llvm-project/polly/lib/Analysis/ScopInfo.cpp

1284 lines
42 KiB
C++
Raw Normal View History

//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
// This represantation is shared among several tools in the polyhedral
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/Options.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
2013-05-07 16:11:54 +08:00
#include "polly/Support/ScopHelper.h"
#include "polly/TempScopInfo.h"
2013-05-07 16:11:54 +08:00
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionIterator.h"
2013-05-07 16:11:54 +08:00
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/Debug.h"
#include "isl/constraint.h"
#include "isl/set.h"
#include "isl/map.h"
#include "isl/union_map.h"
#include "isl/aff.h"
#include "isl/printer.h"
#include "isl/local_space.h"
#include "isl/options.h"
#include "isl/val.h"
#include <sstream>
#include <string>
#include <vector>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-scops"
2013-01-15 06:40:23 +08:00
STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
// Multiplicative reductions can be disabled seperately as these kind of
// operations can overflow easily. Additive reductions and bit operations
// are in contrast pretty stable.
static cl::opt<bool>
DisableMultiplicativeReductions("polly-disable-multiplicative-reductions",
cl::desc("Disable multiplicative reductions"),
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::cat(PollyCategory));
/// Translate a 'const SCEV *' expression in an isl_pw_aff.
struct SCEVAffinator : public SCEVVisitor<SCEVAffinator, isl_pw_aff *> {
public:
/// @brief Translate a 'const SCEV *' to an isl_pw_aff.
///
/// @param Stmt The location at which the scalar evolution expression
/// is evaluated.
/// @param Expr The expression that is translated.
static __isl_give isl_pw_aff *getPwAff(ScopStmt *Stmt, const SCEV *Expr);
private:
isl_ctx *Ctx;
int NbLoopSpaces;
const Scop *S;
SCEVAffinator(const ScopStmt *Stmt);
int getLoopDepth(const Loop *L);
__isl_give isl_pw_aff *visit(const SCEV *Expr);
__isl_give isl_pw_aff *visitConstant(const SCEVConstant *Expr);
__isl_give isl_pw_aff *visitTruncateExpr(const SCEVTruncateExpr *Expr);
__isl_give isl_pw_aff *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr);
__isl_give isl_pw_aff *visitSignExtendExpr(const SCEVSignExtendExpr *Expr);
__isl_give isl_pw_aff *visitAddExpr(const SCEVAddExpr *Expr);
__isl_give isl_pw_aff *visitMulExpr(const SCEVMulExpr *Expr);
__isl_give isl_pw_aff *visitUDivExpr(const SCEVUDivExpr *Expr);
__isl_give isl_pw_aff *visitAddRecExpr(const SCEVAddRecExpr *Expr);
__isl_give isl_pw_aff *visitSMaxExpr(const SCEVSMaxExpr *Expr);
__isl_give isl_pw_aff *visitUMaxExpr(const SCEVUMaxExpr *Expr);
__isl_give isl_pw_aff *visitUnknown(const SCEVUnknown *Expr);
friend struct SCEVVisitor<SCEVAffinator, isl_pw_aff *>;
};
SCEVAffinator::SCEVAffinator(const ScopStmt *Stmt)
: Ctx(Stmt->getIslCtx()), NbLoopSpaces(Stmt->getNumIterators()),
S(Stmt->getParent()) {}
__isl_give isl_pw_aff *SCEVAffinator::getPwAff(ScopStmt *Stmt,
const SCEV *Scev) {
Scop *S = Stmt->getParent();
const Region *Reg = &S->getRegion();
S->addParams(getParamsInAffineExpr(Reg, Scev, *S->getSE()));
SCEVAffinator Affinator(Stmt);
return Affinator.visit(Scev);
}
__isl_give isl_pw_aff *SCEVAffinator::visit(const SCEV *Expr) {
// In case the scev is a valid parameter, we do not further analyze this
// expression, but create a new parameter in the isl_pw_aff. This allows us
// to treat subexpressions that we cannot translate into an piecewise affine
// expression, as constant parameters of the piecewise affine expression.
if (isl_id *Id = S->getIdForParam(Expr)) {
isl_space *Space = isl_space_set_alloc(Ctx, 1, NbLoopSpaces);
Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);
isl_set *Domain = isl_set_universe(isl_space_copy(Space));
isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
return isl_pw_aff_alloc(Domain, Affine);
}
return SCEVVisitor<SCEVAffinator, isl_pw_aff *>::visit(Expr);
}
2013-10-03 21:09:19 +08:00
__isl_give isl_pw_aff *SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
ConstantInt *Value = Expr->getValue();
isl_val *v;
// LLVM does not define if an integer value is interpreted as a signed or
// unsigned value. Hence, without further information, it is unknown how
// this value needs to be converted to GMP. At the moment, we only support
// signed operations. So we just interpret it as signed. Later, there are
// two options:
//
// 1. We always interpret any value as signed and convert the values on
// demand.
// 2. We pass down the signedness of the calculation and use it to interpret
// this constant correctly.
v = isl_valFromAPInt(Ctx, Value->getValue(), /* isSigned */ true);
isl_space *Space = isl_space_set_alloc(Ctx, 0, NbLoopSpaces);
isl_local_space *ls = isl_local_space_from_space(isl_space_copy(Space));
isl_aff *Affine = isl_aff_zero_on_domain(ls);
isl_set *Domain = isl_set_universe(Space);
Affine = isl_aff_add_constant_val(Affine, v);
return isl_pw_aff_alloc(Domain, Affine);
}
__isl_give isl_pw_aff *
SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
llvm_unreachable("SCEVTruncateExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
llvm_unreachable("SCEVZeroExtendExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
// Assuming the value is signed, a sign extension is basically a noop.
// TODO: Reconsider this as soon as we support unsigned values.
return visit(Expr->getOperand());
}
__isl_give isl_pw_aff *SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
isl_pw_aff *Sum = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextSummand = visit(Expr->getOperand(i));
Sum = isl_pw_aff_add(Sum, NextSummand);
}
// TODO: Check for NSW and NUW.
return Sum;
}
__isl_give isl_pw_aff *SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
isl_pw_aff *Product = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
if (!isl_pw_aff_is_cst(Product) && !isl_pw_aff_is_cst(NextOperand)) {
isl_pw_aff_free(Product);
isl_pw_aff_free(NextOperand);
2014-04-16 15:33:47 +08:00
return nullptr;
}
Product = isl_pw_aff_mul(Product, NextOperand);
}
// TODO: Check for NSW and NUW.
return Product;
}
__isl_give isl_pw_aff *SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
llvm_unreachable("SCEVUDivExpr not yet supported");
}
__isl_give isl_pw_aff *
SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
// Directly generate isl_pw_aff for Expr if 'start' is zero.
if (Expr->getStart()->isZero()) {
assert(S->getRegion().contains(Expr->getLoop()) &&
"Scop does not contain the loop referenced in this AddRec");
isl_pw_aff *Start = visit(Expr->getStart());
isl_pw_aff *Step = visit(Expr->getOperand(1));
isl_space *Space = isl_space_set_alloc(Ctx, 0, NbLoopSpaces);
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
int loopDimension = getLoopDepth(Expr->getLoop());
isl_aff *LAff = isl_aff_set_coefficient_si(
isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);
// TODO: Do we need to check for NSW and NUW?
return isl_pw_aff_add(Start, isl_pw_aff_mul(Step, LPwAff));
}
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
// if 'start' is not zero.
ScalarEvolution &SE = *S->getSE();
const SCEV *ZeroStartExpr = SE.getAddRecExpr(
SE.getConstant(Expr->getStart()->getType(), 0),
Expr->getStepRecurrence(SE), Expr->getLoop(), SCEV::FlagAnyWrap);
isl_pw_aff *ZeroStartResult = visit(ZeroStartExpr);
isl_pw_aff *Start = visit(Expr->getStart());
return isl_pw_aff_add(ZeroStartResult, Start);
}
__isl_give isl_pw_aff *SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
isl_pw_aff *Max = visit(Expr->getOperand(0));
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
Max = isl_pw_aff_max(Max, NextOperand);
}
return Max;
}
__isl_give isl_pw_aff *SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
llvm_unreachable("SCEVUMaxExpr not yet supported");
}
__isl_give isl_pw_aff *SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
llvm_unreachable("Unknowns are always parameters");
}
int SCEVAffinator::getLoopDepth(const Loop *L) {
Loop *outerLoop = S->getRegion().outermostLoopInRegion(const_cast<Loop *>(L));
assert(outerLoop && "Scop does not contain this loop");
return L->getLoopDepth() - outerLoop->getLoopDepth();
}
//===----------------------------------------------------------------------===//
MemoryAccess::~MemoryAccess() {
isl_map_free(AccessRelation);
isl_map_free(newAccessRelation);
}
static void replace(std::string &str, const std::string &find,
const std::string &replace) {
size_t pos = 0;
while ((pos = str.find(find, pos)) != std::string::npos) {
str.replace(pos, find.length(), replace);
pos += replace.length();
}
}
static void makeIslCompatible(std::string &str) {
str.erase(0, 1);
replace(str, ".", "_");
replace(str, "\"", "_");
}
void MemoryAccess::setBaseName() {
raw_string_ostream OS(BaseName);
getBaseAddr()->printAsOperand(OS, false);
BaseName = OS.str();
makeIslCompatible(BaseName);
BaseName = "MemRef_" + BaseName;
}
isl_map *MemoryAccess::getAccessRelation() const {
return isl_map_copy(AccessRelation);
}
std::string MemoryAccess::getAccessRelationStr() const {
return stringFromIslObj(AccessRelation);
}
isl_map *MemoryAccess::getNewAccessRelation() const {
return isl_map_copy(newAccessRelation);
}
isl_basic_map *MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1);
Space = isl_space_set_tuple_name(Space, isl_dim_set, getBaseName().c_str());
Space = isl_space_align_params(Space, Statement->getDomainSpace());
return isl_basic_map_from_domain_and_range(
isl_basic_set_universe(Statement->getDomainSpace()),
isl_basic_set_universe(Space));
}
MemoryAccess::MemoryAccess(const IRAccess &Access, const Instruction *AccInst,
ScopStmt *Statement)
2014-04-16 15:33:47 +08:00
: Statement(Statement), Inst(AccInst), newAccessRelation(nullptr) {
BaseAddr = Access.getBase();
setBaseName();
if (!Access.isAffine()) {
// We overapproximate non-affine accesses with a possible access to the
// whole array. For read accesses it does not make a difference, if an
// access must or may happen. However, for write accesses it is important to
// differentiate between writes that must happen and writes that may happen.
AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
Type = Access.isRead() ? READ : MAY_WRITE;
return;
}
Type = Access.isRead() ? READ : MUST_WRITE;
isl_space *Space = isl_space_alloc(Statement->getIslCtx(), 0,
Statement->getNumIterators(), 0);
AccessRelation = isl_map_universe(Space);
for (int i = 0, Size = Access.Subscripts.size(); i < Size; ++i) {
isl_pw_aff *Affine =
SCEVAffinator::getPwAff(Statement, Access.Subscripts[i]);
if (Size == 1) {
// For the non delinearized arrays, divide the access function of the last
// subscript by the size of the elements in the array.
//
// A stride one array access in C expressed as A[i] is expressed in
// LLVM-IR as something like A[i * elementsize]. This hides the fact that
// two subsequent values of 'i' index two values that are stored next to
// each other in memory. By this division we make this characteristic
// obvious again.
isl_val *v;
v = isl_val_int_from_si(isl_pw_aff_get_ctx(Affine),
Access.getElemSizeInBytes());
Affine = isl_pw_aff_scale_down_val(Affine, v);
}
isl_map *SubscriptMap = isl_map_from_pw_aff(Affine);
AccessRelation = isl_map_flat_range_product(AccessRelation, SubscriptMap);
}
Space = Statement->getDomainSpace();
AccessRelation = isl_map_set_tuple_id(
AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
isl_space_free(Space);
AccessRelation = isl_map_set_tuple_name(AccessRelation, isl_dim_out,
getBaseName().c_str());
}
void MemoryAccess::realignParams() {
isl_space *ParamSpace = Statement->getParent()->getParamSpace();
AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
}
MemoryAccess::MemoryAccess(const Value *BaseAddress, ScopStmt *Statement)
: Type(READ), BaseAddr(BaseAddress), Statement(Statement),
newAccessRelation(nullptr) {
isl_basic_map *BasicAccessMap = createBasicAccessMap(Statement);
AccessRelation = isl_map_from_basic_map(BasicAccessMap);
isl_space *ParamSpace = Statement->getParent()->getParamSpace();
AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
}
void MemoryAccess::print(raw_ostream &OS) const {
switch (Type) {
case READ:
OS.indent(12) << "ReadAccess :=\t";
break;
case MUST_WRITE:
OS.indent(12) << "MustWriteAccess :=\t";
break;
case MAY_WRITE:
OS.indent(12) << "MayWriteAccess :=\t";
break;
}
OS << "[Reduction like: " << isReductionLike() << "]\n";
OS.indent(16) << getAccessRelationStr() << ";\n";
}
2013-01-15 06:40:23 +08:00
void MemoryAccess::dump() const { print(errs()); }
// Create a map in the size of the provided set domain, that maps from the
// one element of the provided set domain to another element of the provided
// set domain.
// The mapping is limited to all points that are equal in all but the last
// dimension and for which the last dimension of the input is strict smaller
// than the last dimension of the output.
//
// getEqualAndLarger(set[i0, i1, ..., iX]):
//
// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
//
static isl_map *getEqualAndLarger(isl_space *setDomain) {
isl_space *Space = isl_space_map_from_set(setDomain);
isl_map *Map = isl_map_universe(isl_space_copy(Space));
isl_local_space *MapLocalSpace = isl_local_space_from_space(Space);
unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
// Set all but the last dimension to be equal for the input and output
//
// input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
for (unsigned i = 0; i < lastDimension; ++i)
Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
// Set the last dimension of the input to be strict smaller than the
// last dimension of the output.
//
// input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
//
isl_val *v;
isl_ctx *Ctx = isl_map_get_ctx(Map);
isl_constraint *c = isl_inequality_alloc(isl_local_space_copy(MapLocalSpace));
v = isl_val_int_from_si(Ctx, -1);
c = isl_constraint_set_coefficient_val(c, isl_dim_in, lastDimension, v);
v = isl_val_int_from_si(Ctx, 1);
c = isl_constraint_set_coefficient_val(c, isl_dim_out, lastDimension, v);
v = isl_val_int_from_si(Ctx, -1);
c = isl_constraint_set_constant_val(c, v);
Map = isl_map_add_constraint(Map, c);
isl_local_space_free(MapLocalSpace);
return Map;
}
isl_set *MemoryAccess::getStride(__isl_take const isl_map *Schedule) const {
isl_map *S = const_cast<isl_map *>(Schedule);
isl_map *AccessRelation = getAccessRelation();
isl_space *Space = isl_space_range(isl_map_get_space(S));
isl_map *NextScatt = getEqualAndLarger(Space);
S = isl_map_reverse(S);
NextScatt = isl_map_lexmin(NextScatt);
NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S));
NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation));
NextScatt = isl_map_apply_domain(NextScatt, S);
NextScatt = isl_map_apply_domain(NextScatt, AccessRelation);
isl_set *Deltas = isl_map_deltas(NextScatt);
return Deltas;
}
bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule,
int StrideWidth) const {
isl_set *Stride, *StrideX;
bool IsStrideX;
Stride = getStride(Schedule);
StrideX = isl_set_universe(isl_set_get_space(Stride));
StrideX = isl_set_fix_si(StrideX, isl_dim_set, 0, StrideWidth);
IsStrideX = isl_set_is_equal(Stride, StrideX);
isl_set_free(StrideX);
isl_set_free(Stride);
return IsStrideX;
}
bool MemoryAccess::isStrideZero(const isl_map *Schedule) const {
return isStrideX(Schedule, 0);
}
bool MemoryAccess::isScalar() const {
return isl_map_n_out(AccessRelation) == 0;
}
bool MemoryAccess::isStrideOne(const isl_map *Schedule) const {
return isStrideX(Schedule, 1);
}
void MemoryAccess::setNewAccessRelation(isl_map *newAccess) {
isl_map_free(newAccessRelation);
newAccessRelation = newAccess;
}
//===----------------------------------------------------------------------===//
2013-01-15 06:40:23 +08:00
isl_map *ScopStmt::getScattering() const { return isl_map_copy(Scattering); }
void ScopStmt::restrictDomain(__isl_take isl_set *NewDomain) {
assert(isl_set_is_subset(NewDomain, Domain) &&
"New domain is not a subset of old domain!");
isl_set_free(Domain);
Domain = NewDomain;
Scattering = isl_map_intersect_domain(Scattering, isl_set_copy(Domain));
}
void ScopStmt::setScattering(isl_map *NewScattering) {
2014-04-16 15:33:47 +08:00
assert(NewScattering && "New scattering is nullptr");
isl_map_free(Scattering);
Scattering = NewScattering;
}
void ScopStmt::buildScattering(SmallVectorImpl<unsigned> &Scatter) {
unsigned NbIterators = getNumIterators();
unsigned NbScatteringDims = Parent.getMaxLoopDepth() * 2 + 1;
isl_space *Space = isl_space_set_alloc(getIslCtx(), 0, NbScatteringDims);
Space = isl_space_set_tuple_name(Space, isl_dim_out, "scattering");
Scattering = isl_map_from_domain_and_range(isl_set_universe(getDomainSpace()),
isl_set_universe(Space));
// Loop dimensions.
for (unsigned i = 0; i < NbIterators; ++i)
Scattering =
isl_map_equate(Scattering, isl_dim_out, 2 * i + 1, isl_dim_in, i);
// Constant dimensions
for (unsigned i = 0; i < NbIterators + 1; ++i)
Scattering = isl_map_fix_si(Scattering, isl_dim_out, 2 * i, Scatter[i]);
// Fill scattering dimensions.
for (unsigned i = 2 * NbIterators + 1; i < NbScatteringDims; ++i)
Scattering = isl_map_fix_si(Scattering, isl_dim_out, i, 0);
Scattering = isl_map_align_params(Scattering, Parent.getParamSpace());
}
void ScopStmt::buildAccesses(TempScop &tempScop, const Region &CurRegion) {
const AccFuncSetType *AccFuncs = tempScop.getAccessFunctions(BB);
for (AccFuncSetType::const_iterator I = AccFuncs->begin(),
E = AccFuncs->end();
I != E; ++I) {
MemAccs.push_back(new MemoryAccess(I->first, I->second, this));
// We do not track locations for scalar memory accesses at the moment.
//
// We do not have a use for this information at the moment. If we need this
// at some point, the "instruction -> access" mapping needs to be enhanced
// as a single instruction could then possibly perform multiple accesses.
if (!I->first.isScalar()) {
assert(!InstructionToAccess.count(I->second) &&
2014-02-21 05:43:45 +08:00
"Unexpected 1-to-N mapping on instruction to access map!");
InstructionToAccess[I->second] = MemAccs.back();
}
}
}
void ScopStmt::realignParams() {
for (MemoryAccess *MA : *this)
MA->realignParams();
Domain = isl_set_align_params(Domain, Parent.getParamSpace());
Scattering = isl_map_align_params(Scattering, Parent.getParamSpace());
}
2011-11-08 23:41:19 +08:00
__isl_give isl_set *ScopStmt::buildConditionSet(const Comparison &Comp) {
isl_pw_aff *L = SCEVAffinator::getPwAff(this, Comp.getLHS());
isl_pw_aff *R = SCEVAffinator::getPwAff(this, Comp.getRHS());
switch (Comp.getPred()) {
case ICmpInst::ICMP_EQ:
return isl_pw_aff_eq_set(L, R);
case ICmpInst::ICMP_NE:
return isl_pw_aff_ne_set(L, R);
case ICmpInst::ICMP_SLT:
return isl_pw_aff_lt_set(L, R);
case ICmpInst::ICMP_SLE:
return isl_pw_aff_le_set(L, R);
case ICmpInst::ICMP_SGT:
return isl_pw_aff_gt_set(L, R);
case ICmpInst::ICMP_SGE:
return isl_pw_aff_ge_set(L, R);
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_UGE:
llvm_unreachable("Unsigned comparisons not yet supported");
default:
llvm_unreachable("Non integer predicate not supported");
}
}
__isl_give isl_set *ScopStmt::addLoopBoundsToDomain(__isl_take isl_set *Domain,
TempScop &tempScop) {
isl_space *Space;
isl_local_space *LocalSpace;
Space = isl_set_get_space(Domain);
LocalSpace = isl_local_space_from_space(Space);
for (int i = 0, e = getNumIterators(); i != e; ++i) {
isl_aff *Zero = isl_aff_zero_on_domain(isl_local_space_copy(LocalSpace));
isl_pw_aff *IV =
isl_pw_aff_from_aff(isl_aff_set_coefficient_si(Zero, isl_dim_in, i, 1));
// 0 <= IV.
isl_set *LowerBound = isl_pw_aff_nonneg_set(isl_pw_aff_copy(IV));
Domain = isl_set_intersect(Domain, LowerBound);
// IV <= LatchExecutions.
const Loop *L = getLoopForDimension(i);
const SCEV *LatchExecutions = tempScop.getLoopBound(L);
isl_pw_aff *UpperBound = SCEVAffinator::getPwAff(this, LatchExecutions);
isl_set *UpperBoundSet = isl_pw_aff_le_set(IV, UpperBound);
Domain = isl_set_intersect(Domain, UpperBoundSet);
}
isl_local_space_free(LocalSpace);
return Domain;
}
__isl_give isl_set *ScopStmt::addConditionsToDomain(__isl_take isl_set *Domain,
TempScop &tempScop,
const Region &CurRegion) {
const Region *TopRegion = tempScop.getMaxRegion().getParent(),
*CurrentRegion = &CurRegion;
const BasicBlock *BranchingBB = BB;
do {
if (BranchingBB != CurrentRegion->getEntry()) {
if (const BBCond *Condition = tempScop.getBBCond(BranchingBB))
for (BBCond::const_iterator CI = Condition->begin(),
CE = Condition->end();
CI != CE; ++CI) {
isl_set *ConditionSet = buildConditionSet(*CI);
Domain = isl_set_intersect(Domain, ConditionSet);
}
}
BranchingBB = CurrentRegion->getEntry();
CurrentRegion = CurrentRegion->getParent();
} while (TopRegion != CurrentRegion);
return Domain;
}
__isl_give isl_set *ScopStmt::buildDomain(TempScop &tempScop,
const Region &CurRegion) {
isl_space *Space;
isl_set *Domain;
isl_id *Id;
Space = isl_space_set_alloc(getIslCtx(), 0, getNumIterators());
Id = isl_id_alloc(getIslCtx(), getBaseName(), this);
Domain = isl_set_universe(Space);
Domain = addLoopBoundsToDomain(Domain, tempScop);
Domain = addConditionsToDomain(Domain, tempScop, CurRegion);
Domain = isl_set_set_tuple_id(Domain, Id);
return Domain;
}
2013-01-15 06:40:23 +08:00
ScopStmt::ScopStmt(Scop &parent, TempScop &tempScop, const Region &CurRegion,
BasicBlock &bb, SmallVectorImpl<Loop *> &Nest,
SmallVectorImpl<unsigned> &Scatter)
: Parent(parent), BB(&bb), IVS(Nest.size()), NestLoops(Nest.size()) {
// Setup the induction variables.
for (unsigned i = 0, e = Nest.size(); i < e; ++i) {
if (!SCEVCodegen) {
PHINode *PN = Nest[i]->getCanonicalInductionVariable();
assert(PN && "Non canonical IV in Scop!");
IVS[i] = PN;
}
NestLoops[i] = Nest[i];
}
raw_string_ostream OS(BaseName);
bb.printAsOperand(OS, false);
BaseName = OS.str();
makeIslCompatible(BaseName);
BaseName = "Stmt_" + BaseName;
Domain = buildDomain(tempScop, CurRegion);
buildScattering(Scatter);
buildAccesses(tempScop, CurRegion);
checkForReductions();
}
/// @brief Collect loads which might form a reduction chain with @p StoreMA
///
/// Check if the stored value for @p StoreMA is a binary operator with one or
/// two loads as operands. If the binary operand is commutative & associative,
/// used only once (by @p StoreMA) and its load operands are also used only
/// once, we have found a possible reduction chain. It starts at an operand
/// load and includes the binary operator and @p StoreMA.
///
/// Note: We allow only one use to ensure the load and binary operator cannot
/// escape this block or into any other store except @p StoreMA.
void ScopStmt::collectCandiateReductionLoads(
MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
if (!Store)
return;
// Skip if there is not one binary operator between the load and the store
auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
if (!BinOp)
return;
// Skip if the binary operators has multiple uses
if (BinOp->getNumUses() != 1)
return;
// Skip if the opcode of the binary operator is not commutative/associative
if (!BinOp->isCommutative() || !BinOp->isAssociative())
return;
// Skip if it is a multiplicative reduction and we disabled them
if (DisableMultiplicativeReductions &&
(BinOp->getOpcode() == Instruction::Mul ||
BinOp->getOpcode() == Instruction::FMul))
return;
// Check the binary operator operands for a candidate load
auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
if (!PossibleLoad0 && !PossibleLoad1)
return;
// A load is only a candidate if it cannot escape (thus has only this use)
if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
Loads.push_back(lookupAccessFor(PossibleLoad0));
if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
Loads.push_back(lookupAccessFor(PossibleLoad1));
}
/// @brief Check for reductions in this ScopStmt
///
/// Iterate over all store memory accesses and check for valid binary reduction
/// like chains. For all candidates we check if they have the same base address
/// and there are no other accesses which overlap with them. The base address
/// check rules out impossible reductions candidates early. The overlap check,
/// together with the "only one user" check in collectCandiateReductionLoads,
/// guarantees that none of the intermediate results will escape during
/// execution of the loop nest. We basically check here that no other memory
/// access can access the same memory as the potential reduction.
void ScopStmt::checkForReductions() {
SmallVector<MemoryAccess *, 2> Loads;
SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
// First collect candidate load-store reduction chains by iterating over all
// stores and collecting possible reduction loads.
for (MemoryAccess *StoreMA : MemAccs) {
if (StoreMA->isRead())
continue;
Loads.clear();
collectCandiateReductionLoads(StoreMA, Loads);
for (MemoryAccess *LoadMA : Loads)
Candidates.push_back(std::make_pair(LoadMA, StoreMA));
}
// Then check each possible candidate pair.
for (const auto &CandidatePair : Candidates) {
bool Valid = true;
isl_map *LoadAccs = CandidatePair.first->getAccessRelation();
isl_map *StoreAccs = CandidatePair.second->getAccessRelation();
// Skip those with obviously unequal base addresses.
if (!isl_map_has_equal_space(LoadAccs, StoreAccs)) {
isl_map_free(LoadAccs);
isl_map_free(StoreAccs);
continue;
}
// And check if the remaining for overlap with other memory accesses.
isl_map *AllAccsRel = isl_map_union(LoadAccs, StoreAccs);
AllAccsRel = isl_map_intersect_domain(AllAccsRel, getDomain());
isl_set *AllAccs = isl_map_range(AllAccsRel);
for (MemoryAccess *MA : MemAccs) {
if (MA == CandidatePair.first || MA == CandidatePair.second)
continue;
isl_map *AccRel =
isl_map_intersect_domain(MA->getAccessRelation(), getDomain());
isl_set *Accs = isl_map_range(AccRel);
if (isl_set_has_equal_space(AllAccs, Accs) || isl_set_free(Accs)) {
isl_set *OverlapAccs = isl_set_intersect(Accs, isl_set_copy(AllAccs));
Valid = Valid && isl_set_is_empty(OverlapAccs);
isl_set_free(OverlapAccs);
}
}
isl_set_free(AllAccs);
if (!Valid)
continue;
// If no overlapping access was found we mark the load and store as
// reduction like.
CandidatePair.first->markReductionLike();
CandidatePair.second->markReductionLike();
}
}
2013-01-15 06:40:23 +08:00
std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); }
std::string ScopStmt::getScatteringStr() const {
return stringFromIslObj(Scattering);
}
2013-01-15 06:40:23 +08:00
unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); }
unsigned ScopStmt::getNumIterators() const {
// The final read has one dimension with one element.
if (!BB)
return 1;
return NestLoops.size();
}
unsigned ScopStmt::getNumScattering() const {
return isl_map_dim(Scattering, isl_dim_out);
}
const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
const PHINode *
ScopStmt::getInductionVariableForDimension(unsigned Dimension) const {
return IVS[Dimension];
}
const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
return NestLoops[Dimension];
}
2013-01-15 06:40:23 +08:00
isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
2013-01-15 06:40:23 +08:00
isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); }
isl_space *ScopStmt::getDomainSpace() const {
return isl_set_get_space(Domain);
}
2013-01-15 06:40:23 +08:00
isl_id *ScopStmt::getDomainId() const { return isl_set_get_tuple_id(Domain); }
ScopStmt::~ScopStmt() {
while (!MemAccs.empty()) {
delete MemAccs.back();
MemAccs.pop_back();
}
isl_set_free(Domain);
isl_map_free(Scattering);
}
void ScopStmt::print(raw_ostream &OS) const {
OS << "\t" << getBaseName() << "\n";
OS.indent(12) << "Domain :=\n";
if (Domain) {
OS.indent(16) << getDomainStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
OS.indent(12) << "Scattering :=\n";
if (Domain) {
OS.indent(16) << getScatteringStr() << ";\n";
} else
OS.indent(16) << "n/a\n";
for (MemoryAccessVec::const_iterator I = MemAccs.begin(), E = MemAccs.end();
I != E; ++I)
(*I)->print(OS);
}
void ScopStmt::dump() const { print(dbgs()); }
//===----------------------------------------------------------------------===//
/// Scop class implement
void Scop::setContext(__isl_take isl_set *NewContext) {
NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
isl_set_free(Context);
Context = NewContext;
}
void Scop::addParams(std::vector<const SCEV *> NewParameters) {
for (std::vector<const SCEV *>::iterator PI = NewParameters.begin(),
PE = NewParameters.end();
PI != PE; ++PI) {
const SCEV *Parameter = *PI;
if (ParameterIds.find(Parameter) != ParameterIds.end())
continue;
int dimension = Parameters.size();
Parameters.push_back(Parameter);
ParameterIds[Parameter] = dimension;
}
}
__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) const {
ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter);
if (IdIter == ParameterIds.end())
2014-04-16 15:33:47 +08:00
return nullptr;
std::string ParameterName;
if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
Value *Val = ValueParameter->getValue();
ParameterName = Val->getName();
}
if (ParameterName == "" || ParameterName.substr(0, 2) == "p_")
ParameterName = "p_" + utostr_32(IdIter->second);
return isl_id_alloc(getIslCtx(), ParameterName.c_str(),
const_cast<void *>((const void *)Parameter));
}
void Scop::buildContext() {
isl_space *Space = isl_space_params_alloc(IslCtx, 0);
Context = isl_set_universe(isl_space_copy(Space));
AssumedContext = isl_set_universe(Space);
}
void Scop::addParameterBounds() {
for (unsigned i = 0; i < isl_set_dim(Context, isl_dim_param); ++i) {
isl_val *V;
isl_id *Id;
const SCEV *Scev;
const IntegerType *T;
Id = isl_set_get_dim_id(Context, isl_dim_param, i);
Scev = (const SCEV *)isl_id_get_user(Id);
T = dyn_cast<IntegerType>(Scev->getType());
isl_id_free(Id);
assert(T && "Not an integer type");
int Width = T->getBitWidth();
V = isl_val_int_from_si(IslCtx, Width - 1);
V = isl_val_2exp(V);
V = isl_val_neg(V);
Context = isl_set_lower_bound_val(Context, isl_dim_param, i, V);
V = isl_val_int_from_si(IslCtx, Width - 1);
V = isl_val_2exp(V);
V = isl_val_sub_ui(V, 1);
Context = isl_set_upper_bound_val(Context, isl_dim_param, i, V);
}
}
void Scop::realignParams() {
// Add all parameters into a common model.
isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size());
for (ParamIdType::iterator PI = ParameterIds.begin(), PE = ParameterIds.end();
PI != PE; ++PI) {
const SCEV *Parameter = PI->first;
isl_id *id = getIdForParam(Parameter);
Space = isl_space_set_dim_id(Space, isl_dim_param, PI->second, id);
}
// Align the parameters of all data structures to the model.
Context = isl_set_align_params(Context, Space);
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->realignParams();
}
Scop::Scop(TempScop &tempScop, LoopInfo &LI, ScalarEvolution &ScalarEvolution,
isl_ctx *Context)
: SE(&ScalarEvolution), R(tempScop.getMaxRegion()),
MaxLoopDepth(tempScop.getMaxLoopDepth()) {
IslCtx = Context;
buildContext();
SmallVector<Loop *, 8> NestLoops;
SmallVector<unsigned, 8> Scatter;
Scatter.assign(MaxLoopDepth + 1, 0);
// Build the iteration domain, access functions and scattering functions
// traversing the region tree.
buildScop(tempScop, getRegion(), NestLoops, Scatter, LI);
realignParams();
addParameterBounds();
assert(NestLoops.empty() && "NestLoops not empty at top level!");
}
Scop::~Scop() {
isl_set_free(Context);
isl_set_free(AssumedContext);
// Free the statements;
for (iterator I = begin(), E = end(); I != E; ++I)
delete *I;
}
2013-01-15 06:40:23 +08:00
std::string Scop::getContextStr() const { return stringFromIslObj(Context); }
std::string Scop::getNameStr() const {
std::string ExitName, EntryName;
raw_string_ostream ExitStr(ExitName);
raw_string_ostream EntryStr(EntryName);
R.getEntry()->printAsOperand(EntryStr, false);
EntryStr.str();
if (R.getExit()) {
R.getExit()->printAsOperand(ExitStr, false);
ExitStr.str();
} else
ExitName = "FunctionExit";
return EntryName + "---" + ExitName;
}
2013-01-15 06:40:23 +08:00
__isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); }
__isl_give isl_space *Scop::getParamSpace() const {
return isl_set_get_space(this->Context);
}
__isl_give isl_set *Scop::getAssumedContext() const {
return isl_set_copy(AssumedContext);
}
void Scop::printContext(raw_ostream &OS) const {
OS << "Context:\n";
if (!Context) {
OS.indent(4) << "n/a\n\n";
return;
}
OS.indent(4) << getContextStr() << "\n";
for (ParamVecType::const_iterator PI = Parameters.begin(),
PE = Parameters.end();
PI != PE; ++PI) {
const SCEV *Parameter = *PI;
int Dim = ParameterIds.find(Parameter)->second;
OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n";
}
}
void Scop::printStatements(raw_ostream &OS) const {
OS << "Statements {\n";
for (const_iterator SI = begin(), SE = end(); SI != SE; ++SI)
OS.indent(4) << (**SI);
OS.indent(4) << "}\n";
}
void Scop::print(raw_ostream &OS) const {
OS.indent(4) << "Function: " << getRegion().getEntry()->getParent()->getName()
<< "\n";
OS.indent(4) << "Region: " << getNameStr() << "\n";
printContext(OS.indent(4));
printStatements(OS.indent(4));
}
void Scop::dump() const { print(dbgs()); }
isl_ctx *Scop::getIslCtx() const { return IslCtx; }
__isl_give isl_union_set *Scop::getDomains() {
isl_union_set *Domain = isl_union_set_empty(getParamSpace());
for (ScopStmt *Stmt : *this)
Domain = isl_union_set_add_set(Domain, Stmt->getDomain());
return Domain;
}
__isl_give isl_union_map *Scop::getWrites() {
isl_union_map *Write = isl_union_map_empty(this->getParamSpace());
for (ScopStmt *Stmt : *this) {
for (MemoryAccess *MA : *Stmt) {
if (!MA->isWrite())
continue;
isl_set *Domain = Stmt->getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Write = isl_union_map_add_map(Write, AccessDomain);
}
}
return isl_union_map_coalesce(Write);
}
__isl_give isl_union_map *Scop::getReads() {
isl_union_map *Read = isl_union_map_empty(getParamSpace());
for (ScopStmt *Stmt : *this) {
for (MemoryAccess *MA : *Stmt) {
if (!MA->isRead())
continue;
isl_set *Domain = Stmt->getDomain();
isl_map *AccessDomain = MA->getAccessRelation();
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
Read = isl_union_map_add_map(Read, AccessDomain);
}
}
return isl_union_map_coalesce(Read);
}
__isl_give isl_union_map *Scop::getSchedule() {
isl_union_map *Schedule = isl_union_map_empty(getParamSpace());
for (ScopStmt *Stmt : *this)
Schedule = isl_union_map_add_map(Schedule, Stmt->getScattering());
return isl_union_map_coalesce(Schedule);
}
bool Scop::restrictDomains(__isl_take isl_union_set *Domain) {
bool Changed = false;
for (ScopStmt *Stmt : *this) {
isl_union_set *StmtDomain = isl_union_set_from_set(Stmt->getDomain());
isl_union_set *NewStmtDomain = isl_union_set_intersect(
isl_union_set_copy(StmtDomain), isl_union_set_copy(Domain));
if (isl_union_set_is_subset(StmtDomain, NewStmtDomain)) {
isl_union_set_free(StmtDomain);
isl_union_set_free(NewStmtDomain);
continue;
}
Changed = true;
isl_union_set_free(StmtDomain);
NewStmtDomain = isl_union_set_coalesce(NewStmtDomain);
if (isl_union_set_is_empty(NewStmtDomain)) {
Stmt->restrictDomain(isl_set_empty(Stmt->getDomainSpace()));
isl_union_set_free(NewStmtDomain);
} else
Stmt->restrictDomain(isl_set_from_union_set(NewStmtDomain));
}
isl_union_set_free(Domain);
return Changed;
}
ScalarEvolution *Scop::getSE() const { return SE; }
bool Scop::isTrivialBB(BasicBlock *BB, TempScop &tempScop) {
if (tempScop.getAccessFunctions(BB))
return false;
return true;
}
2013-01-15 06:40:23 +08:00
void Scop::buildScop(TempScop &tempScop, const Region &CurRegion,
SmallVectorImpl<Loop *> &NestLoops,
SmallVectorImpl<unsigned> &Scatter, LoopInfo &LI) {
Loop *L = castToLoop(CurRegion, LI);
if (L)
NestLoops.push_back(L);
unsigned loopDepth = NestLoops.size();
assert(Scatter.size() > loopDepth && "Scatter not big enough!");
for (Region::const_element_iterator I = CurRegion.element_begin(),
E = CurRegion.element_end();
I != E; ++I)
if (I->isSubRegion())
buildScop(tempScop, *(I->getNodeAs<Region>()), NestLoops, Scatter, LI);
else {
BasicBlock *BB = I->getNodeAs<BasicBlock>();
if (isTrivialBB(BB, tempScop))
continue;
Stmts.push_back(
new ScopStmt(*this, tempScop, CurRegion, *BB, NestLoops, Scatter));
// Increasing the Scattering function is OK for the moment, because
// we are using a depth first iterator and the program is well structured.
++Scatter[loopDepth];
}
if (!L)
return;
// Exiting a loop region.
Scatter[loopDepth] = 0;
NestLoops.pop_back();
2013-01-15 06:40:23 +08:00
++Scatter[loopDepth - 1];
}
//===----------------------------------------------------------------------===//
ScopInfo::ScopInfo() : RegionPass(ID), scop(0) {
ctx = isl_ctx_alloc();
isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT);
}
ScopInfo::~ScopInfo() {
clear();
isl_ctx_free(ctx);
}
void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addRequired<RegionInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<TempScopInfo>();
AU.setPreservesAll();
}
bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
LoopInfo &LI = getAnalysis<LoopInfo>();
ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
TempScop *tempScop = getAnalysis<TempScopInfo>().getTempScop(R);
// This region is no Scop.
if (!tempScop) {
scop = 0;
return false;
}
// Statistics.
++ScopFound;
2013-01-15 06:40:23 +08:00
if (tempScop->getMaxLoopDepth() > 0)
++RichScopFound;
scop = new Scop(*tempScop, LI, SE, ctx);
return false;
}
char ScopInfo::ID = 0;
Pass *polly::createScopInfoPass() { return new ScopInfo(); }
INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops",
"Polly - Create polyhedral description of Scops", false,
false);
INITIALIZE_PASS_DEPENDENCY(LoopInfo);
INITIALIZE_PASS_DEPENDENCY(RegionInfo);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution);
INITIALIZE_PASS_DEPENDENCY(TempScopInfo);
INITIALIZE_PASS_END(ScopInfo, "polly-scops",
"Polly - Create polyhedral description of Scops", false,
false)