226760
2015-01-22 09:36:17 +08:00
void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
raw_ostream &Out) override;
void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
void mangleItaniumThreadLocalWrapper(const VarDecl *D,
raw_ostream &) override;
void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
void mangleCXXVTableBitSet(const CXXRecordDecl *RD, raw_ostream &) override;
bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
// Lambda closure types are already numbered.
if (isLambda(ND))
return false;
// Anonymous tags are already numbered.
if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
return false;
}
// Use the canonical number for externally visible decls.
if (ND->isExternallyVisible()) {
unsigned discriminator = getASTContext().getManglingNumber(ND);
if (discriminator == 1)
return false;
disc = discriminator - 2;
return true;
}
// Make up a reasonable number for internal decls.
unsigned &discriminator = Uniquifier[ND];
if (!discriminator) {
const DeclContext *DC = getEffectiveDeclContext(ND);
discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
}
if (discriminator == 1)
return false;
disc = discriminator-2;
return true;
}
/// @}
};
/// CXXNameMangler - Manage the mangling of a single name.
class CXXNameMangler {
ItaniumMangleContextImpl &Context;
raw_ostream &Out;
/// The "structor" is the top-level declaration being mangled, if
/// that's not a template specialization; otherwise it's the pattern
/// for that specialization.
const NamedDecl *Structor;
unsigned StructorType;
/// SeqID - The next subsitution sequence number.
unsigned SeqID;
class FunctionTypeDepthState {
unsigned Bits;
enum { InResultTypeMask = 1 };
public:
FunctionTypeDepthState() : Bits(0) {}
/// The number of function types we're inside.
unsigned getDepth() const {
return Bits >> 1;
}
/// True if we're in the return type of the innermost function type.
bool isInResultType() const {
return Bits & InResultTypeMask;
}
FunctionTypeDepthState push() {
FunctionTypeDepthState tmp = *this;
Bits = (Bits & ~InResultTypeMask) + 2;
return tmp;
}
void enterResultType() {
Bits |= InResultTypeMask;
}
void leaveResultType() {
Bits &= ~InResultTypeMask;
}
void pop(FunctionTypeDepthState saved) {
assert(getDepth() == saved.getDepth() + 1);
Bits = saved.Bits;
}
} FunctionTypeDepth;
llvm::DenseMap<uintptr_t, unsigned> Substitutions;
ASTContext &getASTContext() const { return Context.getASTContext(); }
public:
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const NamedDecl *D = nullptr)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
SeqID(0) {
// These can't be mangled without a ctor type or dtor type.
assert(!D || (!isa<CXXDestructorDecl>(D) &&
!isa<CXXConstructorDecl>(D)));
}
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const CXXConstructorDecl *D, CXXCtorType Type)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
SeqID(0) { }
CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
const CXXDestructorDecl *D, CXXDtorType Type)
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
SeqID(0) { }
#if MANGLE_CHECKER
~CXXNameMangler() {
if (Out.str()[0] == '\01')
return;
int status = 0;
char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
assert(status == 0 && "Could not demangle mangled name!");
free(result);
}
#endif
raw_ostream &getStream() { return Out; }
void mangle(const NamedDecl *D);
void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
void mangleNumber(const llvm::APSInt &I);
void mangleNumber(int64_t Number);
void mangleFloat(const llvm::APFloat &F);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleSeqID(unsigned SeqID);
void mangleName(const NamedDecl *ND);
void mangleType(QualType T);
void mangleNameOrStandardSubstitution(const NamedDecl *ND);
private:
bool mangleSubstitution(const NamedDecl *ND);
bool mangleSubstitution(QualType T);
bool mangleSubstitution(TemplateName Template);
bool mangleSubstitution(uintptr_t Ptr);
void mangleExistingSubstitution(QualType type);
void mangleExistingSubstitution(TemplateName name);
bool mangleStandardSubstitution(const NamedDecl *ND);
void addSubstitution(const NamedDecl *ND) {
ND = cast<NamedDecl>(ND->getCanonicalDecl());
addSubstitution(reinterpret_cast<uintptr_t>(ND));
}
void addSubstitution(QualType T);
void addSubstitution(TemplateName Template);
void addSubstitution(uintptr_t Ptr);
void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
bool recursive = false);
void mangleUnresolvedName(NestedNameSpecifier *qualifier,
DeclarationName name,
unsigned KnownArity = UnknownArity);
void mangleName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleUnqualifiedName(const NamedDecl *ND) {
mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
}
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
unsigned KnownArity);
void mangleUnscopedName(const NamedDecl *ND);
void mangleUnscopedTemplateName(const TemplateDecl *ND);
void mangleUnscopedTemplateName(TemplateName);
void mangleSourceName(const IdentifierInfo *II);
void mangleLocalName(const Decl *D);
void mangleBlockForPrefix(const BlockDecl *Block);
void mangleUnqualifiedBlock(const BlockDecl *Block);
void mangleLambda(const CXXRecordDecl *Lambda);
void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
bool NoFunction=false);
void mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void manglePrefix(NestedNameSpecifier *qualifier);
void manglePrefix(const DeclContext *DC, bool NoFunction=false);
void manglePrefix(QualType type);
void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
void mangleTemplatePrefix(TemplateName Template);
bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
StringRef Prefix = "");
void mangleOperatorName(DeclarationName Name, unsigned Arity);
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
void mangleQualifiers(Qualifiers Quals);
void mangleRefQualifier(RefQualifierKind RefQualifier);
void mangleObjCMethodName(const ObjCMethodDecl *MD);
// Declare manglers for every type class.
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT)
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
#include "clang/AST/TypeNodes.def"
void mangleType(const TagType*);
void mangleType(TemplateName);
void mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType);
void mangleNeonVectorType(const VectorType *T);
void mangleAArch64NeonVectorType(const VectorType *T);
void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
void mangleMemberExprBase(const Expr *base, bool isArrow);
void mangleMemberExpr(const Expr *base, bool isArrow,
NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
DeclarationName name,
unsigned knownArity);
void mangleCastExpression(const Expr *E, StringRef CastEncoding);
void mangleInitListElements(const InitListExpr *InitList);
void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
void mangleCXXCtorType(CXXCtorType T);
void mangleCXXDtorType(CXXDtorType T);
void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs);
void mangleTemplateArgs(const TemplateArgumentList &AL);
void mangleTemplateArg(TemplateArgument A);
void mangleTemplateParameter(unsigned Index);
void mangleFunctionParam(const ParmVarDecl *parm);
};
}
bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
if (FD) {
LanguageLinkage L = FD->getLanguageLinkage();
// Overloadable functions need mangling.
if (FD->hasAttr<OverloadableAttr>())
return true;
// "main" is not mangled.
if (FD->isMain())
return false;
// C++ functions and those whose names are not a simple identifier need
// mangling.
if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
return true;
// C functions are not mangled.
if (L == CLanguageLinkage)
return false;
}
// Otherwise, no mangling is done outside C++ mode.
if (!getASTContext().getLangOpts().CPlusPlus)
return false;
const VarDecl *VD = dyn_cast<VarDecl>(D);
if (VD) {
// C variables are not mangled.
if (VD->isExternC())
return false;
// Variables at global scope with non-internal linkage are not mangled
const DeclContext *DC = getEffectiveDeclContext(D);
// Check for extern variable declared locally.
if (DC->isFunctionOrMethod() && D->hasLinkage())
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = getEffectiveParentContext(DC);
if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
!isa<VarTemplateSpecializationDecl>(D))
return false;
}
return true;
}
void CXXNameMangler::mangle(const NamedDecl *D) {
// <mangled-name> ::= _Z <encoding>
// ::= <data name>
// ::= <special-name>
Out << "_Z";
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
mangleFunctionEncoding(FD);
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
mangleName(VD);
else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
mangleName(IFD->getAnonField());
else
mangleName(cast<FieldDecl>(D));
}
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <encoding> ::= <function name> <bare-function-type>
mangleName(FD);
// Don't mangle in the type if this isn't a decl we should typically mangle.
if (!Context.shouldMangleDeclName(FD))
return;
if (FD->hasAttr<EnableIfAttr>()) {
FunctionTypeDepthState Saved = FunctionTypeDepth.push();
Out << "Ua9enable_ifI";
// FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
// it here.
for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
E = FD->getAttrs().rend();
I != E; ++I) {
EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
if (!EIA)
continue;
Out << 'X';
mangleExpression(EIA->getCond());
Out << 'E';
}
Out << 'E';
FunctionTypeDepth.pop(Saved);
}
// Whether the mangling of a function type includes the return type depends on
// the context and the nature of the function. The rules for deciding whether
// the return type is included are:
//
// 1. Template functions (names or types) have return types encoded, with
// the exceptions listed below.
// 2. Function types not appearing as part of a function name mangling,
// e.g. parameters, pointer types, etc., have return type encoded, with the
// exceptions listed below.
// 3. Non-template function names do not have return types encoded.
//
// The exceptions mentioned in (1) and (2) above, for which the return type is
// never included, are
// 1. Constructors.
// 2. Destructors.
// 3. Conversion operator functions, e.g. operator int.
bool MangleReturnType = false;
if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
isa<CXXConversionDecl>(FD)))
MangleReturnType = true;
// Mangle the type of the primary template.
FD = PrimaryTemplate->getTemplatedDecl();
}
mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
MangleReturnType);
}
static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
while (isa<LinkageSpecDecl>(DC)) {
DC = getEffectiveParentContext(DC);
}
return DC;
}
/// isStd - Return whether a given namespace is the 'std' namespace.
static bool isStd(const NamespaceDecl *NS) {
if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
->isTranslationUnit())
return false;
const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
return II && II->isStr("std");
}
// isStdNamespace - Return whether a given decl context is a toplevel 'std'
// namespace.
static bool isStdNamespace(const DeclContext *DC) {
if (!DC->isNamespace())
return false;
return isStd(cast<NamespaceDecl>(DC));
}
static const TemplateDecl *
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
// Check if we have a function template.
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
TemplateArgs = FD->getTemplateSpecializationArgs();
return TD;
}
}
// Check if we have a class template.
if (const ClassTemplateSpecializationDecl *Spec =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
// Check if we have a variable template.
if (const VarTemplateSpecializationDecl *Spec =
dyn_cast<VarTemplateSpecializationDecl>(ND)) {
TemplateArgs = &Spec->getTemplateArgs();
return Spec->getSpecializedTemplate();
}
return nullptr;
}
void CXXNameMangler::mangleName(const NamedDecl *ND) {
// <name> ::= <nested-name>
// ::= <unscoped-name>
// ::= <unscoped-template-name> <template-args>
// ::= <local-name>
//
const DeclContext *DC = getEffectiveDeclContext(ND);
// If this is an extern variable declared locally, the relevant DeclContext
// is that of the containing namespace, or the translation unit.
// FIXME: This is a hack; extern variables declared locally should have
// a proper semantic declaration context!
if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
while (!DC->isNamespace() && !DC->isTranslationUnit())
DC = getEffectiveParentContext(DC);
else if (GetLocalClassDecl(ND)) {
mangleLocalName(ND);
return;
}
DC = IgnoreLinkageSpecDecls(DC);
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = nullptr;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(*TemplateArgs);
return;
}
mangleUnscopedName(ND);
return;
}
if (isLocalContainerContext(DC)) {
mangleLocalName(ND);
return;
}
mangleNestedName(ND, DC);
}
void CXXNameMangler::mangleName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
if (DC->isTranslationUnit() || isStdNamespace(DC)) {
mangleUnscopedTemplateName(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
} else {
mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
}
}
void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
Out << "St";
mangleUnqualifiedName(ND);
}
void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
if (mangleSubstitution(ND))
return;
// <template-template-param> ::= <template-param>
if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
mangleTemplateParameter(TTP->getIndex());
else
mangleUnscopedName(ND->getTemplatedDecl());
addSubstitution(ND);
}
void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return mangleUnscopedTemplateName(TD);
if (mangleSubstitution(Template))
return;
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
assert(Dependent && "Not a dependent template name?");
if (const IdentifierInfo *Id = Dependent->getIdentifier())
mangleSourceName(Id);
else
mangleOperatorName(Dependent->getOperator(), UnknownArity);
addSubstitution(Template);
}
void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
// ABI:
// Floating-point literals are encoded using a fixed-length
// lowercase hexadecimal string corresponding to the internal
// representation (IEEE on Itanium), high-order bytes first,
// without leading zeroes. For example: "Lf bf800000 E" is -1.0f
// on Itanium.
// The 'without leading zeroes' thing seems to be an editorial
// mistake; see the discussion on cxx-abi-dev beginning on
// 2012-01-16.
// Our requirements here are just barely weird enough to justify
// using a custom algorithm instead of post-processing APInt::toString().
llvm::APInt valueBits = f.bitcastToAPInt();
unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
assert(numCharacters != 0);
// Allocate a buffer of the right number of characters.
SmallVector<char, 20> buffer;
buffer.set_size(numCharacters);
// Fill the buffer left-to-right.
for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
// The bit-index of the next hex digit.
unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
// Project out 4 bits starting at 'digitIndex'.
llvm::integerPart hexDigit
= valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
hexDigit &= 0xF;
// Map that over to a lowercase hex digit.
static const char charForHex[16] = {
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
};
buffer[stringIndex] = charForHex[hexDigit];
}
Out.write(buffer.data(), numCharacters);
}
void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
if (Value.isSigned() && Value.isNegative()) {
Out << 'n';
Value.abs().print(Out, /*signed*/ false);
} else {
Value.print(Out, /*signed*/ false);
}
}
void CXXNameMangler::mangleNumber(int64_t Number) {
// <number> ::= [n] <non-negative decimal integer>
if (Number < 0) {
Out << 'n';
Number = -Number;
}
Out << Number;
}
void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
// <call-offset> ::= h <nv-offset> _
// ::= v <v-offset> _
// <nv-offset> ::= <offset number> # non-virtual base override
// <v-offset> ::= <offset number> _ <virtual offset number>
// # virtual base override, with vcall offset
if (!Virtual) {
Out << 'h';
mangleNumber(NonVirtual);
Out << '_';
return;
}
Out << 'v';
mangleNumber(NonVirtual);
Out << '_';
mangleNumber(Virtual);
Out << '_';
}
void CXXNameMangler::manglePrefix(QualType type) {
if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
if (!mangleSubstitution(QualType(TST, 0))) {
mangleTemplatePrefix(TST->getTemplateName());
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
addSubstitution(QualType(TST, 0));
}
} else if (const auto *DTST =
type->getAs<DependentTemplateSpecializationType>()) {
if (!mangleSubstitution(QualType(DTST, 0))) {
TemplateName Template = getASTContext().getDependentTemplateName(
DTST->getQualifier(), DTST->getIdentifier());
mangleTemplatePrefix(Template);
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
addSubstitution(QualType(DTST, 0));
}
} else {
// We use the QualType mangle type variant here because it handles
// substitutions.
mangleType(type);
}
}
/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
///
/// \param recursive - true if this is being called recursively,
/// i.e. if there is more prefix "to the right".
void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
bool recursive) {
// x, ::x
// <unresolved-name> ::= [gs] <base-unresolved-name>
// T::x / decltype(p)::x
// <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
// T::N::x /decltype(p)::N::x
// <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
// <base-unresolved-name>
// A::x, N::y, A<T>::z; "gs" means leading "::"
// <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
// <base-unresolved-name>
switch (qualifier->getKind()) {
case NestedNameSpecifier::Global:
Out << "gs";
// We want an 'sr' unless this is the entire NNS.
if (recursive)
Out << "sr";
// We never want an 'E' here.
return;
case NestedNameSpecifier::Super:
llvm_unreachable("Can't mangle __super specifier");
case NestedNameSpecifier::Namespace:
if (qualifier->getPrefix())
mangleUnresolvedPrefix(qualifier->getPrefix(),
/*recursive*/ true);
else
Out << "sr";
mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
break;
case NestedNameSpecifier::NamespaceAlias:
if (qualifier->getPrefix())
mangleUnresolvedPrefix(qualifier->getPrefix(),
/*recursive*/ true);
else
Out << "sr";
mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
break;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
const Type *type = qualifier->getAsType();
// We only want to use an unresolved-type encoding if this is one of:
// - a decltype
// - a template type parameter
// - a template template parameter with arguments
// In all of these cases, we should have no prefix.
if (qualifier->getPrefix()) {
mangleUnresolvedPrefix(qualifier->getPrefix(),
/*recursive*/ true);
} else {
// Otherwise, all the cases want this.
Out << "sr";
}
if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
return;
break;
}
case NestedNameSpecifier::Identifier:
// Member expressions can have these without prefixes.
if (qualifier->getPrefix())
mangleUnresolvedPrefix(qualifier->getPrefix(),
/*recursive*/ true);
else
Out << "sr";
mangleSourceName(qualifier->getAsIdentifier());
break;
}
// If this was the innermost part of the NNS, and we fell out to
// here, append an 'E'.
if (!recursive)
Out << 'E';
}
/// Mangle an unresolved-name, which is generally used for names which
/// weren't resolved to specific entities.
void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
DeclarationName name,
unsigned knownArity) {
if (qualifier) mangleUnresolvedPrefix(qualifier);
switch (name.getNameKind()) {
// <base-unresolved-name> ::= <simple-id>
case DeclarationName::Identifier:
mangleSourceName(name.getAsIdentifierInfo());
break;
// <base-unresolved-name> ::= dn <destructor-name>
case DeclarationName::CXXDestructorName:
Out << "dn";
mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
break;
// <base-unresolved-name> ::= on <operator-name>
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXOperatorName:
Out << "on";
mangleOperatorName(name, knownArity);
break;
case DeclarationName::CXXConstructorName:
llvm_unreachable("Can't mangle a constructor name!");
case DeclarationName::CXXUsingDirective:
llvm_unreachable("Can't mangle a using directive name!");
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCZeroArgSelector:
llvm_unreachable("Can't mangle Objective-C selector names here!");
}
}
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
DeclarationName Name,
unsigned KnownArity) {
unsigned Arity = KnownArity;
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
switch (Name.getNameKind()) {
case DeclarationName::Identifier: {
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
// We must avoid conflicts between internally- and externally-
// linked variable and function declaration names in the same TU:
// void test() { extern void foo(); }
// static void foo();
// This naming convention is the same as that followed by GCC,
// though it shouldn't actually matter.
if (ND && ND->getFormalLinkage() == InternalLinkage &&
getEffectiveDeclContext(ND)->isFileContext())
Out << 'L';
mangleSourceName(II);
break;
}
// Otherwise, an anonymous entity. We must have a declaration.
assert(ND && "mangling empty name without declaration");
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (NS->isAnonymousNamespace()) {
// This is how gcc mangles these names.
Out << "12_GLOBAL__N_1";
break;
}
}
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
// We must have an anonymous union or struct declaration.
const RecordDecl *RD =
cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
// Itanium C++ ABI 5.1.2:
//
// For the purposes of mangling, the name of an anonymous union is
// considered to be the name of the first named data member found by a
// pre-order, depth-first, declaration-order walk of the data members of
// the anonymous union. If there is no such data member (i.e., if all of
// the data members in the union are unnamed), then there is no way for
// a program to refer to the anonymous union, and there is therefore no
// need to mangle its name.
assert(RD->isAnonymousStructOrUnion()
&& "Expected anonymous struct or union!");
const FieldDecl *FD = RD->findFirstNamedDataMember();
// It's actually possible for various reasons for us to get here
// with an empty anonymous struct / union. Fortunately, it
// doesn't really matter what name we generate.
if (!FD) break;
assert(FD->getIdentifier() && "Data member name isn't an identifier!");
mangleSourceName(FD->getIdentifier());
break;
}
// Class extensions have no name as a category, and it's possible
// for them to be the semantic parent of certain declarations
// (primarily, tag decls defined within declarations). Such
// declarations will always have internal linkage, so the name
// doesn't really matter, but we shouldn't crash on them. For
// safety, just handle all ObjC containers here.
if (isa<ObjCContainerDecl>(ND))
break;
// We must have an anonymous struct.
const TagDecl *TD = cast<TagDecl>(ND);
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
assert(TD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
mangleSourceName(D->getDeclName().getAsIdentifierInfo());
break;
}
// <unnamed-type-name> ::= <closure-type-name>
//
// <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
// <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
if (Record->isLambda() && Record->getLambdaManglingNumber()) {
mangleLambda(Record);
break;
}
}
if (TD->isExternallyVisible()) {
unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Out << "Ut";
if (UnnamedMangle > 1)
Out << llvm::utostr(UnnamedMangle - 2);
Out << '_';
break;
}
// Get a unique id for the anonymous struct.
unsigned AnonStructId = Context.getAnonymousStructId(TD);
// Mangle it as a source name in the form
// [n] $_<id>
// where n is the length of the string.
SmallString<8> Str;
Str += "$_";
Str += llvm::utostr(AnonStructId);
Out << Str.size();
Out << Str;
break;
}
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
llvm_unreachable("Can't mangle Objective-C selector names here!");
case DeclarationName::CXXConstructorName:
if (ND == Structor)
// If the named decl is the C++ constructor we're mangling, use the type
// we were given.
mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
else
// Otherwise, use the complete constructor name. This is relevant if a
// class with a constructor is declared within a constructor.
mangleCXXCtorType(Ctor_Complete);
break;
case DeclarationName::CXXDestructorName:
if (ND == Structor)
// If the named decl is the C++ destructor we're mangling, use the type we
// were given.
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
else
// Otherwise, use the complete destructor name. This is relevant if a
// class with a destructor is declared within a destructor.
mangleCXXDtorType(Dtor_Complete);
break;
case DeclarationName::CXXOperatorName:
if (ND && Arity == UnknownArity) {
Arity = cast<FunctionDecl>(ND)->getNumParams();
// If we have a member function, we need to include the 'this' pointer.
if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
if (!MD->isStatic())
Arity++;
}
// FALLTHROUGH
case DeclarationName::CXXConversionFunctionName:
case DeclarationName::CXXLiteralOperatorName:
mangleOperatorName(Name, Arity);
break;
case DeclarationName::CXXUsingDirective:
llvm_unreachable("Can't mangle a using directive name!");
}
}
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
// <source-name> ::= <positive length number> <identifier>
// <number> ::= [n] <non-negative decimal integer>
// <identifier> ::= <unqualified source code identifier>
Out << II->getLength() << II->getName();
}
void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
const DeclContext *DC,
bool NoFunction) {
// <nested-name>
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
// ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
// <template-args> E
Out << 'N';
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
Qualifiers MethodQuals =
Qualifiers::fromCVRMask(Method->getTypeQualifiers());
// We do not consider restrict a distinguishing attribute for overloading
// purposes so we must not mangle it.
MethodQuals.removeRestrict();
mangleQualifiers(MethodQuals);
mangleRefQualifier(Method->getRefQualifier());
}
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = nullptr;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplatePrefix(TD, NoFunction);
mangleTemplateArgs(*TemplateArgs);
}
else {
manglePrefix(DC, NoFunction);
mangleUnqualifiedName(ND);
}
Out << 'E';
}
void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
Out << 'N';
mangleTemplatePrefix(TD);
mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
Out << 'E';
}
void CXXNameMangler::mangleLocalName(const Decl *D) {
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// <local-name> := Z <function encoding> E d [ <parameter number> ]
// _ <entity name>
// <discriminator> := _ <non-negative number>
assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
const RecordDecl *RD = GetLocalClassDecl(D);
const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Out << 'Z';
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
mangleObjCMethodName(MD);
else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
mangleBlockForPrefix(BD);
else
mangleFunctionEncoding(cast<FunctionDecl>(DC));
Out << 'E';
if (RD) {
// The parameter number is omitted for the last parameter, 0 for the
// second-to-last parameter, 1 for the third-to-last parameter, etc. The
// <entity name> will of course contain a <closure-type-name>: Its
// numbering will be local to the particular argument in which it appears
// -- other default arguments do not affect its encoding.
const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
if (CXXRD->isLambda()) {
if (const ParmVarDecl *Parm
= dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
if (const FunctionDecl *Func
= dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
Out << 'd';
unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
if (Num > 1)
mangleNumber(Num - 2);
Out << '_';
}
}
}
// Mangle the name relative to the closest enclosing function.
// equality ok because RD derived from ND above
if (D == RD) {
mangleUnqualifiedName(RD);
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
mangleUnqualifiedBlock(BD);
} else {
const NamedDecl *ND = cast<NamedDecl>(D);
mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
}
} else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
// Mangle a block in a default parameter; see above explanation for
// lambdas.
if (const ParmVarDecl *Parm
= dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
if (const FunctionDecl *Func
= dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
Out << 'd';
unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
if (Num > 1)
mangleNumber(Num - 2);
Out << '_';
}
}
mangleUnqualifiedBlock(BD);
} else {
mangleUnqualifiedName(cast<NamedDecl>(D));
}
if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
unsigned disc;
if (Context.getNextDiscriminator(ND, disc)) {
if (disc < 10)
Out << '_' << disc;
else
Out << "__" << disc << '_';
}
}
}
void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
if (GetLocalClassDecl(Block)) {
mangleLocalName(Block);
return;
}
const DeclContext *DC = getEffectiveDeclContext(Block);
if (isLocalContainerContext(DC)) {
mangleLocalName(Block);
return;
}
manglePrefix(getEffectiveDeclContext(Block));
mangleUnqualifiedBlock(Block);
}
void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
if (Decl *Context = Block->getBlockManglingContextDecl()) {
if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
Context->getDeclContext()->isRecord()) {
if (const IdentifierInfo *Name
= cast<NamedDecl>(Context)->getIdentifier()) {
mangleSourceName(Name);
Out << 'M';
}
}
}
// If we have a block mangling number, use it.
unsigned Number = Block->getBlockManglingNumber();
// Otherwise, just make up a number. It doesn't matter what it is because
// the symbol in question isn't externally visible.
if (!Number)
Number = Context.getBlockId(Block, false);
Out << "Ub";
if (Number > 0)
Out << Number - 1;
Out << '_';
}
void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
// If the context of a closure type is an initializer for a class member
// (static or nonstatic), it is encoded in a qualified name with a final
// <prefix> of the form:
//
// <data-member-prefix> := <member source-name> M
//
// Technically, the data-member-prefix is part of the <prefix>. However,
// since a closure type will always be mangled with a prefix, it's easier
// to emit that last part of the prefix here.
if (Decl *Context = Lambda->getLambdaContextDecl()) {
if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
Context->getDeclContext()->isRecord()) {
if (const IdentifierInfo *Name
= cast<NamedDecl>(Context)->getIdentifier()) {
mangleSourceName(Name);
Out << 'M';
}
}
}
Out << "Ul";
const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
getAs<FunctionProtoType>();
mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
Out << "E";
// The number is omitted for the first closure type with a given
// <lambda-sig> in a given context; it is n-2 for the nth closure type
// (in lexical order) with that same <lambda-sig> and context.
//
// The AST keeps track of the number for us.
unsigned Number = Lambda->getLambdaManglingNumber();
assert(Number > 0 && "Lambda should be mangled as an unnamed class");
if (Number > 1)
mangleNumber(Number - 2);
Out << '_';
}
void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
switch (qualifier->getKind()) {
case NestedNameSpecifier::Global:
// nothing
return;
case NestedNameSpecifier::Super:
llvm_unreachable("Can't mangle __super specifier");
case NestedNameSpecifier::Namespace:
mangleName(qualifier->getAsNamespace());
return;
case NestedNameSpecifier::NamespaceAlias:
mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
return;
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate:
manglePrefix(QualType(qualifier->getAsType(), 0));
return;
case NestedNameSpecifier::Identifier:
// Member expressions can have these without prefixes, but that
// should end up in mangleUnresolvedPrefix instead.
assert(qualifier->getPrefix());
manglePrefix(qualifier->getPrefix());
mangleSourceName(qualifier->getAsIdentifier());
return;
}
llvm_unreachable("unexpected nested name specifier");
}
void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= # empty
// ::= <substitution>
DC = IgnoreLinkageSpecDecls(DC);
if (DC->isTranslationUnit())
return;
if (NoFunction && isLocalContainerContext(DC))
return;
assert(!isLocalContainerContext(DC));
const NamedDecl *ND = cast<NamedDecl>(DC);
if (mangleSubstitution(ND))
return;
// Check if we have a template.
const TemplateArgumentList *TemplateArgs = nullptr;
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
mangleTemplatePrefix(TD);
mangleTemplateArgs(*TemplateArgs);
} else {
manglePrefix(getEffectiveDeclContext(ND), NoFunction);
mangleUnqualifiedName(ND);
}
addSubstitution(ND);
}
void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return mangleTemplatePrefix(TD);
if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
manglePrefix(Qualified->getQualifier());
if (OverloadedTemplateStorage *Overloaded
= Template.getAsOverloadedTemplate()) {
mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
UnknownArity);
return;
}
DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
assert(Dependent && "Unknown template name kind?");
if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
manglePrefix(Qualifier);
mangleUnscopedTemplateName(Template);
}
void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
bool NoFunction) {
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
// <template-template-param> ::= <template-param>
// <substitution>
if (mangleSubstitution(ND))
return;
// <template-template-param> ::= <template-param>
if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
mangleTemplateParameter(TTP->getIndex());
} else {
manglePrefix(getEffectiveDeclContext(ND), NoFunction);
mangleUnqualifiedName(ND->getTemplatedDecl());
}
addSubstitution(ND);
}
/// Mangles a template name under the production <type>. Required for
/// template template arguments.
/// <type> ::= <class-enum-type>
/// ::= <template-param>
/// ::= <substitution>
void CXXNameMangler::mangleType(TemplateName TN) {
if (mangleSubstitution(TN))
return;
TemplateDecl *TD = nullptr;
switch (TN.getKind()) {
case TemplateName::QualifiedTemplate:
TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
goto HaveDecl;
case TemplateName::Template:
TD = TN.getAsTemplateDecl();
goto HaveDecl;
HaveDecl:
if (isa<TemplateTemplateParmDecl>(TD))
mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
else
mangleName(TD);
break;
case TemplateName::OverloadedTemplate:
llvm_unreachable("can't mangle an overloaded template name as a <type>");
case TemplateName::DependentTemplate: {
const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
assert(Dependent->isIdentifier());
// <class-enum-type> ::= <name>
// <name> ::= <nested-name>
mangleUnresolvedPrefix(Dependent->getQualifier());
mangleSourceName(Dependent->getIdentifier());
break;
}
case TemplateName::SubstTemplateTemplateParm: {
// Substituted template parameters are mangled as the substituted
// template. This will check for the substitution twice, which is
// fine, but we have to return early so that we don't try to *add*
// the substitution twice.
SubstTemplateTemplateParmStorage *subst
= TN.getAsSubstTemplateTemplateParm();
mangleType(subst->getReplacement());
return;
}
case TemplateName::SubstTemplateTemplateParmPack: {
// FIXME: not clear how to mangle this!
// template <template <class> class T...> class A {
// template <template <class> class U...> void foo(B<T,U> x...);
// };
Out << "_SUBSTPACK_";
break;
}
}
addSubstitution(TN);
}
bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
StringRef Prefix) {
// Only certain other types are valid as prefixes; enumerate them.
switch (Ty->getTypeClass()) {
case Type::Builtin:
case Type::Complex:
case Type::Adjusted:
case Type::Decayed:
case Type::Pointer:
case Type::BlockPointer:
case Type::LValueReference:
case Type::RValueReference:
case Type::MemberPointer:
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::DependentSizedArray:
case Type::DependentSizedExtVector:
case Type::Vector:
case Type::ExtVector:
case Type::FunctionProto:
case Type::FunctionNoProto:
case Type::Paren:
case Type::Attributed:
case Type::Auto:
case Type::PackExpansion:
case Type::ObjCObject:
case Type::ObjCInterface:
case Type::ObjCObjectPointer:
case Type::Atomic:
llvm_unreachable("type is illegal as a nested name specifier");
case Type::SubstTemplateTypeParmPack:
// FIXME: not clear how to mangle this!
// template <class T...> class A {
// template <class U...> void foo(decltype(T::foo(U())) x...);
// };
Out << "_SUBSTPACK_";
break;
// <unresolved-type> ::= <template-param>
// ::= <decltype>
// ::= <template-template-param> <template-args>
// (this last is not official yet)
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::Decltype:
case Type::TemplateTypeParm:
case Type::UnaryTransform:
case Type::SubstTemplateTypeParm:
unresolvedType:
// Some callers want a prefix before the mangled type.
Out << Prefix;
// This seems to do everything we want. It's not really
// sanctioned for a substituted template parameter, though.
mangleType(Ty);
// We never want to print 'E' directly after an unresolved-type,
// so we return directly.
return true;
case Type::Typedef:
mangleSourceName(cast<TypedefType>(Ty)->getDecl()->getIdentifier());
break;
case Type::UnresolvedUsing:
mangleSourceName(
cast<UnresolvedUsingType>(Ty)->getDecl()->getIdentifier());
break;
case Type::Enum:
case Type::Record:
mangleSourceName(cast<TagType>(Ty)->getDecl()->getIdentifier());
break;
case Type::TemplateSpecialization: {
const TemplateSpecializationType *TST =
cast<TemplateSpecializationType>(Ty);
TemplateName TN = TST->getTemplateName();
switch (TN.getKind()) {
case TemplateName::Template:
case TemplateName::QualifiedTemplate: {
TemplateDecl *TD = TN.getAsTemplateDecl();
// If the base is a template template parameter, this is an
// unresolved type.
assert(TD && "no template for template specialization type");
if (isa<TemplateTemplateParmDecl>(TD))
goto unresolvedType;
mangleSourceName(TD->getIdentifier());
break;
}
case TemplateName::OverloadedTemplate:
case TemplateName::DependentTemplate:
llvm_unreachable("invalid base for a template specialization type");
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *subst =
TN.getAsSubstTemplateTemplateParm();
mangleExistingSubstitution(subst->getReplacement());
break;
}
case TemplateName::SubstTemplateTemplateParmPack: {
// FIXME: not clear how to mangle this!
// template <template <class U> class T...> class A {
// template <class U...> void foo(decltype(T<U>::foo) x...);
// };
Out << "_SUBSTPACK_";
break;
}
}
mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
break;
}
case Type::InjectedClassName:
mangleSourceName(
cast<InjectedClassNameType>(Ty)->getDecl()->getIdentifier());
break;
case Type::DependentName:
mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
break;
case Type::DependentTemplateSpecialization: {
const DependentTemplateSpecializationType *DTST =
cast<DependentTemplateSpecializationType>(Ty);
mangleSourceName(DTST->getIdentifier());
mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
break;
}
case Type::Elaborated:
return mangleUnresolvedTypeOrSimpleId(
cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
}
return false;
}
void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
switch (Name.getNameKind()) {
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXUsingDirective:
case DeclarationName::Identifier:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCZeroArgSelector:
llvm_unreachable("Not an operator name");
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= cv <type> # (cast)
Out << "cv";
mangleType(Name.getCXXNameType());
break;
case DeclarationName::CXXLiteralOperatorName:
Out << "li";
mangleSourceName(Name.getCXXLiteralIdentifier());
return;
case DeclarationName::CXXOperatorName:
mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
break;
}
}
void
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
switch (OO) {
// <operator-name> ::= nw # new
case OO_New: Out << "nw"; break;
// ::= na # new[]
case OO_Array_New: Out << "na"; break;
// ::= dl # delete
case OO_Delete: Out << "dl"; break;
// ::= da # delete[]
case OO_Array_Delete: Out << "da"; break;
// ::= ps # + (unary)
// ::= pl # + (binary or unknown)
case OO_Plus:
Out << (Arity == 1? "ps" : "pl"); break;
// ::= ng # - (unary)
// ::= mi # - (binary or unknown)
case OO_Minus:
Out << (Arity == 1? "ng" : "mi"); break;
// ::= ad # & (unary)
// ::= an # & (binary or unknown)
case OO_Amp:
Out << (Arity == 1? "ad" : "an"); break;
// ::= de # * (unary)
// ::= ml # * (binary or unknown)
case OO_Star:
// Use binary when unknown.
Out << (Arity == 1? "de" : "ml"); break;
// ::= co # ~
case OO_Tilde: Out << "co"; break;
// ::= dv # /
case OO_Slash: Out << "dv"; break;
// ::= rm # %
case OO_Percent: Out << "rm"; break;
// ::= or # |
case OO_Pipe: Out << "or"; break;
// ::= eo # ^
case OO_Caret: Out << "eo"; break;
// ::= aS # =
case OO_Equal: Out << "aS"; break;
// ::= pL # +=
case OO_PlusEqual: Out << "pL"; break;
// ::= mI # -=
case OO_MinusEqual: Out << "mI"; break;
// ::= mL # *=
case OO_StarEqual: Out << "mL"; break;
// ::= dV # /=
case OO_SlashEqual: Out << "dV"; break;
// ::= rM # %=
case OO_PercentEqual: Out << "rM"; break;
// ::= aN # &=
case OO_AmpEqual: Out << "aN"; break;
// ::= oR # |=
case OO_PipeEqual: Out << "oR"; break;
// ::= eO # ^=
case OO_CaretEqual: Out << "eO"; break;
// ::= ls # <<
case OO_LessLess: Out << "ls"; break;
// ::= rs # >>
case OO_GreaterGreater: Out << "rs"; break;
// ::= lS # <<=
case OO_LessLessEqual: Out << "lS"; break;
// ::= rS # >>=
case OO_GreaterGreaterEqual: Out << "rS"; break;
// ::= eq # ==
case OO_EqualEqual: Out << "eq"; break;
// ::= ne # !=
case OO_ExclaimEqual: Out << "ne"; break;
// ::= lt # <
case OO_Less: Out << "lt"; break;
// ::= gt # >
case OO_Greater: Out << "gt"; break;
// ::= le # <=
case OO_LessEqual: Out << "le"; break;
// ::= ge # >=
case OO_GreaterEqual: Out << "ge"; break;
// ::= nt # !
case OO_Exclaim: Out << "nt"; break;
// ::= aa # &&
case OO_AmpAmp: Out << "aa"; break;
// ::= oo # ||
case OO_PipePipe: Out << "oo"; break;
// ::= pp # ++
case OO_PlusPlus: Out << "pp"; break;
// ::= mm # --
case OO_MinusMinus: Out << "mm"; break;
// ::= cm # ,
case OO_Comma: Out << "cm"; break;
// ::= pm # ->*
case OO_ArrowStar: Out << "pm"; break;
// ::= pt # ->
case OO_Arrow: Out << "pt"; break;
// ::= cl # ()
case OO_Call: Out << "cl"; break;
// ::= ix # []
case OO_Subscript: Out << "ix"; break;
// ::= qu # ?
// The conditional operator can't be overloaded, but we still handle it when
// mangling expressions.
case OO_Conditional: Out << "qu"; break;
case OO_None:
case NUM_OVERLOADED_OPERATORS:
llvm_unreachable("Not an overloaded operator");
}
}
void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
if (Quals.hasRestrict())
Out << 'r';
if (Quals.hasVolatile())
Out << 'V';
if (Quals.hasConst())
Out << 'K';
if (Quals.hasAddressSpace()) {
// Address space extension:
//
// <type> ::= U <target-addrspace>
// <type> ::= U <OpenCL-addrspace>
// <type> ::= U <CUDA-addrspace>
SmallString<64> ASString;
unsigned AS = Quals.getAddressSpace();
if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
// <target-addrspace> ::= "AS" <address-space-number>
unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
ASString = "AS" + llvm::utostr_32(TargetAS);
} else {
switch (AS) {
default: llvm_unreachable("Not a language specific address space");
// <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
case LangAS::opencl_global: ASString = "CLglobal"; break;
case LangAS::opencl_local: ASString = "CLlocal"; break;
case LangAS::opencl_constant: ASString = "CLconstant"; break;
// <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
case LangAS::cuda_device: ASString = "CUdevice"; break;
case LangAS::cuda_constant: ASString = "CUconstant"; break;
case LangAS::cuda_shared: ASString = "CUshared"; break;
}
}
Out << 'U' << ASString.size() << ASString;
}
StringRef LifetimeName;
switch (Quals.getObjCLifetime()) {
// Objective-C ARC Extension:
//
// <type> ::= U "__strong"
// <type> ::= U "__weak"
// <type> ::= U "__autoreleasing"
case Qualifiers::OCL_None:
break;
case Qualifiers::OCL_Weak:
LifetimeName = "__weak";
break;
case Qualifiers::OCL_Strong:
LifetimeName = "__strong";
break;
case Qualifiers::OCL_Autoreleasing:
LifetimeName = "__autoreleasing";
break;
case Qualifiers::OCL_ExplicitNone:
// The __unsafe_unretained qualifier is *not* mangled, so that
// __unsafe_unretained types in ARC produce the same manglings as the
// equivalent (but, naturally, unqualified) types in non-ARC, providing
// better ABI compatibility.
//
// It's safe to do this because unqualified 'id' won't show up
// in any type signatures that need to be mangled.
break;
}
if (!LifetimeName.empty())
Out << 'U' << LifetimeName.size() << LifetimeName;
}
void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
// <ref-qualifier> ::= R # lvalue reference
// ::= O # rvalue-reference
switch (RefQualifier) {
case RQ_None:
break;
case RQ_LValue:
Out << 'R';
break;
case RQ_RValue:
Out << 'O';
break;
}
}
void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
Context.mangleObjCMethodName(MD, Out);
}
static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
if (Quals)
return true;
if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
return true;
if (Ty->isOpenCLSpecificType())
return true;
if (Ty->isBuiltinType())
return false;
return true;
}
void CXXNameMangler::mangleType(QualType T) {
// If our type is instantiation-dependent but not dependent, we mangle
// it as it was written in the source, removing any top-level sugar.
// Otherwise, use the canonical type.
//
// FIXME: This is an approximation of the instantiation-dependent name
// mangling rules, since we should really be using the type as written and
// augmented via semantic analysis (i.e., with implicit conversions and
// default template arguments) for any instantiation-dependent type.
// Unfortunately, that requires several changes to our AST:
// - Instantiation-dependent TemplateSpecializationTypes will need to be
// uniqued, so that we can handle substitutions properly
// - Default template arguments will need to be represented in the
// TemplateSpecializationType, since they need to be mangled even though
// they aren't written.
// - Conversions on non-type template arguments need to be expressed, since
// they can affect the mangling of sizeof/alignof.
if (!T->isInstantiationDependentType() || T->isDependentType())
T = T.getCanonicalType();
else {
// Desugar any types that are purely sugar.
do {
// Don't desugar through template specialization types that aren't
// type aliases. We need to mangle the template arguments as written.
if (const TemplateSpecializationType *TST
= dyn_cast<TemplateSpecializationType>(T))
if (!TST->isTypeAlias())
break;
QualType Desugared
= T.getSingleStepDesugaredType(Context.getASTContext());
if (Desugared == T)
break;
T = Desugared;
} while (true);
}
SplitQualType split = T.split();
Qualifiers quals = split.Quals;
const Type *ty = split.Ty;
bool isSubstitutable = isTypeSubstitutable(quals, ty);
if (isSubstitutable && mangleSubstitution(T))
return;
// If we're mangling a qualified array type, push the qualifiers to
// the element type.
if (quals && isa<ArrayType>(T)) {
ty = Context.getASTContext().getAsArrayType(T);
quals = Qualifiers();
// Note that we don't update T: we want to add the
// substitution at the original type.
}
if (quals) {
mangleQualifiers(quals);
// Recurse: even if the qualified type isn't yet substitutable,
// the unqualified type might be.
mangleType(QualType(ty, 0));
} else {
switch (ty->getTypeClass()) {
#define ABSTRACT_TYPE(CLASS, PARENT)
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
case Type::CLASS: \
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
return;
#define TYPE(CLASS, PARENT) \
case Type::CLASS: \
mangleType(static_cast<const CLASS##Type*>(ty)); \
break;
#include "clang/AST/TypeNodes.def"
}
}
// Add the substitution.
if (isSubstitutable)
addSubstitution(T);
}
void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
if (!mangleStandardSubstitution(ND))
mangleName(ND);
}
void CXXNameMangler::mangleType(const BuiltinType *T) {
// <type> ::= <builtin-type>
// <builtin-type> ::= v # void
// ::= w # wchar_t
// ::= b # bool
// ::= c # char
// ::= a # signed char
// ::= h # unsigned char
// ::= s # short
// ::= t # unsigned short
// ::= i # int
// ::= j # unsigned int
// ::= l # long
// ::= m # unsigned long
// ::= x # long long, __int64
// ::= y # unsigned long long, __int64
// ::= n # __int128
// ::= o # unsigned __int128
// ::= f # float
// ::= d # double
// ::= e # long double, __float80
// UNSUPPORTED: ::= g # __float128
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
// ::= Dh # IEEE 754r half-precision floating point (16 bits)
// ::= Di # char32_t
// ::= Ds # char16_t
// ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
// ::= u <source-name> # vendor extended type
switch (T->getKind()) {
case BuiltinType::Void: Out << 'v'; break;
case BuiltinType::Bool: Out << 'b'; break;
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
case BuiltinType::UChar: Out << 'h'; break;
case BuiltinType::UShort: Out << 't'; break;
case BuiltinType::UInt: Out << 'j'; break;
case BuiltinType::ULong: Out << 'm'; break;
case BuiltinType::ULongLong: Out << 'y'; break;
case BuiltinType::UInt128: Out << 'o'; break;
case BuiltinType::SChar: Out << 'a'; break;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U: Out << 'w'; break;
case BuiltinType::Char16: Out << "Ds"; break;
case BuiltinType::Char32: Out << "Di"; break;
case BuiltinType::Short: Out << 's'; break;
case BuiltinType::Int: Out << 'i'; break;
case BuiltinType::Long: Out << 'l'; break;
case BuiltinType::LongLong: Out << 'x'; break;
case BuiltinType::Int128: Out << 'n'; break;
case BuiltinType::Half: Out << "Dh"; break;
case BuiltinType::Float: Out << 'f'; break;
case BuiltinType::Double: Out << 'd'; break;
case BuiltinType::LongDouble: Out << 'e'; break;
case BuiltinType::NullPtr: Out << "Dn"; break;
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
llvm_unreachable("mangling a placeholder type");
case BuiltinType::ObjCId: Out << "11objc_object"; break;
case BuiltinType::ObjCClass: Out << "10objc_class"; break;
case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
}
}
// <type> ::= <function-type>
// <function-type> ::= [<CV-qualifiers>] F [Y]
// <bare-function-type> [<ref-qualifier>] E
void CXXNameMangler::mangleType(const FunctionProtoType *T) {
// Mangle CV-qualifiers, if present. These are 'this' qualifiers,
// e.g. "const" in "int (A::*)() const".
mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
Out << 'F';
// FIXME: We don't have enough information in the AST to produce the 'Y'
// encoding for extern "C" function types.
mangleBareFunctionType(T, /*MangleReturnType=*/true);
// Mangle the ref-qualifier, if present.
mangleRefQualifier(T->getRefQualifier());
Out << 'E';
}
void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
llvm_unreachable("Can't mangle K&R function prototypes");
}
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType) {
// We should never be mangling something without a prototype.
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
// Record that we're in a function type. See mangleFunctionParam
// for details on what we're trying to achieve here.
FunctionTypeDepthState saved = FunctionTypeDepth.push();
// <bare-function-type> ::= <signature type>+
if (MangleReturnType) {
FunctionTypeDepth.enterResultType();
mangleType(Proto->getReturnType());
FunctionTypeDepth.leaveResultType();
}
if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
// <builtin-type> ::= v # void
Out << 'v';
FunctionTypeDepth.pop(saved);
return;
}
for (const auto &Arg : Proto->param_types())
mangleType(Context.getASTContext().getSignatureParameterType(Arg));
FunctionTypeDepth.pop(saved);
// <builtin-type> ::= z # ellipsis
if (Proto->isVariadic())
Out << 'z';
}
// <type> ::= <class-enum-type>
// <class-enum-type> ::= <name>
void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
mangleName(T->getDecl());
}
// <type> ::= <class-enum-type>
// <class-enum-type> ::= <name>
void CXXNameMangler::mangleType(const EnumType *T) {
mangleType(static_cast<const TagType*>(T));
}
void CXXNameMangler::mangleType(const RecordType *T) {
mangleType(static_cast<const TagType*>(T));
}
void CXXNameMangler::mangleType(const TagType *T) {
mangleName(T->getDecl());
}
// <type> ::= <array-type>
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
void CXXNameMangler::mangleType(const ConstantArrayType *T) {
Out << 'A' << T->getSize() << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const VariableArrayType *T) {
Out << 'A';
// decayed vla types (size 0) will just be skipped.
if (T->getSizeExpr())
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
Out << 'A';
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
Out << "A_";
mangleType(T->getElementType());
}
// <type> ::= <pointer-to-member-type>
// <pointer-to-member-type> ::= M <class type> <member type>
void CXXNameMangler::mangleType(const MemberPointerType *T) {
Out << 'M';
mangleType(QualType(T->getClass(), 0));
QualType PointeeType = T->getPointeeType();
if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
mangleType(FPT);
// Itanium C++ ABI 5.1.8:
//
// The type of a non-static member function is considered to be different,
// for the purposes of substitution, from the type of a namespace-scope or
// static member function whose type appears similar. The types of two
// non-static member functions are considered to be different, for the
// purposes of substitution, if the functions are members of different
// classes. In other words, for the purposes of substitution, the class of
// which the function is a member is considered part of the type of
// function.
// Given that we already substitute member function pointers as a
// whole, the net effect of this rule is just to unconditionally
// suppress substitution on the function type in a member pointer.
// We increment the SeqID here to emulate adding an entry to the
// substitution table.
++SeqID;
} else
mangleType(PointeeType);
}
// <type> ::= <template-param>
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
mangleTemplateParameter(T->getIndex());
}
// <type> ::= <template-param>
void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
// FIXME: not clear how to mangle this!
// template <class T...> class A {
// template <class U...> void foo(T(*)(U) x...);
// };
Out << "_SUBSTPACK_";
}
// <type> ::= P <type> # pointer-to
void CXXNameMangler::mangleType(const PointerType *T) {
Out << 'P';
mangleType(T->getPointeeType());
}
void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
Out << 'P';
mangleType(T->getPointeeType());
}
// <type> ::= R <type> # reference-to
void CXXNameMangler::mangleType(const LValueReferenceType *T) {
Out << 'R';
mangleType(T->getPointeeType());
}
// <type> ::= O <type> # rvalue reference-to (C++0x)
void CXXNameMangler::mangleType(const RValueReferenceType *T) {
Out << 'O';
mangleType(T->getPointeeType());
}
// <type> ::= C <type> # complex pair (C 2000)
void CXXNameMangler::mangleType(const ComplexType *T) {
Out << 'C';
mangleType(T->getElementType());
}
// ARM's ABI for Neon vector types specifies that they should be mangled as
// if they are structs (to match ARM's initial implementation). The
// vector type must be one of the special types predefined by ARM.
void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
QualType EltType = T->getElementType();
assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
const char *EltName = nullptr;
if (T->getVectorKind() == VectorType::NeonPolyVector) {
switch (cast<BuiltinType>(EltType)->getKind()) {
case BuiltinType::SChar:
case BuiltinType::UChar:
EltName = "poly8_t";
break;
case BuiltinType::Short:
case BuiltinType::UShort:
EltName = "poly16_t";
break;
case BuiltinType::ULongLong:
EltName = "poly64_t";
break;
default: llvm_unreachable("unexpected Neon polynomial vector element type");
}
} else {
switch (cast<BuiltinType>(EltType)->getKind()) {
case BuiltinType::SChar: EltName = "int8_t"; break;
case BuiltinType::UChar: EltName = "uint8_t"; break;
case BuiltinType::Short: EltName = "int16_t"; break;
case BuiltinType::UShort: EltName = "uint16_t"; break;
case BuiltinType::Int: EltName = "int32_t"; break;
case BuiltinType::UInt: EltName = "uint32_t"; break;
case BuiltinType::LongLong: EltName = "int64_t"; break;
case BuiltinType::ULongLong: EltName = "uint64_t"; break;
case BuiltinType::Double: EltName = "float64_t"; break;
case BuiltinType::Float: EltName = "float32_t"; break;
case BuiltinType::Half: EltName = "float16_t";break;
default:
llvm_unreachable("unexpected Neon vector element type");
}
}
const char *BaseName = nullptr;
unsigned BitSize = (T->getNumElements() *
getASTContext().getTypeSize(EltType));
if (BitSize == 64)
BaseName = "__simd64_";
else {
assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
BaseName = "__simd128_";
}
Out << strlen(BaseName) + strlen(EltName);
Out << BaseName << EltName;
}
static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
switch (EltType->getKind()) {
case BuiltinType::SChar:
return "Int8";
case BuiltinType::Short:
return "Int16";
case BuiltinType::Int:
return "Int32";
case BuiltinType::Long:
case BuiltinType::LongLong:
return "Int64";
case BuiltinType::UChar:
return "Uint8";
case BuiltinType::UShort:
return "Uint16";
case BuiltinType::UInt:
return "Uint32";
case BuiltinType::ULong:
case BuiltinType::ULongLong:
return "Uint64";
case BuiltinType::Half:
return "Float16";
case BuiltinType::Float:
return "Float32";
case BuiltinType::Double:
return "Float64";
default:
llvm_unreachable("Unexpected vector element base type");
}
}
// AArch64's ABI for Neon vector types specifies that they should be mangled as
// the equivalent internal name. The vector type must be one of the special
// types predefined by ARM.
void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
QualType EltType = T->getElementType();
assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
unsigned BitSize =
(T->getNumElements() * getASTContext().getTypeSize(EltType));
(void)BitSize; // Silence warning.
assert((BitSize == 64 || BitSize == 128) &&
"Neon vector type not 64 or 128 bits");
StringRef EltName;
if (T->getVectorKind() == VectorType::NeonPolyVector) {
switch (cast<BuiltinType>(EltType)->getKind()) {
case BuiltinType::UChar:
EltName = "Poly8";
break;
case BuiltinType::UShort:
EltName = "Poly16";
break;
case BuiltinType::ULong:
EltName = "Poly64";
break;
default:
llvm_unreachable("unexpected Neon polynomial vector element type");
}
} else
EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
std::string TypeName =
("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
Out << TypeName.length() << TypeName;
}
// GNU extension: vector types
// <type> ::= <vector-type>
// <vector-type> ::= Dv <positive dimension number> _
// <extended element type>
// ::= Dv [<dimension expression>] _ <element type>
// <extended element type> ::= <element type>
// ::= p # AltiVec vector pixel
// ::= b # Altivec vector bool
void CXXNameMangler::mangleType(const VectorType *T) {
if ((T->getVectorKind() == VectorType::NeonVector ||
T->getVectorKind() == VectorType::NeonPolyVector)) {
llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
llvm::Triple::ArchType Arch =
getASTContext().getTargetInfo().getTriple().getArch();
if ((Arch == llvm::Triple::aarch64 ||
Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
mangleAArch64NeonVectorType(T);
else
mangleNeonVectorType(T);
return;
}
Out << "Dv" << T->getNumElements() << '_';
if (T->getVectorKind() == VectorType::AltiVecPixel)
Out << 'p';
else if (T->getVectorKind() == VectorType::AltiVecBool)
Out << 'b';
else
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const ExtVectorType *T) {
mangleType(static_cast<const VectorType*>(T));
}
void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
Out << "Dv";
mangleExpression(T->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const PackExpansionType *T) {
// <type> ::= Dp <type> # pack expansion (C++0x)
Out << "Dp";
mangleType(T->getPattern());
}
void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
mangleSourceName(T->getDecl()->getIdentifier());
}
void CXXNameMangler::mangleType(const ObjCObjectType *T) {
if (!T->qual_empty()) {
// Mangle protocol qualifiers.
SmallString<64> QualStr;
llvm::raw_svector_ostream QualOS(QualStr);
QualOS << "objcproto";
for (const auto *I : T->quals()) {
StringRef name = I->getName();
QualOS << name.size() << name;
}
QualOS.flush();
Out << 'U' << QualStr.size() << QualStr;
}
mangleType(T->getBaseType());
}
void CXXNameMangler::mangleType(const BlockPointerType *T) {
Out << "U13block_pointer";
mangleType(T->getPointeeType());
}
void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
// Mangle injected class name types as if the user had written the
// specialization out fully. It may not actually be possible to see
// this mangling, though.
mangleType(T->getInjectedSpecializationType());
}
void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
mangleName(TD, T->getArgs(), T->getNumArgs());
} else {
if (mangleSubstitution(QualType(T, 0)))
return;
mangleTemplatePrefix(T->getTemplateName());
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(T->getArgs(), T->getNumArgs());
addSubstitution(QualType(T, 0));
}
}
void CXXNameMangler::mangleType(const DependentNameType *T) {
// Proposal by cxx-abi-dev, 2014-03-26
// <class-enum-type> ::= <name> # non-dependent or dependent type name or
// # dependent elaborated type specifier using
// # 'typename'
// ::= Ts <name> # dependent elaborated type specifier using
// # 'struct' or 'class'
// ::= Tu <name> # dependent elaborated type specifier using
// # 'union'
// ::= Te <name> # dependent elaborated type specifier using
// # 'enum'
switch (T->getKeyword()) {
case ETK_Typename:
break;
case ETK_Struct:
case ETK_Class:
case ETK_Interface:
Out << "Ts";
break;
case ETK_Union:
Out << "Tu";
break;
case ETK_Enum:
Out << "Te";
break;
default:
llvm_unreachable("unexpected keyword for dependent type name");
}
// Typename types are always nested
Out << 'N';
manglePrefix(T->getQualifier());
mangleSourceName(T->getIdentifier());
Out << 'E';
}
void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
// Dependently-scoped template types are nested if they have a prefix.
Out << 'N';
// TODO: avoid making this TemplateName.
TemplateName Prefix =
getASTContext().getDependentTemplateName(T->getQualifier(),
T->getIdentifier());
mangleTemplatePrefix(Prefix);
// FIXME: GCC does not appear to mangle the template arguments when
// the template in question is a dependent template name. Should we
// emulate that badness?
mangleTemplateArgs(T->getArgs(), T->getNumArgs());
Out << 'E';
}
void CXXNameMangler::mangleType(const TypeOfType *T) {
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
// "extension with parameters" mangling.
Out << "u6typeof";
}
void CXXNameMangler::mangleType(const TypeOfExprType *T) {
// FIXME: this is pretty unsatisfactory, but there isn't an obvious
// "extension with parameters" mangling.
Out << "u6typeof";
}
void CXXNameMangler::mangleType(const DecltypeType *T) {
Expr *E = T->getUnderlyingExpr();
// type ::= Dt <expression> E # decltype of an id-expression
// # or class member access
// ::= DT <expression> E # decltype of an expression
// This purports to be an exhaustive list of id-expressions and
// class member accesses. Note that we do not ignore parentheses;
// parentheses change the semantics of decltype for these
// expressions (and cause the mangler to use the other form).
if (isa<DeclRefExpr>(E) ||
isa<MemberExpr>(E) ||
isa<UnresolvedLookupExpr>(E) ||
isa<DependentScopeDeclRefExpr>(E) ||
isa<CXXDependentScopeMemberExpr>(E) ||
isa<UnresolvedMemberExpr>(E))
Out << "Dt";
else
Out << "DT";
mangleExpression(E);
Out << 'E';
}
void CXXNameMangler::mangleType(const UnaryTransformType *T) {
// If this is dependent, we need to record that. If not, we simply
// mangle it as the underlying type since they are equivalent.
if (T->isDependentType()) {
Out << 'U';
switch (T->getUTTKind()) {
case UnaryTransformType::EnumUnderlyingType:
Out << "3eut";
break;
}
}
mangleType(T->getUnderlyingType());
}
void CXXNameMangler::mangleType(const AutoType *T) {
QualType D = T->getDeducedType();
// <builtin-type> ::= Da # dependent auto
if (D.isNull())
Out << (T->isDecltypeAuto() ? "Dc" : "Da");
else
mangleType(D);
}
void CXXNameMangler::mangleType(const AtomicType *T) {
// <type> ::= U <source-name> <type> # vendor extended type qualifier
// (Until there's a standardized mangling...)
Out << "U7_Atomic";
mangleType(T->getValueType());
}
void CXXNameMangler::mangleIntegerLiteral(QualType T,
const llvm::APSInt &Value) {
// <expr-primary> ::= L <type> <value number> E # integer literal
Out << 'L';
mangleType(T);
if (T->isBooleanType()) {
// Boolean values are encoded as 0/1.
Out << (Value.getBoolValue() ? '1' : '0');
} else {
mangleNumber(Value);
}
Out << 'E';
}
void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
// Ignore member expressions involving anonymous unions.
while (const auto *RT = Base->getType()->getAs<RecordType>()) {
if (!RT->getDecl()->isAnonymousStructOrUnion())
break;
const auto *ME = dyn_cast<MemberExpr>(Base);
if (!ME)
break;
Base = ME->getBase();
IsArrow = ME->isArrow();
}
if (Base->isImplicitCXXThis()) {
// Note: GCC mangles member expressions to the implicit 'this' as
// *this., whereas we represent them as this->. The Itanium C++ ABI
// does not specify anything here, so we follow GCC.
Out << "dtdefpT";
} else {
Out << (IsArrow ? "pt" : "dt");
mangleExpression(Base);
}
}
/// Mangles a member expression.
void CXXNameMangler::mangleMemberExpr(const Expr *base,
bool isArrow,
NestedNameSpecifier *qualifier,
NamedDecl *firstQualifierLookup,
DeclarationName member,
unsigned arity) {
// <expression> ::= dt <expression> <unresolved-name>
// ::= pt <expression> <unresolved-name>
if (base)
mangleMemberExprBase(base, isArrow);
mangleUnresolvedName(qualifier, member, arity);
}
/// Look at the callee of the given call expression and determine if
/// it's a parenthesized id-expression which would have triggered ADL
/// otherwise.
static bool isParenthesizedADLCallee(const CallExpr *call) {
const Expr *callee = call->getCallee();
const Expr *fn = callee->IgnoreParens();
// Must be parenthesized. IgnoreParens() skips __extension__ nodes,
// too, but for those to appear in the callee, it would have to be
// parenthesized.
if (callee == fn) return false;
// Must be an unresolved lookup.
const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
if (!lookup) return false;
assert(!lookup->requiresADL());
// Must be an unqualified lookup.
if (lookup->getQualifier()) return false;
// Must not have found a class member. Note that if one is a class
// member, they're all class members.
if (lookup->getNumDecls() > 0 &&
(*lookup->decls_begin())->isCXXClassMember())
return false;
// Otherwise, ADL would have been triggered.
return true;
}
void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
Out << CastEncoding;
mangleType(ECE->getType());
mangleExpression(ECE->getSubExpr());
}
void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
if (auto *Syntactic = InitList->getSyntacticForm())
InitList = Syntactic;
for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
mangleExpression(InitList->getInit(i));
}
void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
// <expression> ::= <unary operator-name> <expression>
// ::= <binary operator-name> <expression> <expression>
// ::= <trinary operator-name> <expression> <expression> <expression>
// ::= cv <type> expression # conversion with one argument
// ::= cv <type> _ <expression>* E # conversion with a different number of arguments
// ::= dc <type> <expression> # dynamic_cast<type> (expression)
// ::= sc <type> <expression> # static_cast<type> (expression)
// ::= cc <type> <expression> # const_cast<type> (expression)
// ::= rc <type> <expression> # reinterpret_cast<type> (expression)
// ::= st <type> # sizeof (a type)
// ::= at <type> # alignof (a type)
// ::= <template-param>
// ::= <function-param>
// ::= sr <type> <unqualified-name> # dependent name
// ::= sr <type> <unqualified-name> <template-args> # dependent template-id
// ::= ds <expression> <expression> # expr.*expr
// ::= sZ <template-param> # size of a parameter pack
// ::= sZ <function-param> # size of a function parameter pack
// ::= <expr-primary>
// <expr-primary> ::= L <type> <value number> E # integer literal
// ::= L <type <value float> E # floating literal
// ::= L <mangled-name> E # external name
// ::= fpT # 'this' expression
QualType ImplicitlyConvertedToType;
recurse:
switch (E->getStmtClass()) {
case Expr::NoStmtClass:
#define ABSTRACT_STMT(Type)
#define EXPR(Type, Base)
#define STMT(Type, Base) \
case Expr::Type##Class:
#include "clang/AST/StmtNodes.inc"
// fallthrough
// These all can only appear in local or variable-initialization
// contexts and so should never appear in a mangling.
case Expr::AddrLabelExprClass:
case Expr::ImplicitValueInitExprClass:
case Expr::ParenListExprClass:
case Expr::LambdaExprClass:
case Expr::MSPropertyRefExprClass:
case Expr::TypoExprClass: // This should no longer exist in the AST by now.
llvm_unreachable("unexpected statement kind");
// FIXME: invent manglings for all these.
case Expr::BlockExprClass:
case Expr::ChooseExprClass:
case Expr::CompoundLiteralExprClass:
case Expr::DesignatedInitExprClass:
case Expr::ExtVectorElementExprClass:
case Expr::GenericSelectionExprClass:
case Expr::ObjCEncodeExprClass:
case Expr::ObjCIsaExprClass:
case Expr::ObjCIvarRefExprClass:
case Expr::ObjCMessageExprClass:
case Expr::ObjCPropertyRefExprClass:
case Expr::ObjCProtocolExprClass:
case Expr::ObjCSelectorExprClass:
case Expr::ObjCStringLiteralClass:
case Expr::ObjCBoxedExprClass:
case Expr::ObjCArrayLiteralClass:
case Expr::ObjCDictionaryLiteralClass:
case Expr::ObjCSubscriptRefExprClass:
case Expr::ObjCIndirectCopyRestoreExprClass:
case Expr::OffsetOfExprClass:
case Expr::PredefinedExprClass:
case Expr::ShuffleVectorExprClass:
case Expr::ConvertVectorExprClass:
case Expr::StmtExprClass:
case Expr::TypeTraitExprClass:
case Expr::ArrayTypeTraitExprClass:
case Expr::ExpressionTraitExprClass:
case Expr::VAArgExprClass:
case Expr::CUDAKernelCallExprClass:
case Expr::AsTypeExprClass:
case Expr::PseudoObjectExprClass:
case Expr::AtomicExprClass:
{
// As bad as this diagnostic is, it's better than crashing.
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot yet mangle expression type %0");
Diags.Report(E->getExprLoc(), DiagID)
<< E->getStmtClassName() << E->getSourceRange();
break;
}
case Expr::CXXUuidofExprClass: {
const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
if (UE->isTypeOperand()) {
QualType UuidT = UE->getTypeOperand(Context.getASTContext());
Out << "u8__uuidoft";
mangleType(UuidT);
} else {
Expr *UuidExp = UE->getExprOperand();
Out << "u8__uuidofz";
mangleExpression(UuidExp, Arity);
}
break;
}
// Even gcc-4.5 doesn't mangle this.
case Expr::BinaryConditionalOperatorClass: {
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID =
Diags.getCustomDiagID(DiagnosticsEngine::Error,
"?: operator with omitted middle operand cannot be mangled");
Diags.Report(E->getExprLoc(), DiagID)
<< E->getStmtClassName() << E->getSourceRange();
break;
}
// These are used for internal purposes and cannot be meaningfully mangled.
case Expr::OpaqueValueExprClass:
llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
case Expr::InitListExprClass: {
Out << "il";
mangleInitListElements(cast<InitListExpr>(E));
Out << "E";
break;
}
case Expr::CXXDefaultArgExprClass:
mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
break;
case Expr::CXXDefaultInitExprClass:
mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
break;
case Expr::CXXStdInitializerListExprClass:
mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
break;
case Expr::SubstNonTypeTemplateParmExprClass:
mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
Arity);
break;
case Expr::UserDefinedLiteralClass:
// We follow g++'s approach of mangling a UDL as a call to the literal
// operator.
case Expr::CXXMemberCallExprClass: // fallthrough
case Expr::CallExprClass: {
const CallExpr *CE = cast<CallExpr>(E);
// <expression> ::= cp <simple-id> <expression>* E
// We use this mangling only when the call would use ADL except
// for being parenthesized. Per discussion with David
// Vandervoorde, 2011.04.25.
if (isParenthesizedADLCallee(CE)) {
Out << "cp";
// The callee here is a parenthesized UnresolvedLookupExpr with
// no qualifier and should always get mangled as a <simple-id>
// anyway.
// <expression> ::= cl <expression>* E
} else {
Out << "cl";
}
unsigned CallArity = CE->getNumArgs();
for (const Expr *Arg : CE->arguments())
if (isa<PackExpansionExpr>(Arg))
CallArity = UnknownArity;
mangleExpression(CE->getCallee(), CallArity);
for (const Expr *Arg : CE->arguments())
mangleExpression(Arg);
Out << 'E';
break;
}
case Expr::CXXNewExprClass: {
const CXXNewExpr *New = cast<CXXNewExpr>(E);
if (New->isGlobalNew()) Out << "gs";
Out << (New->isArray() ? "na" : "nw");
for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
E = New->placement_arg_end(); I != E; ++I)
mangleExpression(*I);
Out << '_';
mangleType(New->getAllocatedType());
if (New->hasInitializer()) {
if (New->getInitializationStyle() == CXXNewExpr::ListInit)
Out << "il";
else
Out << "pi";
const Expr *Init = New->getInitializer();
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
// Directly inline the initializers.
for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
E = CCE->arg_end();
I != E; ++I)
mangleExpression(*I);
} else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
mangleExpression(PLE->getExpr(i));
} else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
isa<InitListExpr>(Init)) {
// Only take InitListExprs apart for list-initialization.
mangleInitListElements(cast<InitListExpr>(Init));
} else
mangleExpression(Init);
}
Out << 'E';
break;
}
case Expr::CXXPseudoDestructorExprClass: {
const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
if (const Expr *Base = PDE->getBase())
mangleMemberExprBase(Base, PDE->isArrow());
NestedNameSpecifier *Qualifier = PDE->getQualifier();
QualType ScopeType;
if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
if (Qualifier) {
mangleUnresolvedPrefix(Qualifier,
/*Recursive=*/true);
mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
Out << 'E';
} else {
Out << "sr";
if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
Out << 'E';
}
} else if (Qualifier) {
mangleUnresolvedPrefix(Qualifier);
}
// <base-unresolved-name> ::= dn <destructor-name>
Out << "dn";
QualType DestroyedType = PDE->getDestroyedType();
mangleUnresolvedTypeOrSimpleId(DestroyedType);
break;
}
case Expr::MemberExprClass: {
const MemberExpr *ME = cast<MemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), nullptr,
ME->getMemberDecl()->getDeclName(), Arity);
break;
}
case Expr::UnresolvedMemberExprClass: {
const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), nullptr, ME->getMemberName(),
Arity);
if (ME->hasExplicitTemplateArgs())
mangleTemplateArgs(ME->getExplicitTemplateArgs());
break;
}
case Expr::CXXDependentScopeMemberExprClass: {
const CXXDependentScopeMemberExpr *ME
= cast<CXXDependentScopeMemberExpr>(E);
mangleMemberExpr(ME->getBase(), ME->isArrow(),
ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
ME->getMember(), Arity);
if (ME->hasExplicitTemplateArgs())
mangleTemplateArgs(ME->getExplicitTemplateArgs());
break;
}
case Expr::UnresolvedLookupExprClass: {
const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
// All the <unresolved-name> productions end in a
// base-unresolved-name, where <template-args> are just tacked
// onto the end.
if (ULE->hasExplicitTemplateArgs())
mangleTemplateArgs(ULE->getExplicitTemplateArgs());
break;
}
case Expr::CXXUnresolvedConstructExprClass: {
const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
unsigned N = CE->arg_size();
Out << "cv";
mangleType(CE->getType());
if (N != 1) Out << '_';
for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
if (N != 1) Out << 'E';
break;
}
case Expr::CXXConstructExprClass: {
const auto *CE = cast<CXXConstructExpr>(E);
if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
assert(
CE->getNumArgs() >= 1 &&
(CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
"implicit CXXConstructExpr must have one argument");
return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
}
Out << "il";
for (auto *E : CE->arguments())
mangleExpression(E);
Out << "E";
break;
}
case Expr::CXXTemporaryObjectExprClass: {
const auto *CE = cast<CXXTemporaryObjectExpr>(E);
unsigned N = CE->getNumArgs();
bool List = CE->isListInitialization();
if (List)
Out << "tl";
else
Out << "cv";
mangleType(CE->getType());
if (!List && N != 1)
Out << '_';
if (CE->isStdInitListInitialization()) {
// We implicitly created a std::initializer_list<T> for the first argument
// of a constructor of type U in an expression of the form U{a, b, c}.
// Strip all the semantic gunk off the initializer list.
auto *SILE =
cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
mangleInitListElements(ILE);
} else {
for (auto *E : CE->arguments())
mangleExpression(E);
}
if (List || N != 1)
Out << 'E';
break;
}
case Expr::CXXScalarValueInitExprClass:
Out << "cv";
mangleType(E->getType());
Out << "_E";
break;
case Expr::CXXNoexceptExprClass:
Out << "nx";
mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
break;
case Expr::UnaryExprOrTypeTraitExprClass: {
const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
if (!SAE->isInstantiationDependent()) {
// Itanium C++ ABI:
// If the operand of a sizeof or alignof operator is not
// instantiation-dependent it is encoded as an integer literal
// reflecting the result of the operator.
//
// If the result of the operator is implicitly converted to a known
// integer type, that type is used for the literal; otherwise, the type
// of std::size_t or std::ptrdiff_t is used.
QualType T = (ImplicitlyConvertedToType.isNull() ||
!ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
: ImplicitlyConvertedToType;
llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
mangleIntegerLiteral(T, V);
break;
}
switch(SAE->getKind()) {
case UETT_SizeOf:
Out << 's';
break;
case UETT_AlignOf:
Out << 'a';
break;
case UETT_VecStep:
DiagnosticsEngine &Diags = Context.getDiags();
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"cannot yet mangle vec_step expression");
Diags.Report(DiagID);
return;
}
if (SAE->isArgumentType()) {
Out << 't';
mangleType(SAE->getArgumentType());
} else {
Out << 'z';
mangleExpression(SAE->getArgumentExpr());
}
break;
}
case Expr::CXXThrowExprClass: {
const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
// <expression> ::= tw <expression> # throw expression
// ::= tr # rethrow
if (TE->getSubExpr()) {
Out << "tw";
mangleExpression(TE->getSubExpr());
} else {
Out << "tr";
}
break;
}
case Expr::CXXTypeidExprClass: {
const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
// <expression> ::= ti <type> # typeid (type)
// ::= te <expression> # typeid (expression)
if (TIE->isTypeOperand()) {
Out << "ti";
mangleType(TIE->getTypeOperand(Context.getASTContext()));
} else {
Out << "te";
mangleExpression(TIE->getExprOperand());
}
break;
}
case Expr::CXXDeleteExprClass: {
const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
// <expression> ::= [gs] dl <expression> # [::] delete expr
// ::= [gs] da <expression> # [::] delete [] expr
if (DE->isGlobalDelete()) Out << "gs";
Out << (DE->isArrayForm() ? "da" : "dl");
mangleExpression(DE->getArgument());
break;
}
case Expr::UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(E);
mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
/*Arity=*/1);
mangleExpression(UO->getSubExpr());
break;
}
case Expr::ArraySubscriptExprClass: {
const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
// Array subscript is treated as a syntactically weird form of
// binary operator.
Out << "ix";
mangleExpression(AE->getLHS());
mangleExpression(AE->getRHS());
break;
}
case Expr::CompoundAssignOperatorClass: // fallthrough
case Expr::BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(E);
if (BO->getOpcode() == BO_PtrMemD)
Out << "ds";
else
mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
/*Arity=*/2);
mangleExpression(BO->getLHS());
mangleExpression(BO->getRHS());
break;
}
case Expr::ConditionalOperatorClass: {
const ConditionalOperator *CO = cast<ConditionalOperator>(E);
mangleOperatorName(OO_Conditional, /*Arity=*/3);
mangleExpression(CO->getCond());
mangleExpression(CO->getLHS(), Arity);
mangleExpression(CO->getRHS(), Arity);
break;
}
case Expr::ImplicitCastExprClass: {
ImplicitlyConvertedToType = E->getType();
E = cast<ImplicitCastExpr>(E)->getSubExpr();
goto recurse;
}
case Expr::ObjCBridgedCastExprClass: {
// Mangle ownership casts as a vendor extended operator __bridge,
// __bridge_transfer, or __bridge_retain.
StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
Out << "v1U" << Kind.size() << Kind;
}
// Fall through to mangle the cast itself.
case Expr::CStyleCastExprClass:
mangleCastExpression(E, "cv");
break;
case Expr::CXXFunctionalCastExprClass: {
auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
// FIXME: Add isImplicit to CXXConstructExpr.
if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
if (CCE->getParenOrBraceRange().isInvalid())
Sub = CCE->getArg(0)->IgnoreImplicit();
if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
Sub = StdInitList->getSubExpr()->IgnoreImplicit();
if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
Out << "tl";
mangleType(E->getType());
mangleInitListElements(IL);
Out << "E";
} else {
mangleCastExpression(E, "cv");
}
break;
}
case Expr::CXXStaticCastExprClass:
mangleCastExpression(E, "sc");
break;
case Expr::CXXDynamicCastExprClass:
mangleCastExpression(E, "dc");
break;
case Expr::CXXReinterpretCastExprClass:
mangleCastExpression(E, "rc");
break;
case Expr::CXXConstCastExprClass:
mangleCastExpression(E, "cc");
break;
case Expr::CXXOperatorCallExprClass: {
const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
unsigned NumArgs = CE->getNumArgs();
mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
// Mangle the arguments.
for (unsigned i = 0; i != NumArgs; ++i)
mangleExpression(CE->getArg(i));
break;
}
case Expr::ParenExprClass:
mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
break;
case Expr::DeclRefExprClass: {
const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
switch (D->getKind()) {
default:
// <expr-primary> ::= L <mangled-name> E # external name
Out << 'L';
mangle(D);
Out << 'E';
break;
case Decl::ParmVar:
mangleFunctionParam(cast<ParmVarDecl>(D));
break;
case Decl::EnumConstant: {
const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
mangleIntegerLiteral(ED->getType(), ED->getInitVal());
break;
}
case Decl::NonTypeTemplateParm: {
const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
mangleTemplateParameter(PD->getIndex());
break;
}
}
break;
}
case Expr::SubstNonTypeTemplateParmPackExprClass:
// FIXME: not clear how to mangle this!
// template <unsigned N...> class A {
// template <class U...> void foo(U (&x)[N]...);
// };
Out << "_SUBSTPACK_";
break;
case Expr::FunctionParmPackExprClass: {
// FIXME: not clear how to mangle this!
const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
Out << "v110_SUBSTPACK";
mangleFunctionParam(FPPE->getParameterPack());
break;
}
case Expr::DependentScopeDeclRefExprClass: {
const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), Arity);
// All the <unresolved-name> productions end in a
// base-unresolved-name, where <template-args> are just tacked
// onto the end.
if (DRE->hasExplicitTemplateArgs())
mangleTemplateArgs(DRE->getExplicitTemplateArgs());
break;
}
case Expr::CXXBindTemporaryExprClass:
mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
break;
case Expr::ExprWithCleanupsClass:
mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
break;
case Expr::FloatingLiteralClass: {
const FloatingLiteral *FL = cast<FloatingLiteral>(E);
Out << 'L';
mangleType(FL->getType());
mangleFloat(FL->getValue());
Out << 'E';
break;
}
case Expr::CharacterLiteralClass:
Out << 'L';
mangleType(E->getType());
Out << cast<CharacterLiteral>(E)->getValue();
Out << 'E';
break;
// FIXME. __objc_yes/__objc_no are mangled same as true/false
case Expr::ObjCBoolLiteralExprClass:
Out << "Lb";
Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
Out << 'E';
break;
case Expr::CXXBoolLiteralExprClass:
Out << "Lb";
Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
Out << 'E';
break;
case Expr::IntegerLiteralClass: {
llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
if (E->getType()->isSignedIntegerType())
Value.setIsSigned(true);
mangleIntegerLiteral(E->getType(), Value);
break;
}
case Expr::ImaginaryLiteralClass: {
const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
// Mangle as if a complex literal.
// Proposal from David Vandevoorde, 2010.06.30.
Out << 'L';
mangleType(E->getType());
if (const FloatingLiteral *Imag =
dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
// Mangle a floating-point zero of the appropriate type.
mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
Out << '_';
mangleFloat(Imag->getValue());
} else {
Out << "0_";
llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
if (IE->getSubExpr()->getType()->isSignedIntegerType())
Value.setIsSigned(true);
mangleNumber(Value);
}
Out << 'E';
break;
}
case Expr::StringLiteralClass: {
// Revised proposal from David Vandervoorde, 2010.07.15.
Out << 'L';
assert(isa<ConstantArrayType>(E->getType()));
mangleType(E->getType());
Out << 'E';
break;
}
case Expr::GNUNullExprClass:
// FIXME: should this really be mangled the same as nullptr?
// fallthrough
case Expr::CXXNullPtrLiteralExprClass: {
Out << "LDnE";
break;
}
case Expr::PackExpansionExprClass:
Out << "sp";
mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
break;
case Expr::SizeOfPackExprClass: {
Out << "sZ";
const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
mangleTemplateParameter(TTP->getIndex());
else if (const NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Pack))
mangleTemplateParameter(NTTP->getIndex());
else if (const TemplateTemplateParmDecl *TempTP
= dyn_cast<TemplateTemplateParmDecl>(Pack))
mangleTemplateParameter(TempTP->getIndex());
else
mangleFunctionParam(cast<ParmVarDecl>(Pack));
break;
}
case Expr::MaterializeTemporaryExprClass: {
mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
break;
}
case Expr::CXXFoldExprClass: {
auto *FE = cast<CXXFoldExpr>(E);
if (FE->isLeftFold())
Out << (FE->getInit() ? "fL" : "fl");
else
Out << (FE->getInit() ? "fR" : "fr");
if (FE->getOperator() == BO_PtrMemD)
Out << "ds";
else
mangleOperatorName(
BinaryOperator::getOverloadedOperator(FE->getOperator()),
/*Arity=*/2);
if (FE->getLHS())
mangleExpression(FE->getLHS());
if (FE->getRHS())
mangleExpression(FE->getRHS());
break;
}
case Expr::CXXThisExprClass:
Out << "fpT";
break;
}
}
/// Mangle an expression which refers to a parameter variable.
///
/// <expression> ::= <function-param>
/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
/// <function-param> ::= fp <top-level CV-qualifiers>
/// <parameter-2 non-negative number> _ # L == 0, I > 0
/// <function-param> ::= fL <L-1 non-negative number>
/// p <top-level CV-qualifiers> _ # L > 0, I == 0
/// <function-param> ::= fL <L-1 non-negative number>
/// p <top-level CV-qualifiers>
/// <I-1 non-negative number> _ # L > 0, I > 0
///
/// L is the nesting depth of the parameter, defined as 1 if the
/// parameter comes from the innermost function prototype scope
/// enclosing the current context, 2 if from the next enclosing
/// function prototype scope, and so on, with one special case: if
/// we've processed the full parameter clause for the innermost
/// function type, then L is one less. This definition conveniently
/// makes it irrelevant whether a function's result type was written
/// trailing or leading, but is otherwise overly complicated; the
/// numbering was first designed without considering references to
/// parameter in locations other than return types, and then the
/// mangling had to be generalized without changing the existing
/// manglings.
///
/// I is the zero-based index of the parameter within its parameter
/// declaration clause. Note that the original ABI document describes
/// this using 1-based ordinals.
void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
unsigned parmDepth = parm->getFunctionScopeDepth();
unsigned parmIndex = parm->getFunctionScopeIndex();
// Compute 'L'.
// parmDepth does not include the declaring function prototype.
// FunctionTypeDepth does account for that.
assert(parmDepth < FunctionTypeDepth.getDepth());
unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
if (FunctionTypeDepth.isInResultType())
nestingDepth--;
if (nestingDepth == 0) {
Out << "fp";
} else {
Out << "fL" << (nestingDepth - 1) << 'p';
}
// Top-level qualifiers. We don't have to worry about arrays here,
// because parameters declared as arrays should already have been
// transformed to have pointer type. FIXME: apparently these don't
// get mangled if used as an rvalue of a known non-class type?
assert(!parm->getType()->isArrayType()
&& "parameter's type is still an array type?");
mangleQualifiers(parm->getType().getQualifiers());
// Parameter index.
if (parmIndex != 0) {
Out << (parmIndex - 1);
}
Out << '_';
}
void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
//
// In addition, C5 is a comdat name with C1 and C2 in it.
switch (T) {
case Ctor_Complete:
Out << "C1";
break;
case Ctor_Base:
Out << "C2";
break;
case Ctor_Comdat:
Out << "C5";
break;
case Ctor_DefaultClosure:
case Ctor_CopyingClosure:
llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
}
}
void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
// <ctor-dtor-name> ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
//
// In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
switch (T) {
case Dtor_Deleting:
Out << "D0";
break;
case Dtor_Complete:
Out << "D1";
break;
case Dtor_Base:
Out << "D2";
break;
case Dtor_Comdat:
Out << "D5";
break;
}
}
void CXXNameMangler::mangleTemplateArgs(
const ASTTemplateArgumentListInfo &TemplateArgs) {
// <template-args> ::= I <template-arg>+ E
Out << 'I';
for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
Out << 'E';
}
void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
// <template-args> ::= I <template-arg>+ E
Out << 'I';
for (unsigned i = 0, e = AL.size(); i != e; ++i)
mangleTemplateArg(AL[i]);
Out << 'E';
}
void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
unsigned NumTemplateArgs) {
// <template-args> ::= I <template-arg>+ E
Out << 'I';
for (unsigned i = 0; i != NumTemplateArgs; ++i)
mangleTemplateArg(TemplateArgs[i]);
Out << 'E';
}
void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
// <template-arg> ::= <type> # type or template
// ::= X <expression> E # expression
// ::= <expr-primary> # simple expressions
// ::= J <template-arg>* E # argument pack
if (!A.isInstantiationDependent() || A.isDependent())
A = Context.getASTContext().getCanonicalTemplateArgument(A);
switch (A.getKind()) {
case TemplateArgument::Null:
llvm_unreachable("Cannot mangle NULL template argument");
case TemplateArgument::Type:
mangleType(A.getAsType());
break;
case TemplateArgument::Template:
// This is mangled as <type>.
mangleType(A.getAsTemplate());
break;
case TemplateArgument::TemplateExpansion:
// <type> ::= Dp <type> # pack expansion (C++0x)
Out << "Dp";
mangleType(A.getAsTemplateOrTemplatePattern());
break;
case TemplateArgument::Expression: {
// It's possible to end up with a DeclRefExpr here in certain
// dependent cases, in which case we should mangle as a
// declaration.
const Expr *E = A.getAsExpr()->IgnoreParens();
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
const ValueDecl *D = DRE->getDecl();
if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
Out << 'L';
mangle(D);
Out << 'E';
break;
}
}
Out << 'X';
mangleExpression(E);
Out << 'E';
break;
}
case TemplateArgument::Integral:
mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
break;
case TemplateArgument::Declaration: {
// <expr-primary> ::= L <mangled-name> E # external name
// Clang produces AST's where pointer-to-member-function expressions
// and pointer-to-function expressions are represented as a declaration not
// an expression. We compensate for it here to produce the correct mangling.
ValueDecl *D = A.getAsDecl();
bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
if (compensateMangling) {
Out << 'X';
mangleOperatorName(OO_Amp, 1);
}
Out << 'L';
// References to external entities use the mangled name; if the name would
// not normally be manged then mangle it as unqualified.
mangle(D);
Out << 'E';
if (compensateMangling)
Out << 'E';
break;
}
case TemplateArgument::NullPtr: {
// <expr-primary> ::= L <type> 0 E
Out << 'L';
mangleType(A.getNullPtrType());
Out << "0E";
break;
}
case TemplateArgument::Pack: {
// <template-arg> ::= J <template-arg>* E
Out << 'J';
for (const auto &P : A.pack_elements())
mangleTemplateArg(P);
Out << 'E';
}
}
}
void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
if (Index == 0)
Out << "T_";
else
Out << 'T' << (Index - 1) << '_';
}
void CXXNameMangler::mangleSeqID(unsigned SeqID) {
if (SeqID == 1)
Out << '0';
else if (SeqID > 1) {
SeqID--;
// <seq-id> is encoded in base-36, using digits and upper case letters.
char Buffer[7]; // log(2**32) / log(36) ~= 7
MutableArrayRef<char> BufferRef(Buffer);
MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
for (; SeqID != 0; SeqID /= 36) {
unsigned C = SeqID % 36;
*I++ = (C < 10 ? '0' + C : 'A' + C - 10);
}
Out.write(I.base(), I - BufferRef.rbegin());
}
Out << '_';
}
void CXXNameMangler::mangleExistingSubstitution(QualType type) {
bool result = mangleSubstitution(type);
assert(result && "no existing substitution for type");
(void) result;
}
void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
bool result = mangleSubstitution(tname);
assert(result && "no existing substitution for template name");
(void) result;
}
// <substitution> ::= S <seq-id> _
// ::= S_
bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
// Try one of the standard substitutions first.
if (mangleStandardSubstitution(ND))
return true;
ND = cast<NamedDecl>(ND->getCanonicalDecl());
return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
}
/// \brief Determine whether the given type has any qualifiers that are
/// relevant for substitutions.
static bool hasMangledSubstitutionQualifiers(QualType T) {
Qualifiers Qs = T.getQualifiers();
return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
}
bool CXXNameMangler::mangleSubstitution(QualType T) {
if (!hasMangledSubstitutionQualifiers(T)) {
if (const RecordType *RT = T->getAs<RecordType>())
return mangleSubstitution(RT->getDecl());
}
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
return mangleSubstitution(TypePtr);
}
bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return mangleSubstitution(TD);
Template = Context.getASTContext().getCanonicalTemplateName(Template);
return mangleSubstitution(
reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
}
bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
if (I == Substitutions.end())
return false;
unsigned SeqID = I->second;
Out << 'S';
mangleSeqID(SeqID);
return true;
}
static bool isCharType(QualType T) {
if (T.isNull())
return false;
return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
T->isSpecificBuiltinType(BuiltinType::Char_U);
}
/// isCharSpecialization - Returns whether a given type is a template
/// specialization of a given name with a single argument of type char.
static bool isCharSpecialization(QualType T, const char *Name) {
if (T.isNull())
return false;
const RecordType *RT = T->getAs<RecordType>();
if (!RT)
return false;
const ClassTemplateSpecializationDecl *SD =
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
if (!SD)
return false;
if (!isStdNamespace(getEffectiveDeclContext(SD)))
return false;
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 1)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
return SD->getIdentifier()->getName() == Name;
}
template <std::size_t StrLen>
static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
const char (&Str)[StrLen]) {
if (!SD->getIdentifier()->isStr(Str))
return false;
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 2)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
return false;
return true;
}
bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
// <substitution> ::= St # ::std::
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
if (isStd(NS)) {
Out << "St";
return true;
}
}
if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
if (!isStdNamespace(getEffectiveDeclContext(TD)))
return false;
// <substitution> ::= Sa # ::std::allocator
if (TD->getIdentifier()->isStr("allocator")) {
Out << "Sa";
return true;
}
// <<substitution> ::= Sb # ::std::basic_string
if (TD->getIdentifier()->isStr("basic_string")) {
Out << "Sb";
return true;
}
}
if (const ClassTemplateSpecializationDecl *SD =
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
if (!isStdNamespace(getEffectiveDeclContext(SD)))
return false;
// <substitution> ::= Ss # ::std::basic_string<char,
// ::std::char_traits<char>,
// ::std::allocator<char> >
if (SD->getIdentifier()->isStr("basic_string")) {
const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
if (TemplateArgs.size() != 3)
return false;
if (!isCharType(TemplateArgs[0].getAsType()))
return false;
if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
return false;
if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
return false;
Out << "Ss";
return true;
}
// <substitution> ::= Si # ::std::basic_istream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_istream")) {
Out << "Si";
return true;
}
// <substitution> ::= So # ::std::basic_ostream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_ostream")) {
Out << "So";
return true;
}
// <substitution> ::= Sd # ::std::basic_iostream<char,
// ::std::char_traits<char> >
if (isStreamCharSpecialization(SD, "basic_iostream")) {
Out << "Sd";
return true;
}
}
return false;
}
void CXXNameMangler::addSubstitution(QualType T) {
if (!hasMangledSubstitutionQualifiers(T)) {
if (const RecordType *RT = T->getAs<RecordType>()) {
addSubstitution(RT->getDecl());
return;
}
}
uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
addSubstitution(TypePtr);
}
void CXXNameMangler::addSubstitution(TemplateName Template) {
if (TemplateDecl *TD = Template.getAsTemplateDecl())
return addSubstitution(TD);
Template = Context.getASTContext().getCanonicalTemplateName(Template);
addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
}
void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
assert(!Substitutions.count(Ptr) && "Substitution already exists!");
Substitutions[Ptr] = SeqID++;
}
//
/// \brief Mangles the name of the declaration D and emits that name to the
/// given output stream.
///
/// If the declaration D requires a mangled name, this routine will emit that
/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
/// and this routine will return false. In this case, the caller should just
/// emit the identifier of the declaration (\c D->getIdentifier()) as its
/// name.
void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
raw_ostream &Out) {
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
"Invalid mangleName() call, argument is not a variable or function!");
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
"Invalid mangleName() call on 'structor decl!");
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
getASTContext().getSourceManager(),
"Mangling declaration");
CXXNameMangler Mangler(*this, Out, D);
Mangler.mangle(D);
}
void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
CXXCtorType Type,
raw_ostream &Out) {
CXXNameMangler Mangler(*this, Out, D, Type);
Mangler.mangle(D);
}
void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
CXXDtorType Type,
raw_ostream &Out) {
CXXNameMangler Mangler(*this, Out, D, Type);
Mangler.mangle(D);
}
void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
raw_ostream &Out) {
CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
Mangler.mangle(D);
}
void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
raw_ostream &Out) {
CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
Mangler.mangle(D);
}
void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
const ThunkInfo &Thunk,
raw_ostream &Out) {
// <special-name> ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
// <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
// # base is the nominal target function of thunk
// # first call-offset is 'this' adjustment
// # second call-offset is result adjustment
assert(!isa<CXXDestructorDecl>(MD) &&
"Use mangleCXXDtor for destructor decls!");
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZT";
if (!Thunk.Return.isEmpty())
Mangler.getStream() << 'c';
// Mangle the 'this' pointer adjustment.
Mangler.mangleCallOffset(Thunk.This.NonVirtual,
Thunk.This.Virtual.Itanium.VCallOffsetOffset);
// Mangle the return pointer adjustment if there is one.
if (!Thunk.Return.isEmpty())
Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
Mangler.mangleFunctionEncoding(MD);
}
void ItaniumMangleContextImpl::mangleCXXDtorThunk(
const CXXDestructorDecl *DD, CXXDtorType Type,
const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
// <special-name> ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
CXXNameMangler Mangler(*this, Out, DD, Type);
Mangler.getStream() << "_ZT";
// Mangle the 'this' pointer adjustment.
Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
Mangler.mangleFunctionEncoding(DD);
}
/// mangleGuardVariable - Returns the mangled name for a guard variable
/// for the passed in VarDecl.
void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
raw_ostream &Out) {
// <special-name> ::= GV <object name> # Guard variable for one-time
// # initialization
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZGV";
Mangler.mangleName(D);
}
void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
raw_ostream &Out) {
// These symbols are internal in the Itanium ABI, so the names don't matter.
// Clang has traditionally used this symbol and allowed LLVM to adjust it to
// avoid duplicate symbols.
Out << "__cxx_global_var_init";
}
void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
raw_ostream &Out) {
// Prefix the mangling of D with __dtor_.
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "__dtor_";
if (shouldMangleDeclName(D))
Mangler.mangle(D);
else
Mangler.getStream() << D->getName();
}
Initial support for Win64 SEH IR emission The lowering looks a lot like normal EH lowering, with the exception that the exceptions are caught by executing filter expression code instead of matching typeinfo globals. The filter expressions are outlined into functions which are used in landingpad clauses where typeinfo would normally go. Major aspects that still need work: - Non-call exceptions in __try bodies won't work yet. The plan is to outline the __try block in the frontend to keep things simple. - Filter expressions cannot use local variables until capturing is implemented. - __finally blocks will not run after exceptions. Fixing this requires work in the LLVM SEH preparation pass. The IR lowering looks like this: // C code: bool safe_div(int n, int d, int *r) { __try { *r = normal_div(n, d); } __except(_exception_code() == EXCEPTION_INT_DIVIDE_BY_ZERO) { return false; } return true; } ; LLVM IR: define i32 @filter(i8* %e, i8* %fp) { %ehptrs = bitcast i8* %e to i32** %ehrec = load i32** %ehptrs %code = load i32* %ehrec %matches = icmp eq i32 %code, i32 u0xC0000094 %matches.i32 = zext i1 %matches to i32 ret i32 %matches.i32 } define i1 zeroext @safe_div(i32 %n, i32 %d, i32* %r) { %rr = invoke i32 @normal_div(i32 %n, i32 %d) to label %normal unwind to label %lpad normal: store i32 %rr, i32* %r ret i1 1 lpad: %ehvals = landingpad {i8*, i32} personality i32 (...)* @__C_specific_handler catch i8* bitcast (i32 (i8*, i8*)* @filter to i8*) %ehptr = extractvalue {i8*, i32} %ehvals, i32 0 %sel = extractvalue {i8*, i32} %ehvals, i32 1 %filter_sel = call i32 @llvm.eh.seh.typeid.for(i8* bitcast (i32 (i8*, i8*)* @filter to i8*)) %matches = icmp eq i32 %sel, %filter_sel br i1 %matches, label %eh.except, label %eh.resume eh.except: ret i1 false eh.resume: resume } Reviewers: rjmccall, rsmith, majnemer Differential Revision: http://reviews.llvm.org/D5607 llvm-svn: 226760
2015-01-22 09:36:17 +08:00
void ItaniumMangleContextImpl::mangleSEHFilterExpression(
const NamedDecl *EnclosingDecl, raw_ostream &Out) {
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "__filt_";
if (shouldMangleDeclName(EnclosingDecl))
Mangler.mangle(EnclosingDecl);
else
Mangler.getStream() << EnclosingDecl->getName();
}
void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
raw_ostream &Out) {
// <special-name> ::= TH <object name>
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTH";
Mangler.mangleName(D);
}
void
ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
raw_ostream &Out) {
// <special-name> ::= TW <object name>
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTW";
Mangler.mangleName(D);
}
void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
unsigned ManglingNumber,
raw_ostream &Out) {
// We match the GCC mangling here.
// <special-name> ::= GR <object name>
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZGR";
Mangler.mangleName(D);
assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
Mangler.mangleSeqID(ManglingNumber - 1);
}
void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
raw_ostream &Out) {
// <special-name> ::= TV <type> # virtual table
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTV";
Mangler.mangleNameOrStandardSubstitution(RD);
}
void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
raw_ostream &Out) {
// <special-name> ::= TT <type> # VTT structure
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTT";
Mangler.mangleNameOrStandardSubstitution(RD);
}
void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
int64_t Offset,
const CXXRecordDecl *Type,
raw_ostream &Out) {
// <special-name> ::= TC <type> <offset number> _ <base type>
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTC";
Mangler.mangleNameOrStandardSubstitution(RD);
Mangler.getStream() << Offset;
Mangler.getStream() << '_';
Mangler.mangleNameOrStandardSubstitution(Type);
}
void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
// <special-name> ::= TI <type> # typeinfo structure
assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTI";
Mangler.mangleType(Ty);
}
void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
raw_ostream &Out) {
// <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
CXXNameMangler Mangler(*this, Out);
Mangler.getStream() << "_ZTS";
Mangler.mangleType(Ty);
}
void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
mangleCXXRTTIName(Ty, Out);
}
void ItaniumMangleContextImpl::mangleCXXVTableBitSet(const CXXRecordDecl *RD,
raw_ostream &Out) {
Linkage L = RD->getLinkageInternal();
if (L == InternalLinkage || L == UniqueExternalLinkage) {
// This part of the identifier needs to be unique across all translation
// units in the linked program. The scheme fails if multiple translation
// units are compiled using the same relative source file path, or if
// multiple translation units are built from the same source file.
SourceManager &SM = getASTContext().getSourceManager();
Out << "[" << SM.getFileEntryForID(SM.getMainFileID())->getName() << "]";
}
CXXNameMangler Mangler(*this, Out);
Mangler.mangleType(QualType(RD->getTypeForDecl(), 0));
}
void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
llvm_unreachable("Can't mangle string literals");
}
ItaniumMangleContext *
ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
return new ItaniumMangleContextImpl(Context, Diags);
}