llvm-project/lldb/scripts/interface/SBModule.i

548 lines
23 KiB
OpenEdge ABL
Raw Normal View History

//===-- SWIG Interface for SBModule -----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
namespace lldb {
%feature("docstring",
"Represents an executable image and its associated object and symbol files.
The module is designed to be able to select a single slice of an
executable image as it would appear on disk and during program
execution.
You can retrieve SBModule from SBSymbolContext, which in turn is available
from SBFrame.
SBModule supports symbol iteration, for example,
for symbol in module:
name = symbol.GetName()
saddr = symbol.GetStartAddress()
eaddr = symbol.GetEndAddress()
and rich comparison methods which allow the API program to use,
if thisModule == thatModule:
print('This module is the same as that module')
to test module equality. A module also contains object file sections, namely
Migrate the in_range(symbol, section) and symbol_iter(module, section) utility functions from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in the lldb module. And the symbol_iter() function becomes a method within the SBModule called symbol_in_section_iter(). Example: # Iterates the text section and prints each symbols within each sub-section. for subsec in text_sec: print INDENT + repr(subsec) for sym in exe_module.symbol_in_section_iter(subsec): print INDENT2 + repr(sym) print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType()) might produce this following output: [0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870) symbol type: code id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0) symbol type: code id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c) symbol type: code id = {0x00000023}, name = 'start', address = 0x0000000100001780 symbol type: code [0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62) symbol type: trampoline id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68) symbol type: trampoline id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e) symbol type: trampoline id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74) symbol type: trampoline id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a) symbol type: trampoline id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80) symbol type: trampoline id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86) symbol type: trampoline id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c) symbol type: trampoline id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92) symbol type: trampoline id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98) symbol type: trampoline id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e) symbol type: trampoline id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4) symbol type: trampoline [0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper [0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring [0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info [0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame llvm-svn: 140830
2011-09-30 08:42:49 +08:00
SBSection. SBModule supports section iteration through section_iter(), for
example,
print('Number of sections: %d' % module.GetNumSections())
Migrate the in_range(symbol, section) and symbol_iter(module, section) utility functions from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in the lldb module. And the symbol_iter() function becomes a method within the SBModule called symbol_in_section_iter(). Example: # Iterates the text section and prints each symbols within each sub-section. for subsec in text_sec: print INDENT + repr(subsec) for sym in exe_module.symbol_in_section_iter(subsec): print INDENT2 + repr(sym) print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType()) might produce this following output: [0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870) symbol type: code id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0) symbol type: code id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c) symbol type: code id = {0x00000023}, name = 'start', address = 0x0000000100001780 symbol type: code [0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62) symbol type: trampoline id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68) symbol type: trampoline id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e) symbol type: trampoline id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74) symbol type: trampoline id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a) symbol type: trampoline id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80) symbol type: trampoline id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86) symbol type: trampoline id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c) symbol type: trampoline id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92) symbol type: trampoline id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98) symbol type: trampoline id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e) symbol type: trampoline id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4) symbol type: trampoline [0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper [0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring [0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info [0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame llvm-svn: 140830
2011-09-30 08:42:49 +08:00
for sec in module.section_iter():
print(sec)
Migrate the in_range(symbol, section) and symbol_iter(module, section) utility functions from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in the lldb module. And the symbol_iter() function becomes a method within the SBModule called symbol_in_section_iter(). Example: # Iterates the text section and prints each symbols within each sub-section. for subsec in text_sec: print INDENT + repr(subsec) for sym in exe_module.symbol_in_section_iter(subsec): print INDENT2 + repr(sym) print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType()) might produce this following output: [0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870) symbol type: code id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0) symbol type: code id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c) symbol type: code id = {0x00000023}, name = 'start', address = 0x0000000100001780 symbol type: code [0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62) symbol type: trampoline id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68) symbol type: trampoline id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e) symbol type: trampoline id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74) symbol type: trampoline id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a) symbol type: trampoline id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80) symbol type: trampoline id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86) symbol type: trampoline id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c) symbol type: trampoline id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92) symbol type: trampoline id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98) symbol type: trampoline id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e) symbol type: trampoline id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4) symbol type: trampoline [0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper [0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring [0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info [0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame llvm-svn: 140830
2011-09-30 08:42:49 +08:00
And to iterate the symbols within a SBSection, use symbol_in_section_iter(),
# Iterates the text section and prints each symbols within each sub-section.
for subsec in text_sec:
print(INDENT + repr(subsec))
Migrate the in_range(symbol, section) and symbol_iter(module, section) utility functions from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in the lldb module. And the symbol_iter() function becomes a method within the SBModule called symbol_in_section_iter(). Example: # Iterates the text section and prints each symbols within each sub-section. for subsec in text_sec: print INDENT + repr(subsec) for sym in exe_module.symbol_in_section_iter(subsec): print INDENT2 + repr(sym) print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType()) might produce this following output: [0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870) symbol type: code id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0) symbol type: code id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c) symbol type: code id = {0x00000023}, name = 'start', address = 0x0000000100001780 symbol type: code [0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62) symbol type: trampoline id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68) symbol type: trampoline id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e) symbol type: trampoline id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74) symbol type: trampoline id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a) symbol type: trampoline id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80) symbol type: trampoline id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86) symbol type: trampoline id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c) symbol type: trampoline id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92) symbol type: trampoline id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98) symbol type: trampoline id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e) symbol type: trampoline id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4) symbol type: trampoline [0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper [0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring [0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info [0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame llvm-svn: 140830
2011-09-30 08:42:49 +08:00
for sym in exe_module.symbol_in_section_iter(subsec):
print(INDENT2 + repr(sym))
print(INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType()))
Migrate the in_range(symbol, section) and symbol_iter(module, section) utility functions from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in the lldb module. And the symbol_iter() function becomes a method within the SBModule called symbol_in_section_iter(). Example: # Iterates the text section and prints each symbols within each sub-section. for subsec in text_sec: print INDENT + repr(subsec) for sym in exe_module.symbol_in_section_iter(subsec): print INDENT2 + repr(sym) print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType()) might produce this following output: [0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870) symbol type: code id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0) symbol type: code id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c) symbol type: code id = {0x00000023}, name = 'start', address = 0x0000000100001780 symbol type: code [0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62) symbol type: trampoline id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68) symbol type: trampoline id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e) symbol type: trampoline id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74) symbol type: trampoline id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a) symbol type: trampoline id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80) symbol type: trampoline id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86) symbol type: trampoline id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c) symbol type: trampoline id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92) symbol type: trampoline id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98) symbol type: trampoline id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e) symbol type: trampoline id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4) symbol type: trampoline [0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper [0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring [0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info [0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame llvm-svn: 140830
2011-09-30 08:42:49 +08:00
produces this following output:
Migrate the in_range(symbol, section) and symbol_iter(module, section) utility functions from lldbutil.py to the lldb.py proper. The in_range() function becomes a function in the lldb module. And the symbol_iter() function becomes a method within the SBModule called symbol_in_section_iter(). Example: # Iterates the text section and prints each symbols within each sub-section. for subsec in text_sec: print INDENT + repr(subsec) for sym in exe_module.symbol_in_section_iter(subsec): print INDENT2 + repr(sym) print INDENT2 + 'symbol type: %s' % symbol_type_to_str(sym.GetType()) might produce this following output: [0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870) symbol type: code id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0) symbol type: code id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c) symbol type: code id = {0x00000023}, name = 'start', address = 0x0000000100001780 symbol type: code [0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62) symbol type: trampoline id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68) symbol type: trampoline id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e) symbol type: trampoline id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74) symbol type: trampoline id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a) symbol type: trampoline id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80) symbol type: trampoline id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86) symbol type: trampoline id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c) symbol type: trampoline id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92) symbol type: trampoline id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98) symbol type: trampoline id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e) symbol type: trampoline id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4) symbol type: trampoline [0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper [0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring [0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info [0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame llvm-svn: 140830
2011-09-30 08:42:49 +08:00
[0x0000000100001780-0x0000000100001d5c) a.out.__TEXT.__text
id = {0x00000004}, name = 'mask_access(MaskAction, unsigned int)', range = [0x00000001000017c0-0x0000000100001870)
symbol type: code
id = {0x00000008}, name = 'thread_func(void*)', range = [0x0000000100001870-0x00000001000019b0)
symbol type: code
id = {0x0000000c}, name = 'main', range = [0x00000001000019b0-0x0000000100001d5c)
symbol type: code
id = {0x00000023}, name = 'start', address = 0x0000000100001780
symbol type: code
[0x0000000100001d5c-0x0000000100001da4) a.out.__TEXT.__stubs
id = {0x00000024}, name = '__stack_chk_fail', range = [0x0000000100001d5c-0x0000000100001d62)
symbol type: trampoline
id = {0x00000028}, name = 'exit', range = [0x0000000100001d62-0x0000000100001d68)
symbol type: trampoline
id = {0x00000029}, name = 'fflush', range = [0x0000000100001d68-0x0000000100001d6e)
symbol type: trampoline
id = {0x0000002a}, name = 'fgets', range = [0x0000000100001d6e-0x0000000100001d74)
symbol type: trampoline
id = {0x0000002b}, name = 'printf', range = [0x0000000100001d74-0x0000000100001d7a)
symbol type: trampoline
id = {0x0000002c}, name = 'pthread_create', range = [0x0000000100001d7a-0x0000000100001d80)
symbol type: trampoline
id = {0x0000002d}, name = 'pthread_join', range = [0x0000000100001d80-0x0000000100001d86)
symbol type: trampoline
id = {0x0000002e}, name = 'pthread_mutex_lock', range = [0x0000000100001d86-0x0000000100001d8c)
symbol type: trampoline
id = {0x0000002f}, name = 'pthread_mutex_unlock', range = [0x0000000100001d8c-0x0000000100001d92)
symbol type: trampoline
id = {0x00000030}, name = 'rand', range = [0x0000000100001d92-0x0000000100001d98)
symbol type: trampoline
id = {0x00000031}, name = 'strtoul', range = [0x0000000100001d98-0x0000000100001d9e)
symbol type: trampoline
id = {0x00000032}, name = 'usleep', range = [0x0000000100001d9e-0x0000000100001da4)
symbol type: trampoline
[0x0000000100001da4-0x0000000100001e2c) a.out.__TEXT.__stub_helper
[0x0000000100001e2c-0x0000000100001f10) a.out.__TEXT.__cstring
[0x0000000100001f10-0x0000000100001f68) a.out.__TEXT.__unwind_info
[0x0000000100001f68-0x0000000100001ff8) a.out.__TEXT.__eh_frame
"
) SBModule;
class SBModule
{
public:
SBModule ();
SBModule (const lldb::SBModule &rhs);
SBModule (const lldb::SBModuleSpec &module_spec);
SBModule (lldb::SBProcess &process,
lldb::addr_t header_addr);
~SBModule ();
bool
IsValid () const;
void
Clear();
%feature("docstring", "
//------------------------------------------------------------------
/// Get const accessor for the module file specification.
///
/// This function returns the file for the module on the host system
/// that is running LLDB. This can differ from the path on the
/// platform since we might be doing remote debugging.
///
/// @return
/// A const reference to the file specification object.
//------------------------------------------------------------------
") GetFileSpec;
lldb::SBFileSpec
GetFileSpec () const;
%feature("docstring", "
//------------------------------------------------------------------
/// Get accessor for the module platform file specification.
///
/// Platform file refers to the path of the module as it is known on
/// the remote system on which it is being debugged. For local
/// debugging this is always the same as Module::GetFileSpec(). But
/// remote debugging might mention a file '/usr/lib/liba.dylib'
/// which might be locally downloaded and cached. In this case the
/// platform file could be something like:
/// '/tmp/lldb/platform-cache/remote.host.computer/usr/lib/liba.dylib'
/// The file could also be cached in a local developer kit directory.
///
/// @return
/// A const reference to the file specification object.
//------------------------------------------------------------------
") GetPlatformFileSpec;
lldb::SBFileSpec
GetPlatformFileSpec () const;
bool
SetPlatformFileSpec (const lldb::SBFileSpec &platform_file);
lldb::SBFileSpec
GetRemoteInstallFileSpec ();
bool
SetRemoteInstallFileSpec (lldb::SBFileSpec &file);
%feature("docstring", "Returns the UUID of the module as a Python string."
) GetUUIDString;
const char *
GetUUIDString () const;
lldb::SBSection
FindSection (const char *sect_name);
lldb::SBAddress
ResolveFileAddress (lldb::addr_t vm_addr);
lldb::SBSymbolContext
ResolveSymbolContextForAddress (const lldb::SBAddress& addr,
uint32_t resolve_scope);
bool
GetDescription (lldb::SBStream &description);
uint32_t
GetNumCompileUnits();
lldb::SBCompileUnit
GetCompileUnitAtIndex (uint32_t);
%feature("docstring", "
//------------------------------------------------------------------
/// Find compile units related to *this module and passed source
/// file.
///
/// @param[in] sb_file_spec
/// A lldb::SBFileSpec object that contains source file
/// specification.
///
/// @return
/// A lldb::SBSymbolContextList that gets filled in with all of
/// the symbol contexts for all the matches.
//------------------------------------------------------------------
") FindCompileUnits;
lldb::SBSymbolContextList
FindCompileUnits (const lldb::SBFileSpec &sb_file_spec);
size_t
GetNumSymbols ();
lldb::SBSymbol
GetSymbolAtIndex (size_t idx);
lldb::SBSymbol
FindSymbol (const char *name,
lldb::SymbolType type = eSymbolTypeAny);
lldb::SBSymbolContextList
FindSymbols (const char *name,
lldb::SymbolType type = eSymbolTypeAny);
size_t
GetNumSections ();
lldb::SBSection
GetSectionAtIndex (size_t idx);
%feature("docstring", "
//------------------------------------------------------------------
/// Find functions by name.
///
/// @param[in] name
/// The name of the function we are looking for.
///
/// @param[in] name_type_mask
/// A logical OR of one or more FunctionNameType enum bits that
/// indicate what kind of names should be used when doing the
/// lookup. Bits include fully qualified names, base names,
/// C++ methods, or ObjC selectors.
/// See FunctionNameType for more details.
///
Removed all of the "#ifndef SWIG" from the SB header files since we are using interface (.i) files for each class. Changed the FindFunction class from: uint32_t SBTarget::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) uint32_t SBModule::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) To: lldb::SBSymbolContextList SBTarget::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); lldb::SBSymbolContextList SBModule::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); This makes the API easier to use from python. Also added the ability to append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList. Exposed properties for lldb.SBSymbolContextList in python: lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...) and then the result can be used to extract the desired information: sc_list = lldb.target.FindFunctions("erase") for function in sc_list.functions: print function for symbol in sc_list.symbols: print symbol Exposed properties for the lldb.SBSymbolContext objects in python: lldb.SBSymbolContext.module => lldb.SBModule lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit lldb.SBSymbolContext.function => lldb.SBFunction lldb.SBSymbolContext.block => lldb.SBBlock lldb.SBSymbolContext.line_entry => lldb.SBLineEntry lldb.SBSymbolContext.symbol => lldb.SBSymbol Exposed properties for the lldb.SBBlock objects in python: lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block) lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned lldb.SBBlock.ranges => an array or all address ranges for this block lldb.SBBlock.num_ranges => the number of address ranges for this blcok SBFunction objects can now get the SBType and the SBBlock that represents the top scope of the function. SBBlock objects can now get the variable list from the current block. The value list returned allows varaibles to be viewed prior with no process if code wants to check the variables in a function. There are two ways to get a variable list from a SBBlock: lldb::SBValueList SBBlock::GetVariables (lldb::SBFrame& frame, bool arguments, bool locals, bool statics, lldb::DynamicValueType use_dynamic); lldb::SBValueList SBBlock::GetVariables (lldb::SBTarget& target, bool arguments, bool locals, bool statics); When a SBFrame is used, the values returned will be locked down to the frame and the values will be evaluated in the context of that frame. When a SBTarget is used, global an static variables can be viewed without a running process. llvm-svn: 149853
2012-02-06 09:44:54 +08:00
/// @return
/// A symbol context list that gets filled in with all of the
/// matches.
//------------------------------------------------------------------
") FindFunctions;
Removed all of the "#ifndef SWIG" from the SB header files since we are using interface (.i) files for each class. Changed the FindFunction class from: uint32_t SBTarget::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) uint32_t SBModule::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) To: lldb::SBSymbolContextList SBTarget::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); lldb::SBSymbolContextList SBModule::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); This makes the API easier to use from python. Also added the ability to append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList. Exposed properties for lldb.SBSymbolContextList in python: lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...) and then the result can be used to extract the desired information: sc_list = lldb.target.FindFunctions("erase") for function in sc_list.functions: print function for symbol in sc_list.symbols: print symbol Exposed properties for the lldb.SBSymbolContext objects in python: lldb.SBSymbolContext.module => lldb.SBModule lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit lldb.SBSymbolContext.function => lldb.SBFunction lldb.SBSymbolContext.block => lldb.SBBlock lldb.SBSymbolContext.line_entry => lldb.SBLineEntry lldb.SBSymbolContext.symbol => lldb.SBSymbol Exposed properties for the lldb.SBBlock objects in python: lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block) lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned lldb.SBBlock.ranges => an array or all address ranges for this block lldb.SBBlock.num_ranges => the number of address ranges for this blcok SBFunction objects can now get the SBType and the SBBlock that represents the top scope of the function. SBBlock objects can now get the variable list from the current block. The value list returned allows varaibles to be viewed prior with no process if code wants to check the variables in a function. There are two ways to get a variable list from a SBBlock: lldb::SBValueList SBBlock::GetVariables (lldb::SBFrame& frame, bool arguments, bool locals, bool statics, lldb::DynamicValueType use_dynamic); lldb::SBValueList SBBlock::GetVariables (lldb::SBTarget& target, bool arguments, bool locals, bool statics); When a SBFrame is used, the values returned will be locked down to the frame and the values will be evaluated in the context of that frame. When a SBTarget is used, global an static variables can be viewed without a running process. llvm-svn: 149853
2012-02-06 09:44:54 +08:00
lldb::SBSymbolContextList
FindFunctions (const char *name,
Removed all of the "#ifndef SWIG" from the SB header files since we are using interface (.i) files for each class. Changed the FindFunction class from: uint32_t SBTarget::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) uint32_t SBModule::FindFunctions (const char *name, uint32_t name_type_mask, bool append, lldb::SBSymbolContextList& sc_list) To: lldb::SBSymbolContextList SBTarget::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); lldb::SBSymbolContextList SBModule::FindFunctions (const char *name, uint32_t name_type_mask = lldb::eFunctionNameTypeAny); This makes the API easier to use from python. Also added the ability to append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList. Exposed properties for lldb.SBSymbolContextList in python: lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...) and then the result can be used to extract the desired information: sc_list = lldb.target.FindFunctions("erase") for function in sc_list.functions: print function for symbol in sc_list.symbols: print symbol Exposed properties for the lldb.SBSymbolContext objects in python: lldb.SBSymbolContext.module => lldb.SBModule lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit lldb.SBSymbolContext.function => lldb.SBFunction lldb.SBSymbolContext.block => lldb.SBBlock lldb.SBSymbolContext.line_entry => lldb.SBLineEntry lldb.SBSymbolContext.symbol => lldb.SBSymbol Exposed properties for the lldb.SBBlock objects in python: lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block) lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned lldb.SBBlock.ranges => an array or all address ranges for this block lldb.SBBlock.num_ranges => the number of address ranges for this blcok SBFunction objects can now get the SBType and the SBBlock that represents the top scope of the function. SBBlock objects can now get the variable list from the current block. The value list returned allows varaibles to be viewed prior with no process if code wants to check the variables in a function. There are two ways to get a variable list from a SBBlock: lldb::SBValueList SBBlock::GetVariables (lldb::SBFrame& frame, bool arguments, bool locals, bool statics, lldb::DynamicValueType use_dynamic); lldb::SBValueList SBBlock::GetVariables (lldb::SBTarget& target, bool arguments, bool locals, bool statics); When a SBFrame is used, the values returned will be locked down to the frame and the values will be evaluated in the context of that frame. When a SBTarget is used, global an static variables can be viewed without a running process. llvm-svn: 149853
2012-02-06 09:44:54 +08:00
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
lldb::SBType
FindFirstType (const char* name);
lldb::SBTypeList
FindTypes (const char* type);
lldb::SBType
GetTypeByID (lldb::user_id_t uid);
lldb::SBType
GetBasicType(lldb::BasicType type);
Added the ability to get a list of types from a SBModule or SBCompileUnit. Sebastien Metrot wanted this, and sent a hollowed out patch. I filled in the blanks and did the low level implementation. The new functions are: //------------------------------------------------------------------ /// Get all types matching \a type_mask from debug info in this /// module. /// /// @param[in] type_mask /// A bitfield that consists of one or more bits logically OR'ed /// together from the lldb::TypeClass enumeration. This allows /// you to request only structure types, or only class, struct /// and union types. Passing in lldb::eTypeClassAny will return /// all types found in the debug information for this module. /// /// @return /// A list of types in this module that match \a type_mask //------------------------------------------------------------------ lldb::SBTypeList SBModule::GetTypes (uint32_t type_mask) //------------------------------------------------------------------ /// Get all types matching \a type_mask from debug info in this /// compile unit. /// /// @param[in] type_mask /// A bitfield that consists of one or more bits logically OR'ed /// together from the lldb::TypeClass enumeration. This allows /// you to request only structure types, or only class, struct /// and union types. Passing in lldb::eTypeClassAny will return /// all types found in the debug information for this compile /// unit. /// /// @return /// A list of types in this compile unit that match \a type_mask //------------------------------------------------------------------ lldb::SBTypeList SBCompileUnit::GetTypes (uint32_t type_mask = lldb::eTypeClassAny); This lets you request types by filling out a mask that contains one or more bits from the lldb::TypeClass enumerations, so you can only get the types you really want. llvm-svn: 184251
2013-06-19 06:51:05 +08:00
%feature("docstring", "
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// module.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this module.
///
/// @return
/// A list of types in this module that match \a type_mask
//------------------------------------------------------------------
") GetTypes;
lldb::SBTypeList
GetTypes (uint32_t type_mask = lldb::eTypeClassAny);
%feature("docstring", "
//------------------------------------------------------------------
/// Find global and static variables by name.
///
/// @param[in] target
/// A valid SBTarget instance representing the debuggee.
///
/// @param[in] name
/// The name of the global or static variable we are looking
/// for.
///
/// @param[in] max_matches
/// Allow the number of matches to be limited to \a max_matches.
///
/// @return
/// A list of matched variables in an SBValueList.
//------------------------------------------------------------------
") FindGlobalVariables;
lldb::SBValueList
FindGlobalVariables (lldb::SBTarget &target,
const char *name,
uint32_t max_matches);
%feature("docstring", "
//------------------------------------------------------------------
/// Find the first global (or static) variable by name.
///
/// @param[in] target
/// A valid SBTarget instance representing the debuggee.
///
/// @param[in] name
/// The name of the global or static variable we are looking
/// for.
///
/// @return
/// An SBValue that gets filled in with the found variable (if any).
//------------------------------------------------------------------
") FindFirstGlobalVariable;
lldb::SBValue
FindFirstGlobalVariable (lldb::SBTarget &target, const char *name);
lldb::ByteOrder
GetByteOrder ();
uint32_t
GetAddressByteSize();
const char *
GetTriple ();
uint32_t
GetVersion (uint32_t *versions,
uint32_t num_versions);
lldb::SBFileSpec
GetSymbolFileSpec() const;
lldb::SBAddress
GetObjectFileHeaderAddress() const;
bool
operator == (const lldb::SBModule &rhs) const;
bool
operator != (const lldb::SBModule &rhs) const;
%pythoncode %{
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
class symbols_access(object):
re_compile_type = type(re.compile('.'))
'''A helper object that will lazily hand out lldb.SBSymbol objects for a module when supplied an index, name, or regular expression.'''
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
def __init__(self, sbmodule):
self.sbmodule = sbmodule
def __len__(self):
if self.sbmodule:
return int(self.sbmodule.GetNumSymbols())
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
return 0
def __getitem__(self, key):
count = len(self)
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
if type(key) is int:
if key < count:
return self.sbmodule.GetSymbolAtIndex(key)
elif type(key) is str:
matches = []
sc_list = self.sbmodule.FindSymbols(key)
for sc in sc_list:
symbol = sc.symbol
if symbol:
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
matches.append(symbol)
return matches
elif isinstance(key, self.re_compile_type):
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
matches = []
for idx in range(count):
symbol = self.sbmodule.GetSymbolAtIndex(idx)
added = False
name = symbol.name
if name:
re_match = key.search(name)
if re_match:
matches.append(symbol)
added = True
if not added:
mangled = symbol.mangled
if mangled:
re_match = key.search(mangled)
if re_match:
matches.append(symbol)
return matches
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
else:
print("error: unsupported item type: %s" % type(key))
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
return None
def get_symbols_access_object(self):
'''An accessor function that returns a symbols_access() object which allows lazy symbol access from a lldb.SBModule object.'''
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
return self.symbols_access (self)
def get_compile_units_access_object (self):
'''An accessor function that returns a compile_units_access() object which allows lazy compile unit access from a lldb.SBModule object.'''
return self.compile_units_access (self)
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
def get_symbols_array(self):
'''An accessor function that returns a list() that contains all symbols in a lldb.SBModule object.'''
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
symbols = []
for idx in range(self.num_symbols):
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
symbols.append(self.GetSymbolAtIndex(idx))
return symbols
class sections_access(object):
re_compile_type = type(re.compile('.'))
'''A helper object that will lazily hand out lldb.SBSection objects for a module when supplied an index, name, or regular expression.'''
def __init__(self, sbmodule):
self.sbmodule = sbmodule
def __len__(self):
if self.sbmodule:
return int(self.sbmodule.GetNumSections())
return 0
def __getitem__(self, key):
count = len(self)
if type(key) is int:
if key < count:
return self.sbmodule.GetSectionAtIndex(key)
elif type(key) is str:
for idx in range(count):
section = self.sbmodule.GetSectionAtIndex(idx)
if section.name == key:
return section
elif isinstance(key, self.re_compile_type):
matches = []
for idx in range(count):
section = self.sbmodule.GetSectionAtIndex(idx)
name = section.name
if name:
re_match = key.search(name)
if re_match:
matches.append(section)
return matches
else:
print("error: unsupported item type: %s" % type(key))
return None
class compile_units_access(object):
re_compile_type = type(re.compile('.'))
'''A helper object that will lazily hand out lldb.SBCompileUnit objects for a module when supplied an index, full or partial path, or regular expression.'''
def __init__(self, sbmodule):
self.sbmodule = sbmodule
def __len__(self):
if self.sbmodule:
return int(self.sbmodule.GetNumCompileUnits())
return 0
def __getitem__(self, key):
count = len(self)
if type(key) is int:
if key < count:
return self.sbmodule.GetCompileUnitAtIndex(key)
elif type(key) is str:
is_full_path = key[0] == '/'
for idx in range(count):
comp_unit = self.sbmodule.GetCompileUnitAtIndex(idx)
if is_full_path:
if comp_unit.file.fullpath == key:
return comp_unit
else:
if comp_unit.file.basename == key:
return comp_unit
elif isinstance(key, self.re_compile_type):
matches = []
for idx in range(count):
comp_unit = self.sbmodule.GetCompileUnitAtIndex(idx)
fullpath = comp_unit.file.fullpath
if fullpath:
re_match = key.search(fullpath)
if re_match:
matches.append(comp_unit)
return matches
else:
print("error: unsupported item type: %s" % type(key))
return None
def get_sections_access_object(self):
'''An accessor function that returns a sections_access() object which allows lazy section array access.'''
return self.sections_access (self)
def get_sections_array(self):
'''An accessor function that returns an array object that contains all sections in this module object.'''
if not hasattr(self, 'sections_array'):
self.sections_array = []
for idx in range(self.num_sections):
self.sections_array.append(self.GetSectionAtIndex(idx))
return self.sections_array
def get_compile_units_array(self):
'''An accessor function that returns an array object that contains all compile_units in this module object.'''
if not hasattr(self, 'compile_units_array'):
self.compile_units_array = []
for idx in range(self.GetNumCompileUnits()):
self.compile_units_array.append(self.GetCompileUnitAtIndex(idx))
return self.compile_units_array
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
__swig_getmethods__["symbols"] = get_symbols_array
if _newclass: symbols = property(get_symbols_array, None, doc='''A read only property that returns a list() of lldb.SBSymbol objects contained in this module.''')
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
__swig_getmethods__["symbol"] = get_symbols_access_object
if _newclass: symbol = property(get_symbols_access_object, None, doc='''A read only property that can be used to access symbols by index ("symbol = module.symbol[0]"), name ("symbols = module.symbol['main']"), or using a regular expression ("symbols = module.symbol[re.compile(...)]"). The return value is a single lldb.SBSymbol object for array access, and a list() of lldb.SBSymbol objects for name and regular expression access''')
__swig_getmethods__["sections"] = get_sections_array
if _newclass: sections = property(get_sections_array, None, doc='''A read only property that returns a list() of lldb.SBSection objects contained in this module.''')
__swig_getmethods__["compile_units"] = get_compile_units_array
if _newclass: compile_units = property(get_compile_units_array, None, doc='''A read only property that returns a list() of lldb.SBCompileUnit objects contained in this module.''')
__swig_getmethods__["section"] = get_sections_access_object
if _newclass: section = property(get_sections_access_object, None, doc='''A read only property that can be used to access symbols by index ("section = module.section[0]"), name ("sections = module.section[\'main\']"), or using a regular expression ("sections = module.section[re.compile(...)]"). The return value is a single lldb.SBSection object for array access, and a list() of lldb.SBSection objects for name and regular expression access''')
__swig_getmethods__["compile_unit"] = get_compile_units_access_object
if _newclass: section = property(get_sections_access_object, None, doc='''A read only property that can be used to access compile units by index ("compile_unit = module.compile_unit[0]"), name ("compile_unit = module.compile_unit[\'main.cpp\']"), or using a regular expression ("compile_unit = module.compile_unit[re.compile(...)]"). The return value is a single lldb.SBCompileUnit object for array access or by full or partial path, and a list() of lldb.SBCompileUnit objects regular expressions.''')
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
def get_uuid(self):
return uuid.UUID (self.GetUUIDString())
__swig_getmethods__["uuid"] = get_uuid
if _newclass: uuid = property(get_uuid, None, doc='''A read only property that returns a standard python uuid.UUID object that represents the UUID of this module.''')
Added many more python convenience accessors: You can now access a frame in a thread using: lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread Where "int" is an integer index. You can also access a list object with all of the frames using: lldb.SBThread.frames => list() of lldb.SBFrame objects All SB objects that give out SBAddress objects have properties named "addr" lldb.SBInstructionList now has the following convenience accessors for len() and instruction access using an index: insts = lldb.frame.function.instructions for idx in range(len(insts)): print insts[idx] Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key: pc_inst = lldb.frame.function.instructions[lldb.frame.addr] lldb.SBProcess now exposes: lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive lldb.SBProcess.is_running => BOOL check if a process is running (or stepping): lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed: lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process SBInstruction now exposes: lldb.SBInstruction.mnemonic => python string for instruction mnemonic lldb.SBInstruction.operands => python string for instruction operands lldb.SBInstruction.command => python string for instruction comment SBModule now exposes: lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str" lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex lldb.SBModule.symbols => list() of all symbols in a module SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr" property. The current "lldb.target" will be used to try and resolve the load address. Load addresses can also be set using this accessor: addr = lldb.SBAddress() addd.load_addr = 0x123023 Then you can check the section and offset to see if the address got resolved. SBTarget now exposes: lldb.SBTarget.module[int] => lldb.SBModule from zero based module index lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target SBSymbol now exposes: lldb.SBSymbol.name => python string for demangled symbol name lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none lldb.SBSymbol.type => lldb.eSymbolType enum value lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one) lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one) lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol SBFunction now also has these new properties in addition to what is already has: lldb.SBFunction.addr => SBAddress object that represents the start address for this function lldb.SBFunction.end_addr => SBAddress for the end address of the function lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function SBFrame now exposes the SBAddress for the frame: lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC These are all in addition to what was already added. Documentation and website updates coming soon. llvm-svn: 149489
2012-02-01 16:09:32 +08:00
__swig_getmethods__["file"] = GetFileSpec
if _newclass: file = property(GetFileSpec, None, doc='''A read only property that returns an lldb object that represents the file (lldb.SBFileSpec) for this object file for this module as it is represented where it is being debugged.''')
__swig_getmethods__["platform_file"] = GetPlatformFileSpec
if _newclass: platform_file = property(GetPlatformFileSpec, None, doc='''A read only property that returns an lldb object that represents the file (lldb.SBFileSpec) for this object file for this module as it is represented on the current host system.''')
__swig_getmethods__["byte_order"] = GetByteOrder
if _newclass: byte_order = property(GetByteOrder, None, doc='''A read only property that returns an lldb enumeration value (lldb.eByteOrderLittle, lldb.eByteOrderBig, lldb.eByteOrderInvalid) that represents the byte order for this module.''')
__swig_getmethods__["addr_size"] = GetAddressByteSize
if _newclass: addr_size = property(GetAddressByteSize, None, doc='''A read only property that returns the size in bytes of an address for this module.''')
__swig_getmethods__["triple"] = GetTriple
if _newclass: triple = property(GetTriple, None, doc='''A read only property that returns the target triple (arch-vendor-os) for this module.''')
__swig_getmethods__["num_symbols"] = GetNumSymbols
if _newclass: num_symbols = property(GetNumSymbols, None, doc='''A read only property that returns number of symbols in the module symbol table as an integer.''')
__swig_getmethods__["num_sections"] = GetNumSections
if _newclass: num_sections = property(GetNumSections, None, doc='''A read only property that returns number of sections in the module as an integer.''')
%}
};
} // namespace lldb