llvm-project/llvm/test/CodeGen/X86/vector-shuffle-avx512.ll

935 lines
36 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-pc-linux-gnu -mcpu=skx | FileCheck %s --check-prefix=SKX64
; RUN: llc < %s -mtriple=x86_64-pc-linux-gnu -mcpu=knl | FileCheck %s --check-prefix=KNL64
; RUN: llc < %s -mtriple=i386-pc-linux-gnu -mcpu=skx | FileCheck %s --check-prefix=SKX32
; RUN: llc < %s -mtriple=i386-pc-linux-gnu -mcpu=knl | FileCheck %s --check-prefix=KNL32
;expand 128 -> 256 include <4 x float> <2 x double>
define <8 x float> @expand(<4 x float> %a) {
; SKX64-LABEL: expand:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX64-NEXT: movb $5, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vexpandps %ymm0, %ymm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand:
; KNL64: # %bb.0:
; KNL64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; KNL64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0],ymm1[1],ymm0[2],ymm1[3,4,5,6,7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX32-NEXT: movb $5, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vexpandps %ymm0, %ymm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand:
; KNL32: # %bb.0:
; KNL32-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; KNL32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0],ymm1[1],ymm0[2],ymm1[3,4,5,6,7]
; KNL32-NEXT: retl
%res = shufflevector <4 x float> %a, <4 x float> zeroinitializer, <8 x i32> <i32 0, i32 5, i32 1, i32 5, i32 5, i32 5, i32 5, i32 5>
ret <8 x float> %res
}
define <8 x float> @expand1(<4 x float> %a ) {
; SKX64-LABEL: expand1:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX64-NEXT: movb $-86, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vexpandps %ymm0, %ymm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand1:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; KNL64-NEXT: vmovaps {{.*#+}} ymm1 = <u,0,u,1,u,2,u,3>
; KNL64-NEXT: vpermps %ymm0, %ymm1, %ymm0
; KNL64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0],ymm0[1],ymm1[2],ymm0[3],ymm1[4],ymm0[5],ymm1[6],ymm0[7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand1:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX32-NEXT: movb $-86, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vexpandps %ymm0, %ymm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand1:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; KNL32-NEXT: vmovaps {{.*#+}} ymm1 = <u,0,u,1,u,2,u,3>
; KNL32-NEXT: vpermps %ymm0, %ymm1, %ymm0
; KNL32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0],ymm0[1],ymm1[2],ymm0[3],ymm1[4],ymm0[5],ymm1[6],ymm0[7]
; KNL32-NEXT: retl
%res = shufflevector <4 x float> zeroinitializer, <4 x float> %a, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7>
ret <8 x float> %res
}
;Expand 128 -> 256 test <2 x double> -> <4 x double>
define <4 x double> @expand2(<2 x double> %a) {
; SKX64-LABEL: expand2:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX64-NEXT: vperm2f128 {{.*#+}} ymm1 = zero,zero,ymm0[0,1]
; SKX64-NEXT: vmovaps %xmm0, %xmm0
; SKX64-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3],ymm0[4,5],ymm1[6,7]
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand2:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; KNL64-NEXT: vperm2f128 {{.*#+}} ymm1 = zero,zero,ymm0[0,1]
; KNL64-NEXT: vmovaps %xmm0, %xmm0
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3],ymm0[4,5],ymm1[6,7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand2:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX32-NEXT: vperm2f128 {{.*#+}} ymm1 = zero,zero,ymm0[0,1]
; SKX32-NEXT: vmovaps %xmm0, %xmm0
; SKX32-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3],ymm0[4,5],ymm1[6,7]
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand2:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; KNL32-NEXT: vperm2f128 {{.*#+}} ymm1 = zero,zero,ymm0[0,1]
; KNL32-NEXT: vmovaps %xmm0, %xmm0
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3],ymm0[4,5],ymm1[6,7]
; KNL32-NEXT: retl
%res = shufflevector <2 x double> %a, <2 x double> zeroinitializer, <4 x i32> <i32 0, i32 2, i32 2, i32 1>
ret <4 x double> %res
}
;expand 128 -> 256 include case <4 x i32> <8 x i32>
define <8 x i32> @expand3(<4 x i32> %a ) {
; SKX64-LABEL: expand3:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX64-NEXT: movb $-127, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpexpandd %ymm0, %ymm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand3:
; KNL64: # %bb.0:
; KNL64-NEXT: vbroadcastsd %xmm0, %ymm0
; KNL64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0],ymm1[1,2,3,4,5,6],ymm0[7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand3:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX32-NEXT: movb $-127, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpexpandd %ymm0, %ymm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand3:
; KNL32: # %bb.0:
; KNL32-NEXT: vbroadcastsd %xmm0, %ymm0
; KNL32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0],ymm1[1,2,3,4,5,6],ymm0[7]
; KNL32-NEXT: retl
%res = shufflevector <4 x i32> zeroinitializer, <4 x i32> %a, <8 x i32> <i32 4, i32 0, i32 0, i32 0, i32 0, i32 0, i32 0,i32 5>
ret <8 x i32> %res
}
;expand 128 -> 256 include case <2 x i64> <4 x i64>
define <4 x i64> @expand4(<2 x i64> %a ) {
; SKX64-LABEL: expand4:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX64-NEXT: movb $9, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpexpandq %ymm0, %ymm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand4:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; KNL64-NEXT: vperm2f128 {{.*#+}} ymm1 = zero,zero,ymm0[0,1]
; KNL64-NEXT: vmovaps %xmm0, %xmm0
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3],ymm0[4,5],ymm1[6,7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand4:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX32-NEXT: movb $9, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpexpandq %ymm0, %ymm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand4:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; KNL32-NEXT: vperm2f128 {{.*#+}} ymm1 = zero,zero,ymm0[0,1]
; KNL32-NEXT: vmovaps %xmm0, %xmm0
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3],ymm0[4,5],ymm1[6,7]
; KNL32-NEXT: retl
%res = shufflevector <2 x i64> zeroinitializer, <2 x i64> %a, <4 x i32> <i32 2, i32 0, i32 0, i32 3>
ret <4 x i64> %res
}
;Negative test for 128-> 256
define <8 x float> @expand5(<4 x float> %a ) {
; SKX64-LABEL: expand5:
; SKX64: # %bb.0:
; SKX64-NEXT: vbroadcastss %xmm0, %ymm0
; SKX64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; SKX64-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0],ymm0[1],ymm1[2],ymm0[3],ymm1[4],ymm0[5],ymm1[6],ymm0[7]
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand5:
; KNL64: # %bb.0:
; KNL64-NEXT: vbroadcastss %xmm0, %ymm0
; KNL64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0],ymm0[1],ymm1[2],ymm0[3],ymm1[4],ymm0[5],ymm1[6],ymm0[7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand5:
; SKX32: # %bb.0:
; SKX32-NEXT: vbroadcastss %xmm0, %ymm0
; SKX32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; SKX32-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0],ymm0[1],ymm1[2],ymm0[3],ymm1[4],ymm0[5],ymm1[6],ymm0[7]
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand5:
; KNL32: # %bb.0:
; KNL32-NEXT: vbroadcastss %xmm0, %ymm0
; KNL32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0],ymm0[1],ymm1[2],ymm0[3],ymm1[4],ymm0[5],ymm1[6],ymm0[7]
; KNL32-NEXT: retl
%res = shufflevector <4 x float> zeroinitializer, <4 x float> %a, <8 x i32> <i32 0, i32 4, i32 1, i32 4, i32 2, i32 4, i32 3, i32 4>
ret <8 x float> %res
}
;expand 256 -> 512 include <8 x float> <16 x float>
define <8 x float> @expand6(<4 x float> %a ) {
; SKX64-LABEL: expand6:
; SKX64: # %bb.0:
; SKX64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; SKX64-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand6:
; KNL64: # %bb.0:
; KNL64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL64-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand6:
; SKX32: # %bb.0:
; SKX32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; SKX32-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand6:
; KNL32: # %bb.0:
; KNL32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL32-NEXT: vinsertf128 $1, %xmm0, %ymm1, %ymm0
; KNL32-NEXT: retl
%res = shufflevector <4 x float> zeroinitializer, <4 x float> %a, <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <8 x float> %res
}
define <16 x float> @expand7(<8 x float> %a) {
; SKX64-LABEL: expand7:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX64-NEXT: movw $1285, %ax # imm = 0x505
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vexpandps %zmm0, %zmm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand7:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL64-NEXT: movw $1285, %ax # imm = 0x505
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vexpandps %zmm0, %zmm0 {%k1} {z}
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand7:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX32-NEXT: movw $1285, %ax # imm = 0x505
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vexpandps %zmm0, %zmm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand7:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL32-NEXT: movw $1285, %ax # imm = 0x505
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vexpandps %zmm0, %zmm0 {%k1} {z}
; KNL32-NEXT: retl
%res = shufflevector <8 x float> %a, <8 x float> zeroinitializer, <16 x i32> <i32 0, i32 8, i32 1, i32 8, i32 8, i32 8, i32 8, i32 8, i32 2, i32 8, i32 3, i32 8, i32 8, i32 8, i32 8, i32 8>
ret <16 x float> %res
}
define <16 x float> @expand8(<8 x float> %a ) {
; SKX64-LABEL: expand8:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vexpandps %zmm0, %zmm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand8:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vexpandps %zmm0, %zmm0 {%k1} {z}
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand8:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vexpandps %zmm0, %zmm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand8:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vexpandps %zmm0, %zmm0 {%k1} {z}
; KNL32-NEXT: retl
%res = shufflevector <8 x float> zeroinitializer, <8 x float> %a, <16 x i32> <i32 0, i32 8, i32 1, i32 9, i32 2, i32 10, i32 3, i32 11, i32 4, i32 12, i32 5, i32 13, i32 6, i32 14, i32 7, i32 15>
ret <16 x float> %res
}
;expand 256 -> 512 include <4 x double> <8 x double>
define <8 x double> @expand9(<4 x double> %a) {
; SKX64-LABEL: expand9:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX64-NEXT: movb $-127, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vexpandpd %zmm0, %zmm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand9:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL64-NEXT: movb $-127, %al
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vexpandpd %zmm0, %zmm0 {%k1} {z}
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand9:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX32-NEXT: movb $-127, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vexpandpd %zmm0, %zmm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand9:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL32-NEXT: movb $-127, %al
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vexpandpd %zmm0, %zmm0 {%k1} {z}
; KNL32-NEXT: retl
%res = shufflevector <4 x double> %a, <4 x double> zeroinitializer, <8 x i32> <i32 0, i32 4, i32 4, i32 4, i32 4, i32 4, i32 4, i32 1>
ret <8 x double> %res
}
define <16 x i32> @expand10(<8 x i32> %a ) {
; SKX64-LABEL: expand10:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpexpandd %zmm0, %zmm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand10:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vpexpandd %zmm0, %zmm0 {%k1} {z}
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand10:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpexpandd %zmm0, %zmm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand10:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vpexpandd %zmm0, %zmm0 {%k1} {z}
; KNL32-NEXT: retl
%res = shufflevector <8 x i32> zeroinitializer, <8 x i32> %a, <16 x i32> <i32 0, i32 8, i32 1, i32 9, i32 2, i32 10, i32 3, i32 11, i32 4, i32 12, i32 5, i32 13, i32 6, i32 14, i32 7, i32 15>
ret <16 x i32> %res
}
define <8 x i64> @expand11(<4 x i64> %a) {
; SKX64-LABEL: expand11:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX64-NEXT: movb $-127, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpexpandq %zmm0, %zmm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand11:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL64-NEXT: movb $-127, %al
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vpexpandq %zmm0, %zmm0 {%k1} {z}
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand11:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX32-NEXT: movb $-127, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpexpandq %zmm0, %zmm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand11:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL32-NEXT: movb $-127, %al
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vpexpandq %zmm0, %zmm0 {%k1} {z}
; KNL32-NEXT: retl
%res = shufflevector <4 x i64> %a, <4 x i64> zeroinitializer, <8 x i32> <i32 0, i32 4, i32 4, i32 4, i32 4, i32 4, i32 4, i32 1>
ret <8 x i64> %res
}
;Negative test for 256-> 512
define <16 x float> @expand12(<8 x float> %a) {
; SKX64-LABEL: expand12:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX64-NEXT: vmovaps {{.*#+}} zmm2 = [0,16,2,16,4,16,6,16,0,16,1,16,2,16,3,16]
; SKX64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; SKX64-NEXT: vpermt2ps %zmm0, %zmm2, %zmm1
; SKX64-NEXT: vmovaps %zmm1, %zmm0
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand12:
; KNL64: # %bb.0:
; KNL64-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL64-NEXT: vmovaps {{.*#+}} zmm2 = [0,16,2,16,4,16,6,16,0,16,1,16,2,16,3,16]
; KNL64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL64-NEXT: vpermt2ps %zmm0, %zmm2, %zmm1
; KNL64-NEXT: vmovaps %zmm1, %zmm0
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand12:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; SKX32-NEXT: vmovaps {{.*#+}} zmm2 = [0,16,2,16,4,16,6,16,0,16,1,16,2,16,3,16]
; SKX32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; SKX32-NEXT: vpermt2ps %zmm0, %zmm2, %zmm1
; SKX32-NEXT: vmovaps %zmm1, %zmm0
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand12:
; KNL32: # %bb.0:
; KNL32-NEXT: # kill: def $ymm0 killed $ymm0 def $zmm0
; KNL32-NEXT: vmovaps {{.*#+}} zmm2 = [0,16,2,16,4,16,6,16,0,16,1,16,2,16,3,16]
; KNL32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL32-NEXT: vpermt2ps %zmm0, %zmm2, %zmm1
; KNL32-NEXT: vmovaps %zmm1, %zmm0
; KNL32-NEXT: retl
%res = shufflevector <8 x float> zeroinitializer, <8 x float> %a, <16 x i32> <i32 0, i32 8, i32 1, i32 8, i32 2, i32 8, i32 3, i32 8,i32 0, i32 8, i32 1, i32 8, i32 2, i32 8, i32 3, i32 8>
ret <16 x float> %res
}
define <16 x float> @expand13(<8 x float> %a ) {
; SKX64-LABEL: expand13:
; SKX64: # %bb.0:
; SKX64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; SKX64-NEXT: vinsertf64x4 $1, %ymm0, %zmm1, %zmm0
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand13:
; KNL64: # %bb.0:
; KNL64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL64-NEXT: vinsertf64x4 $1, %ymm0, %zmm1, %zmm0
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand13:
; SKX32: # %bb.0:
; SKX32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; SKX32-NEXT: vinsertf64x4 $1, %ymm0, %zmm1, %zmm0
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand13:
; KNL32: # %bb.0:
; KNL32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL32-NEXT: vinsertf64x4 $1, %ymm0, %zmm1, %zmm0
; KNL32-NEXT: retl
%res = shufflevector <8 x float> zeroinitializer, <8 x float> %a, <16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
ret <16 x float> %res
}
; The function checks for a case where the vector is mixed values vector ,and the mask points on zero elements from this vector.
define <8 x float> @expand14(<4 x float> %a) {
; SKX64-LABEL: expand14:
; SKX64: # %bb.0:
; SKX64-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX64-NEXT: movb $20, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vexpandps %ymm0, %ymm0 {%k1} {z}
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand14:
; KNL64: # %bb.0:
; KNL64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; KNL64-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,0,1,3]
; KNL64-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0,1],ymm0[2],ymm1[3],ymm0[4],ymm1[5,6,7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand14:
; SKX32: # %bb.0:
; SKX32-NEXT: # kill: def $xmm0 killed $xmm0 def $ymm0
; SKX32-NEXT: movb $20, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vexpandps %ymm0, %ymm0 {%k1} {z}
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand14:
; KNL32: # %bb.0:
; KNL32-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; KNL32-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,0,1,3]
; KNL32-NEXT: vxorps %xmm1, %xmm1, %xmm1
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0,1],ymm0[2],ymm1[3],ymm0[4],ymm1[5,6,7]
; KNL32-NEXT: retl
%addV = fadd <4 x float> <float 0.0,float 1.0,float 2.0,float 0.0> , <float 0.0,float 1.0,float 2.0,float 0.0>
%res = shufflevector <4 x float> %addV, <4 x float> %a, <8 x i32> <i32 3, i32 3, i32 4, i32 0, i32 5, i32 0, i32 0, i32 0>
ret <8 x float> %res
}
;Negative test.
define <8 x float> @expand15(<4 x float> %a) {
; SKX64-LABEL: expand15:
; SKX64: # %bb.0:
; SKX64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; SKX64-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,0,1,3]
; SKX64-NEXT: vblendps {{.*#+}} ymm0 = mem[0,1],ymm0[2],mem[3],ymm0[4],mem[5,6,7]
; SKX64-NEXT: retq
;
; KNL64-LABEL: expand15:
; KNL64: # %bb.0:
; KNL64-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; KNL64-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,0,1,3]
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = mem[0,1],ymm0[2],mem[3],ymm0[4],mem[5,6,7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: expand15:
; SKX32: # %bb.0:
; SKX32-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; SKX32-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,0,1,3]
; SKX32-NEXT: vblendps {{.*#+}} ymm0 = mem[0,1],ymm0[2],mem[3],ymm0[4],mem[5,6,7]
; SKX32-NEXT: retl
;
; KNL32-LABEL: expand15:
; KNL32: # %bb.0:
; KNL32-NEXT: vpermilps {{.*#+}} xmm0 = xmm0[0,1,1,3]
; KNL32-NEXT: vpermpd {{.*#+}} ymm0 = ymm0[0,0,1,3]
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = mem[0,1],ymm0[2],mem[3],ymm0[4],mem[5,6,7]
; KNL32-NEXT: retl
%addV = fadd <4 x float> <float 0.0,float 1.0,float 2.0,float 0.0> , <float 0.0,float 1.0,float 2.0,float 0.0>
%res = shufflevector <4 x float> %addV, <4 x float> %a, <8 x i32> <i32 0, i32 1, i32 4, i32 0, i32 5, i32 0, i32 0, i32 0>
ret <8 x float> %res
}
; Shuffle to blend test
define <64 x i8> @test_mm512_mask_blend_epi8(<64 x i8> %A, <64 x i8> %W){
; SKX64-LABEL: test_mm512_mask_blend_epi8:
; SKX64: # %bb.0: # %entry
; SKX64-NEXT: movabsq $-6148914691236517206, %rax # imm = 0xAAAAAAAAAAAAAAAA
; SKX64-NEXT: kmovq %rax, %k1
; SKX64-NEXT: vpblendmb %zmm0, %zmm1, %zmm0 {%k1}
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_mm512_mask_blend_epi8:
; KNL64: # %bb.0: # %entry
; KNL64-NEXT: vpbroadcastw {{.*#+}} ymm4 = [255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255]
; KNL64-NEXT: vpblendvb %ymm4, %ymm2, %ymm0, %ymm0
; KNL64-NEXT: vpblendvb %ymm4, %ymm3, %ymm1, %ymm1
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_mm512_mask_blend_epi8:
; SKX32: # %bb.0: # %entry
; SKX32-NEXT: movl $-1431655766, %eax # imm = 0xAAAAAAAA
; SKX32-NEXT: kmovd %eax, %k0
; SKX32-NEXT: kunpckdq %k0, %k0, %k1
; SKX32-NEXT: vpblendmb %zmm0, %zmm1, %zmm0 {%k1}
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_mm512_mask_blend_epi8:
; KNL32: # %bb.0: # %entry
; KNL32-NEXT: pushl %ebp
; KNL32-NEXT: .cfi_def_cfa_offset 8
; KNL32-NEXT: .cfi_offset %ebp, -8
; KNL32-NEXT: movl %esp, %ebp
; KNL32-NEXT: .cfi_def_cfa_register %ebp
; KNL32-NEXT: andl $-32, %esp
; KNL32-NEXT: subl $32, %esp
; KNL32-NEXT: vpbroadcastw {{.*#+}} ymm3 = [255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255]
; KNL32-NEXT: vpblendvb %ymm3, %ymm2, %ymm0, %ymm0
; KNL32-NEXT: vpblendvb %ymm3, 8(%ebp), %ymm1, %ymm1
; KNL32-NEXT: movl %ebp, %esp
; KNL32-NEXT: popl %ebp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; KNL32-NEXT: .cfi_def_cfa %esp, 4
; KNL32-NEXT: retl
entry:
%0 = shufflevector <64 x i8> %A, <64 x i8> %W, <64 x i32> <i32 64, i32 1, i32 66, i32 3, i32 68, i32 5, i32 70, i32 7, i32 72, i32 9, i32 74, i32 11, i32 76, i32 13, i32 78, i32 15, i32 80, i32 17, i32 82, i32 19, i32 84, i32 21, i32 86, i32 23, i32 88, i32 25, i32 90, i32 27, i32 92, i32 29, i32 94, i32 31, i32 96, i32 33, i32 98, i32 35, i32 100, i32 37, i32 102, i32 39, i32 104, i32 41, i32 106, i32 43, i32 108, i32 45, i32 110, i32 47, i32 112, i32 49, i32 114, i32 51, i32 116, i32 53, i32 118, i32 55, i32 120, i32 57, i32 122, i32 59, i32 124, i32 61, i32 126, i32 63>
ret <64 x i8> %0
}
define <32 x i16> @test_mm512_mask_blend_epi16(<32 x i16> %A, <32 x i16> %W){
; SKX64-LABEL: test_mm512_mask_blend_epi16:
; SKX64: # %bb.0: # %entry
; SKX64-NEXT: movl $-1431655766, %eax # imm = 0xAAAAAAAA
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpblendmw %zmm0, %zmm1, %zmm0 {%k1}
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_mm512_mask_blend_epi16:
; KNL64: # %bb.0: # %entry
; KNL64-NEXT: vpblendw {{.*#+}} ymm0 = ymm2[0],ymm0[1],ymm2[2],ymm0[3],ymm2[4],ymm0[5],ymm2[6],ymm0[7],ymm2[8],ymm0[9],ymm2[10],ymm0[11],ymm2[12],ymm0[13],ymm2[14],ymm0[15]
; KNL64-NEXT: vpblendw {{.*#+}} ymm1 = ymm3[0],ymm1[1],ymm3[2],ymm1[3],ymm3[4],ymm1[5],ymm3[6],ymm1[7],ymm3[8],ymm1[9],ymm3[10],ymm1[11],ymm3[12],ymm1[13],ymm3[14],ymm1[15]
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_mm512_mask_blend_epi16:
; SKX32: # %bb.0: # %entry
; SKX32-NEXT: movl $-1431655766, %eax # imm = 0xAAAAAAAA
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpblendmw %zmm0, %zmm1, %zmm0 {%k1}
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_mm512_mask_blend_epi16:
; KNL32: # %bb.0: # %entry
; KNL32-NEXT: pushl %ebp
[X86] Correct dwarf unwind information in function epilogue CFI instructions that set appropriate cfa offset and cfa register are now inserted in emitEpilogue() in X86FrameLowering. Majority of the changes in this patch: 1. Ensure that CFI instructions do not affect code generation. 2. Enable maintaining correct information about cfa offset and cfa register in a function when basic blocks are reordered, merged, split, duplicated. These changes are target independent and described below. Changed CFI instructions so that they: 1. are duplicable 2. are not counted as instructions when tail duplicating or tail merging 3. can be compared as equal Add information to each MachineBasicBlock about cfa offset and cfa register that are valid at its entry and exit (incoming and outgoing CFI info). Add support for updating this information when basic blocks are merged, split, duplicated, created. Add a verification pass (CFIInfoVerifier) that checks that outgoing cfa offset and register of predecessor blocks match incoming values of their successors. Incoming and outgoing CFI information is used by a late pass (CFIInstrInserter) that corrects CFA calculation rule for a basic block if needed. That means that additional CFI instructions get inserted at basic block beginning to correct the rule for calculating CFA. Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D18046 llvm-svn: 306529
2017-06-28 18:21:17 +08:00
; KNL32-NEXT: .cfi_def_cfa_offset 8
; KNL32-NEXT: .cfi_offset %ebp, -8
; KNL32-NEXT: movl %esp, %ebp
; KNL32-NEXT: .cfi_def_cfa_register %ebp
; KNL32-NEXT: andl $-32, %esp
; KNL32-NEXT: subl $32, %esp
; KNL32-NEXT: vpblendw {{.*#+}} ymm0 = ymm2[0],ymm0[1],ymm2[2],ymm0[3],ymm2[4],ymm0[5],ymm2[6],ymm0[7],ymm2[8],ymm0[9],ymm2[10],ymm0[11],ymm2[12],ymm0[13],ymm2[14],ymm0[15]
; KNL32-NEXT: vpblendw {{.*#+}} ymm1 = mem[0],ymm1[1],mem[2],ymm1[3],mem[4],ymm1[5],mem[6],ymm1[7],mem[8],ymm1[9],mem[10],ymm1[11],mem[12],ymm1[13],mem[14],ymm1[15]
; KNL32-NEXT: movl %ebp, %esp
; KNL32-NEXT: popl %ebp
Correct dwarf unwind information in function epilogue This patch aims to provide correct dwarf unwind information in function epilogue for X86. It consists of two parts. The first part inserts CFI instructions that set appropriate cfa offset and cfa register in emitEpilogue() in X86FrameLowering. This part is X86 specific. The second part is platform independent and ensures that: * CFI instructions do not affect code generation (they are not counted as instructions when tail duplicating or tail merging) * Unwind information remains correct when a function is modified by different passes. This is done in a late pass by analyzing information about cfa offset and cfa register in BBs and inserting additional CFI directives where necessary. Added CFIInstrInserter pass: * analyzes each basic block to determine cfa offset and register are valid at its entry and exit * verifies that outgoing cfa offset and register of predecessor blocks match incoming values of their successors * inserts additional CFI directives at basic block beginning to correct the rule for calculating CFA Having CFI instructions in function epilogue can cause incorrect CFA calculation rule for some basic blocks. This can happen if, due to basic block reordering, or the existence of multiple epilogue blocks, some of the blocks have wrong cfa offset and register values set by the epilogue block above them. CFIInstrInserter is currently run only on X86, but can be used by any target that implements support for adding CFI instructions in epilogue. Patch by Violeta Vukobrat. Differential Revision: https://reviews.llvm.org/D42848 llvm-svn: 330706
2018-04-24 18:32:08 +08:00
; KNL32-NEXT: .cfi_def_cfa %esp, 4
; KNL32-NEXT: retl
entry:
%0 = shufflevector <32 x i16> %A, <32 x i16> %W, <32 x i32> <i32 32, i32 1, i32 34, i32 3, i32 36, i32 5, i32 38, i32 7, i32 40, i32 9, i32 42, i32 11, i32 44, i32 13, i32 46, i32 15, i32 48, i32 17, i32 50, i32 19, i32 52, i32 21, i32 54, i32 23, i32 56, i32 25, i32 58, i32 27, i32 60, i32 29, i32 62, i32 31>
ret <32 x i16> %0
}
define <16 x i32> @test_mm512_mask_blend_epi32(<16 x i32> %A, <16 x i32> %W){
; SKX64-LABEL: test_mm512_mask_blend_epi32:
; SKX64: # %bb.0: # %entry
; SKX64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpblendmd %zmm0, %zmm1, %zmm0 {%k1}
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_mm512_mask_blend_epi32:
; KNL64: # %bb.0: # %entry
; KNL64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vpblendmd %zmm0, %zmm1, %zmm0 {%k1}
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_mm512_mask_blend_epi32:
; SKX32: # %bb.0: # %entry
; SKX32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpblendmd %zmm0, %zmm1, %zmm0 {%k1}
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_mm512_mask_blend_epi32:
; KNL32: # %bb.0: # %entry
; KNL32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vpblendmd %zmm0, %zmm1, %zmm0 {%k1}
; KNL32-NEXT: retl
entry:
%0 = shufflevector <16 x i32> %A, <16 x i32> %W, <16 x i32> <i32 16, i32 1, i32 18, i32 3, i32 20, i32 5, i32 22, i32 7, i32 24, i32 9, i32 26, i32 11, i32 28, i32 13, i32 30, i32 15>
ret <16 x i32> %0
}
define <8 x i64> @test_mm512_mask_blend_epi64(<8 x i64> %A, <8 x i64> %W){
; SKX64-LABEL: test_mm512_mask_blend_epi64:
; SKX64: # %bb.0: # %entry
; SKX64-NEXT: movb $-86, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpblendmq %zmm0, %zmm1, %zmm0 {%k1}
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_mm512_mask_blend_epi64:
; KNL64: # %bb.0: # %entry
; KNL64-NEXT: movb $-86, %al
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vpblendmq %zmm0, %zmm1, %zmm0 {%k1}
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_mm512_mask_blend_epi64:
; SKX32: # %bb.0: # %entry
; SKX32-NEXT: movb $-86, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpblendmq %zmm0, %zmm1, %zmm0 {%k1}
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_mm512_mask_blend_epi64:
; KNL32: # %bb.0: # %entry
; KNL32-NEXT: movb $-86, %al
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vpblendmq %zmm0, %zmm1, %zmm0 {%k1}
; KNL32-NEXT: retl
entry:
%0 = shufflevector <8 x i64> %A, <8 x i64> %W, <8 x i32> <i32 8, i32 1, i32 10, i32 3, i32 12, i32 5, i32 14, i32 7>
ret <8 x i64> %0
}
define <16 x float> @test_mm512_mask_blend_ps(<16 x float> %A, <16 x float> %W){
; SKX64-LABEL: test_mm512_mask_blend_ps:
; SKX64: # %bb.0: # %entry
; SKX64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vblendmps %zmm0, %zmm1, %zmm0 {%k1}
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_mm512_mask_blend_ps:
; KNL64: # %bb.0: # %entry
; KNL64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vblendmps %zmm0, %zmm1, %zmm0 {%k1}
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_mm512_mask_blend_ps:
; SKX32: # %bb.0: # %entry
; SKX32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vblendmps %zmm0, %zmm1, %zmm0 {%k1}
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_mm512_mask_blend_ps:
; KNL32: # %bb.0: # %entry
; KNL32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vblendmps %zmm0, %zmm1, %zmm0 {%k1}
; KNL32-NEXT: retl
entry:
%0 = shufflevector <16 x float> %A, <16 x float> %W, <16 x i32> <i32 16, i32 1, i32 18, i32 3, i32 20, i32 5, i32 22, i32 7, i32 24, i32 9, i32 26, i32 11, i32 28, i32 13, i32 30, i32 15>
ret <16 x float> %0
}
define <8 x double> @test_mm512_mask_blend_pd(<8 x double> %A, <8 x double> %W){
; SKX64-LABEL: test_mm512_mask_blend_pd:
; SKX64: # %bb.0: # %entry
; SKX64-NEXT: movb $-88, %al
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vblendmpd %zmm0, %zmm1, %zmm0 {%k1}
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_mm512_mask_blend_pd:
; KNL64: # %bb.0: # %entry
; KNL64-NEXT: movb $-88, %al
; KNL64-NEXT: kmovw %eax, %k1
; KNL64-NEXT: vblendmpd %zmm0, %zmm1, %zmm0 {%k1}
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_mm512_mask_blend_pd:
; SKX32: # %bb.0: # %entry
; SKX32-NEXT: movb $-88, %al
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vblendmpd %zmm0, %zmm1, %zmm0 {%k1}
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_mm512_mask_blend_pd:
; KNL32: # %bb.0: # %entry
; KNL32-NEXT: movb $-88, %al
; KNL32-NEXT: kmovw %eax, %k1
; KNL32-NEXT: vblendmpd %zmm0, %zmm1, %zmm0 {%k1}
; KNL32-NEXT: retl
entry:
%0 = shufflevector <8 x double> %A, <8 x double> %W, <8 x i32> <i32 8, i32 9, i32 10, i32 3, i32 12, i32 5, i32 14, i32 7>
ret <8 x double> %0
}
define <32 x i8> @test_mm256_mask_blend_epi8(<32 x i8> %A, <32 x i8> %W){
; SKX64-LABEL: test_mm256_mask_blend_epi8:
; SKX64: # %bb.0: # %entry
; SKX64-NEXT: movl $-1431655766, %eax # imm = 0xAAAAAAAA
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpblendmb %ymm0, %ymm1, %ymm0 {%k1}
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_mm256_mask_blend_epi8:
; KNL64: # %bb.0: # %entry
; KNL64-NEXT: vmovdqa {{.*#+}} ymm2 = [255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0]
; KNL64-NEXT: vpblendvb %ymm2, %ymm1, %ymm0, %ymm0
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_mm256_mask_blend_epi8:
; SKX32: # %bb.0: # %entry
; SKX32-NEXT: movl $-1431655766, %eax # imm = 0xAAAAAAAA
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpblendmb %ymm0, %ymm1, %ymm0 {%k1}
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_mm256_mask_blend_epi8:
; KNL32: # %bb.0: # %entry
; KNL32-NEXT: vmovdqa {{.*#+}} ymm2 = [255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0]
; KNL32-NEXT: vpblendvb %ymm2, %ymm1, %ymm0, %ymm0
; KNL32-NEXT: retl
entry:
%0 = shufflevector <32 x i8> %A, <32 x i8> %W, <32 x i32> <i32 32, i32 1, i32 34, i32 3, i32 36, i32 5, i32 38, i32 7, i32 40, i32 9, i32 42, i32 11, i32 44, i32 13, i32 46, i32 15, i32 48, i32 17, i32 50, i32 19, i32 52, i32 21, i32 54, i32 23, i32 56, i32 25, i32 58, i32 27, i32 60, i32 29, i32 62, i32 31>
ret <32 x i8> %0
}
define <16 x i8> @test_mm_mask_blend_epi8(<16 x i8> %A, <16 x i8> %W){
; SKX64-LABEL: test_mm_mask_blend_epi8:
; SKX64: # %bb.0: # %entry
; SKX64-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX64-NEXT: kmovd %eax, %k1
; SKX64-NEXT: vpblendmb %xmm0, %xmm1, %xmm0 {%k1}
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_mm_mask_blend_epi8:
; KNL64: # %bb.0: # %entry
; KNL64-NEXT: vmovdqa {{.*#+}} xmm2 = [255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0]
; KNL64-NEXT: vpblendvb %xmm2, %xmm1, %xmm0, %xmm0
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_mm_mask_blend_epi8:
; SKX32: # %bb.0: # %entry
; SKX32-NEXT: movw $-21846, %ax # imm = 0xAAAA
; SKX32-NEXT: kmovd %eax, %k1
; SKX32-NEXT: vpblendmb %xmm0, %xmm1, %xmm0 {%k1}
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_mm_mask_blend_epi8:
; KNL32: # %bb.0: # %entry
; KNL32-NEXT: vmovdqa {{.*#+}} xmm2 = [255,0,255,0,255,0,255,0,255,0,255,0,255,0,255,0]
; KNL32-NEXT: vpblendvb %xmm2, %xmm1, %xmm0, %xmm0
; KNL32-NEXT: retl
entry:
%0 = shufflevector <16 x i8> %A, <16 x i8> %W, <16 x i32> <i32 16, i32 1, i32 18, i32 3, i32 20, i32 5, i32 22, i32 7, i32 24, i32 9, i32 26, i32 11, i32 28, i32 13, i32 30, i32 15>
ret <16 x i8> %0
}
; PR34370
define <8 x float> @test_masked_permps_v8f32(<8 x float>* %vp, <8 x float> %vec2) {
; SKX64-LABEL: test_masked_permps_v8f32:
; SKX64: # %bb.0:
; SKX64-NEXT: vmovaps (%rdi), %ymm2
; SKX64-NEXT: vmovaps {{.*#+}} ymm1 = [7,6,3,11,7,6,14,15]
; SKX64-NEXT: vpermi2ps %ymm0, %ymm2, %ymm1
; SKX64-NEXT: vmovaps %ymm1, %ymm0
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_masked_permps_v8f32:
; KNL64: # %bb.0:
; KNL64-NEXT: vpermilps {{.*#+}} ymm1 = mem[3,2,2,3,7,6,6,7]
; KNL64-NEXT: vpermpd {{.*#+}} ymm1 = ymm1[2,0,2,3]
; KNL64-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0,1,2],ymm0[3],ymm1[4,5],ymm0[6,7]
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_masked_permps_v8f32:
; SKX32: # %bb.0:
; SKX32-NEXT: movl {{[0-9]+}}(%esp), %eax
; SKX32-NEXT: vmovaps (%eax), %ymm2
; SKX32-NEXT: vmovaps {{.*#+}} ymm1 = [7,6,3,11,7,6,14,15]
; SKX32-NEXT: vpermi2ps %ymm0, %ymm2, %ymm1
; SKX32-NEXT: vmovaps %ymm1, %ymm0
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_masked_permps_v8f32:
; KNL32: # %bb.0:
; KNL32-NEXT: movl {{[0-9]+}}(%esp), %eax
; KNL32-NEXT: vpermilps {{.*#+}} ymm1 = mem[3,2,2,3,7,6,6,7]
; KNL32-NEXT: vpermpd {{.*#+}} ymm1 = ymm1[2,0,2,3]
; KNL32-NEXT: vblendps {{.*#+}} ymm0 = ymm1[0,1,2],ymm0[3],ymm1[4,5],ymm0[6,7]
; KNL32-NEXT: retl
%vec = load <8 x float>, <8 x float>* %vp
%shuf = shufflevector <8 x float> %vec, <8 x float> undef, <8 x i32> <i32 7, i32 6, i32 3, i32 0, i32 7, i32 6, i32 3, i32 0>
%res = select <8 x i1> <i1 1, i1 1, i1 1, i1 0, i1 1, i1 1, i1 0, i1 0>, <8 x float> %shuf, <8 x float> %vec2
ret <8 x float> %res
}
define <16 x float> @test_masked_permps_v16f32(<16 x float>* %vp, <16 x float> %vec2) {
; SKX64-LABEL: test_masked_permps_v16f32:
; SKX64: # %bb.0:
; SKX64-NEXT: vmovaps (%rdi), %zmm2
; SKX64-NEXT: vmovaps {{.*#+}} zmm1 = [15,13,11,19,14,12,22,23,7,6,3,27,7,29,3,31]
; SKX64-NEXT: vpermi2ps %zmm0, %zmm2, %zmm1
; SKX64-NEXT: vmovaps %zmm1, %zmm0
; SKX64-NEXT: retq
;
; KNL64-LABEL: test_masked_permps_v16f32:
; KNL64: # %bb.0:
; KNL64-NEXT: vmovaps (%rdi), %zmm2
; KNL64-NEXT: vmovaps {{.*#+}} zmm1 = [15,13,11,19,14,12,22,23,7,6,3,27,7,29,3,31]
; KNL64-NEXT: vpermi2ps %zmm0, %zmm2, %zmm1
; KNL64-NEXT: vmovaps %zmm1, %zmm0
; KNL64-NEXT: retq
;
; SKX32-LABEL: test_masked_permps_v16f32:
; SKX32: # %bb.0:
; SKX32-NEXT: movl {{[0-9]+}}(%esp), %eax
; SKX32-NEXT: vmovaps (%eax), %zmm2
; SKX32-NEXT: vmovaps {{.*#+}} zmm1 = [15,13,11,19,14,12,22,23,7,6,3,27,7,29,3,31]
; SKX32-NEXT: vpermi2ps %zmm0, %zmm2, %zmm1
; SKX32-NEXT: vmovaps %zmm1, %zmm0
; SKX32-NEXT: retl
;
; KNL32-LABEL: test_masked_permps_v16f32:
; KNL32: # %bb.0:
; KNL32-NEXT: movl {{[0-9]+}}(%esp), %eax
; KNL32-NEXT: vmovaps (%eax), %zmm2
; KNL32-NEXT: vmovaps {{.*#+}} zmm1 = [15,13,11,19,14,12,22,23,7,6,3,27,7,29,3,31]
; KNL32-NEXT: vpermi2ps %zmm0, %zmm2, %zmm1
; KNL32-NEXT: vmovaps %zmm1, %zmm0
; KNL32-NEXT: retl
%vec = load <16 x float>, <16 x float>* %vp
%shuf = shufflevector <16 x float> %vec, <16 x float> undef, <16 x i32> <i32 15, i32 13, i32 11, i32 9, i32 14, i32 12, i32 10, i32 8, i32 7, i32 6, i32 3, i32 0, i32 7, i32 6, i32 3, i32 0>
%res = select <16 x i1> <i1 1, i1 1, i1 1, i1 0, i1 1, i1 1, i1 0, i1 0, i1 1, i1 1, i1 1, i1 0, i1 1, i1 0, i1 1, i1 0>, <16 x float> %shuf, <16 x float> %vec2
ret <16 x float> %res
}