llvm-project/llvm/lib/DebugInfo/CodeView/CMakeLists.txt

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

46 lines
1.1 KiB
CMake
Raw Normal View History

[cmake] Explicitly mark libraries defined in lib/ as "Component Libraries" Summary: Most libraries are defined in the lib/ directory but there are also a few libraries defined in tools/ e.g. libLLVM, libLTO. I'm defining "Component Libraries" as libraries defined in lib/ that may be included in libLLVM.so. Explicitly marking the libraries in lib/ as component libraries allows us to remove some fragile checks that attempt to differentiate between lib/ libraries and tools/ libraires: 1. In tools/llvm-shlib, because llvm_map_components_to_libnames(LIB_NAMES "all") returned a list of all libraries defined in the whole project, there was custom code needed to filter out libraries defined in tools/, none of which should be included in libLLVM.so. This code assumed that any library defined as static was from lib/ and everything else should be excluded. With this change, llvm_map_components_to_libnames(LIB_NAMES, "all") only returns libraries that have been added to the LLVM_COMPONENT_LIBS global cmake property, so this custom filtering logic can be removed. Doing this also fixes the build with BUILD_SHARED_LIBS=ON and LLVM_BUILD_LLVM_DYLIB=ON. 2. There was some code in llvm_add_library that assumed that libraries defined in lib/ would not have LLVM_LINK_COMPONENTS or ARG_LINK_COMPONENTS set. This is only true because libraries defined lib lib/ use LLVMBuild.txt and don't set these values. This code has been fixed now to check if the library has been explicitly marked as a component library, which should now make it easier to remove LLVMBuild at some point in the future. I have tested this patch on Windows, MacOS and Linux with release builds and the following combinations of CMake options: - "" (No options) - -DLLVM_BUILD_LLVM_DYLIB=ON - -DLLVM_LINK_LLVM_DYLIB=ON - -DBUILD_SHARED_LIBS=ON - -DBUILD_SHARED_LIBS=ON -DLLVM_BUILD_LLVM_DYLIB=ON - -DBUILD_SHARED_LIBS=ON -DLLVM_LINK_LLVM_DYLIB=ON Reviewers: beanz, smeenai, compnerd, phosek Reviewed By: beanz Subscribers: wuzish, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, mgorny, mehdi_amini, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, steven_wu, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, dang, Jim, lenary, s.egerton, pzheng, sameer.abuasal, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D70179
2019-11-14 13:39:58 +08:00
add_llvm_component_library(LLVMDebugInfoCodeView
AppendingTypeTableBuilder.cpp
CodeViewError.cpp
CodeViewRecordIO.cpp
[CodeView] Refactor / Rewrite TypeSerializer and TypeTableBuilder. The motivation behind this patch is that future directions require us to be able to compute the hash value of records independently of actually using them for de-duplication. The current structure of TypeSerializer / TypeTableBuilder being a single entry point that takes an unserialized type record, and then hashes and de-duplicates it is not flexible enough to allow this. At the same time, the existing TypeSerializer is already extremely complex for this very reason -- it tries to be too many things. In addition to serializing, hashing, and de-duplicating, ti also supports splitting up field list records and adding continuations. All of this functionality crammed into this one class makes it very complicated to work with and hard to maintain. To solve all of these problems, I've re-written everything from scratch and split the functionality into separate pieces that can easily be reused. The end result is that one class TypeSerializer is turned into 3 new classes SimpleTypeSerializer, ContinuationRecordBuilder, and TypeTableBuilder, each of which in isolation is simple and straightforward. A quick summary of these new classes and their responsibilities are: - SimpleTypeSerializer : Turns a non-FieldList leaf type into a series of bytes. Does not do any hashing. Every time you call it, it will re-serialize and return bytes again. The same instance can be re-used over and over to avoid re-allocations, and in exchange for this optimization the bytes returned by the serializer only live until the caller attempts to serialize a new record. - ContinuationRecordBuilder : Turns a FieldList-like record into a series of fragments. Does not do any hashing. Like SimpleTypeSerializer, returns references to privately owned bytes, so the storage is invalidated as soon as the caller tries to re-use the instance. Works equally well for LF_FIELDLIST as it does for LF_METHODLIST, solving a long-standing theoretical limitation of the previous implementation. - TypeTableBuilder : Accepts sequences of bytes that the user has already serialized, and inserts them by de-duplicating with a hash table. For the sake of convenience and efficiency, this class internally stores a SimpleTypeSerializer so that it can accept unserialized records. The same is not true of ContinuationRecordBuilder. The user is required to create their own instance of ContinuationRecordBuilder. Differential Revision: https://reviews.llvm.org/D40518 llvm-svn: 319198
2017-11-29 02:33:17 +08:00
ContinuationRecordBuilder.cpp
CVSymbolVisitor.cpp
CVTypeVisitor.cpp
DebugChecksumsSubsection.cpp
DebugCrossExSubsection.cpp
DebugCrossImpSubsection.cpp
DebugFrameDataSubsection.cpp
DebugInlineeLinesSubsection.cpp
DebugLinesSubsection.cpp
DebugStringTableSubsection.cpp
DebugSubsection.cpp
DebugSubsectionRecord.cpp
DebugSubsectionVisitor.cpp
DebugSymbolRVASubsection.cpp
DebugSymbolsSubsection.cpp
EnumTables.cpp
Formatters.cpp
GlobalTypeTableBuilder.cpp
LazyRandomTypeCollection.cpp
Line.cpp
MergingTypeTableBuilder.cpp
RecordName.cpp
RecordSerialization.cpp
[CodeView] Refactor / Rewrite TypeSerializer and TypeTableBuilder. The motivation behind this patch is that future directions require us to be able to compute the hash value of records independently of actually using them for de-duplication. The current structure of TypeSerializer / TypeTableBuilder being a single entry point that takes an unserialized type record, and then hashes and de-duplicates it is not flexible enough to allow this. At the same time, the existing TypeSerializer is already extremely complex for this very reason -- it tries to be too many things. In addition to serializing, hashing, and de-duplicating, ti also supports splitting up field list records and adding continuations. All of this functionality crammed into this one class makes it very complicated to work with and hard to maintain. To solve all of these problems, I've re-written everything from scratch and split the functionality into separate pieces that can easily be reused. The end result is that one class TypeSerializer is turned into 3 new classes SimpleTypeSerializer, ContinuationRecordBuilder, and TypeTableBuilder, each of which in isolation is simple and straightforward. A quick summary of these new classes and their responsibilities are: - SimpleTypeSerializer : Turns a non-FieldList leaf type into a series of bytes. Does not do any hashing. Every time you call it, it will re-serialize and return bytes again. The same instance can be re-used over and over to avoid re-allocations, and in exchange for this optimization the bytes returned by the serializer only live until the caller attempts to serialize a new record. - ContinuationRecordBuilder : Turns a FieldList-like record into a series of fragments. Does not do any hashing. Like SimpleTypeSerializer, returns references to privately owned bytes, so the storage is invalidated as soon as the caller tries to re-use the instance. Works equally well for LF_FIELDLIST as it does for LF_METHODLIST, solving a long-standing theoretical limitation of the previous implementation. - TypeTableBuilder : Accepts sequences of bytes that the user has already serialized, and inserts them by de-duplicating with a hash table. For the sake of convenience and efficiency, this class internally stores a SimpleTypeSerializer so that it can accept unserialized records. The same is not true of ContinuationRecordBuilder. The user is required to create their own instance of ContinuationRecordBuilder. Differential Revision: https://reviews.llvm.org/D40518 llvm-svn: 319198
2017-11-29 02:33:17 +08:00
SimpleTypeSerializer.cpp
StringsAndChecksums.cpp
SymbolDumper.cpp
SymbolRecordHelpers.cpp
SymbolRecordMapping.cpp
SymbolSerializer.cpp
[CodeView] Finish decoupling TypeDatabase from TypeDumper. Previously the type dumper itself was passed around to a lot of different places and manipulated in ways that were more appropriate on the type database. For example, the entire TypeDumper was passed into the symbol dumper, when all the symbol dumper wanted to do was lookup the name of a TypeIndex so it could print it. That's what the TypeDatabase is for -- mapping type indices to names. Another example is how if the user runs llvm-pdbdump with the option to dump symbols but not types, we still have to visit all types so that we can print minimal information about the type of a symbol, but just without dumping full symbol records. The way we did this before is by hacking it up so that we run everything through the type dumper with a null printer, so that the output goes to /dev/null. But really, we don't need to dump anything, all we want to do is build the type database. Since TypeDatabaseVisitor now exists independently of TypeDumper, we can do this. We just build a custom visitor callback pipeline that includes a database visitor but not a dumper. All the hackery around printers etc goes away. After this patch, we could probably even delete the entire CVTypeDumper class since really all it is at this point is a thin wrapper that hides the details of how to build a useful visitation pipeline. It's not a priority though, so CVTypeDumper remains for now. After this patch we will be able to easily plug in a different style of type dumper by only implementing the proper visitation methods to dump one-line output and then sticking it on the pipeline. Differential Revision: https://reviews.llvm.org/D28524 llvm-svn: 291724
2017-01-12 07:24:22 +08:00
TypeDumpVisitor.cpp
TypeIndex.cpp
2017-05-26 07:36:16 +08:00
TypeIndexDiscovery.cpp
TypeHashing.cpp
TypeRecordHelpers.cpp
TypeRecordMapping.cpp
TypeStreamMerger.cpp
TypeTableCollection.cpp
ADDITIONAL_HEADER_DIRS
${LLVM_MAIN_INCLUDE_DIR}/llvm/DebugInfo/CodeView
LLVM CodeView library Summary: This diff is the initial implementation of the LLVM CodeView library. There is much more work to be done, namely a CodeView dumper and tests. This patch should help others make progress on the LLVM->CodeView debug info emission while I continue with the implementation of the dumper and tests. This library implements support for emitting debug info in the CodeView format. This phase of the implementation only includes support for CodeView type records. Clients that need to emit type records will use a class derived from TypeTableBuilder. TypeTableBuilder provides member functions for writing each kind of type record; each of these functions eventually calls the writeRecord virtual function to emit the actual bits of the record. Derived classes override writeRecord to implement the folding of duplicate records and the actual emission to the appropriate destination. LLVMCodeView provides MemoryTypeTableBuilder, which creates the table in memory. In the future, other classes derived from TypeTableBuilder will write to other destinations, such as the type stream in a PDB. The rest of the types in LLVMCodeView define the actual CodeView type records and all of the supporting enums and other types used in the type records. The TypeIndex class is of particular interest, because it is used by clients as a handle to a type in the type table. The library provides a relatively low-level interface based on the actual on-disk format of CodeView. For example, type records refer to other type records by TypeIndex, rather than by an actual pointer to the referent record. This allows clients to emit type records one at a time, rather than having to keep the entire transitive closure of type records in memory until everything has been emitted. At some point, having a higher-level interface layered on top of this one may be useful for debuggers and other tools that want a more holistic view of the debug info. The lower-level interface should be sufficient for compilers and linkers to do the debug info manipulation that they need to do efficiently. Reviewers: rnk, majnemer Subscribers: silvas, rnk, jevinskie, llvm-commits Differential Revision: http://reviews.llvm.org/D14961 llvm-svn: 256385
2015-12-25 02:12:38 +08:00
)