llvm-project/llvm/lib/Object/COFFObjectFile.cpp

1457 lines
50 KiB
C++
Raw Normal View History

//===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the COFFObjectFile class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/COFF.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
#include <limits>
using namespace llvm;
using namespace object;
using support::ulittle16_t;
using support::ulittle32_t;
using support::ulittle64_t;
using support::little16_t;
// Returns false if size is greater than the buffer size. And sets ec.
static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
if (M.getBufferSize() < Size) {
EC = object_error::unexpected_eof;
return false;
}
return true;
}
static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr,
const uint64_t Size) {
if (Addr + Size < Addr || Addr + Size < Size ||
Addr + Size > uintptr_t(M.getBufferEnd()) ||
Addr < uintptr_t(M.getBufferStart())) {
return object_error::unexpected_eof;
}
return std::error_code();
}
// Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
// Returns unexpected_eof if error.
template <typename T>
static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
const void *Ptr,
const uint64_t Size = sizeof(T)) {
uintptr_t Addr = uintptr_t(Ptr);
if (std::error_code EC = checkOffset(M, Addr, Size))
return EC;
Obj = reinterpret_cast<const T *>(Addr);
return std::error_code();
}
// Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
// prefixed slashes.
static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
assert(Str.size() <= 6 && "String too long, possible overflow.");
if (Str.size() > 6)
return true;
uint64_t Value = 0;
while (!Str.empty()) {
unsigned CharVal;
if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
CharVal = Str[0] - 'A';
else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
CharVal = Str[0] - 'a' + 26;
else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
CharVal = Str[0] - '0' + 52;
else if (Str[0] == '+') // 62
CharVal = 62;
else if (Str[0] == '/') // 63
CharVal = 63;
else
return true;
Value = (Value * 64) + CharVal;
Str = Str.substr(1);
}
if (Value > std::numeric_limits<uint32_t>::max())
return true;
Result = static_cast<uint32_t>(Value);
return false;
}
template <typename coff_symbol_type>
const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
const coff_symbol_type *Addr =
reinterpret_cast<const coff_symbol_type *>(Ref.p);
assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
#ifndef NDEBUG
// Verify that the symbol points to a valid entry in the symbol table.
uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
"Symbol did not point to the beginning of a symbol");
#endif
return Addr;
}
const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
# ifndef NDEBUG
// Verify that the section points to a valid entry in the section table.
if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
report_fatal_error("Section was outside of section table.");
uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
assert(Offset % sizeof(coff_section) == 0 &&
"Section did not point to the beginning of a section");
# endif
return Addr;
}
void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
auto End = reinterpret_cast<uintptr_t>(StringTable);
if (SymbolTable16) {
const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
Symb += 1 + Symb->NumberOfAuxSymbols;
Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
} else if (SymbolTable32) {
const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
Symb += 1 + Symb->NumberOfAuxSymbols;
Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
} else {
llvm_unreachable("no symbol table pointer!");
}
}
Thread Expected<...> up from libObject’s getName() for symbols to allow llvm-objdump to produce a good error message. Produce another specific error message for a malformed Mach-O file when a symbol’s string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test for macho-invalid-symbol-name-past-eof now reports the error with the message indicating that a symbol at a specific index has a bad sting index and that bad string index value. Again converting interfaces to Expected<> from ErrorOr<> does involve touching a number of places. Where the existing code reported the error with a string message or an error code it was converted to do the same. There is some code for this that could be factored into a routine but I would like to leave that for the code owners post-commit to do as they want for handling an llvm::Error. An example of how this could be done is shown in the diff in lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine already for std::error_code so I added one like it for llvm::Error . Also there some were bugs in the existing code that did not deal with the old ErrorOr<> return values.  So now with Expected<> since they must be checked and the error handled, I added a TODO and a comment: “// TODO: Actually report errors helpfully” and a call something like consumeError(NameOrErr.takeError()) so the buggy code will not crash since needed to deal with the Error. Note there fixes needed to lld that goes along with this that I will commit right after this. So expect lld not to built after this commit and before the next one. llvm-svn: 266919
2016-04-21 05:24:34 +08:00
Expected<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
COFFSymbolRef Symb = getCOFFSymbol(Ref);
StringRef Result;
std::error_code EC = getSymbolName(Symb, Result);
if (EC)
Thread Expected<...> up from libObject’s getName() for symbols to allow llvm-objdump to produce a good error message. Produce another specific error message for a malformed Mach-O file when a symbol’s string index is past the end of the string table. The existing test case in test/Object/macho-invalid.test for macho-invalid-symbol-name-past-eof now reports the error with the message indicating that a symbol at a specific index has a bad sting index and that bad string index value. Again converting interfaces to Expected<> from ErrorOr<> does involve touching a number of places. Where the existing code reported the error with a string message or an error code it was converted to do the same. There is some code for this that could be factored into a routine but I would like to leave that for the code owners post-commit to do as they want for handling an llvm::Error. An example of how this could be done is shown in the diff in lib/ExecutionEngine/RuntimeDyld/RuntimeDyldImpl.h which had a Check() routine already for std::error_code so I added one like it for llvm::Error . Also there some were bugs in the existing code that did not deal with the old ErrorOr<> return values.  So now with Expected<> since they must be checked and the error handled, I added a TODO and a comment: “// TODO: Actually report errors helpfully” and a call something like consumeError(NameOrErr.takeError()) so the buggy code will not crash since needed to deal with the Error. Note there fixes needed to lld that goes along with this that I will commit right after this. So expect lld not to built after this commit and before the next one. llvm-svn: 266919
2016-04-21 05:24:34 +08:00
return errorCodeToError(EC);
return Result;
}
uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
return getCOFFSymbol(Ref).getValue();
}
ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
uint64_t Result = getSymbolValue(Ref);
COFFSymbolRef Symb = getCOFFSymbol(Ref);
int32_t SectionNumber = Symb.getSectionNumber();
if (Symb.isAnyUndefined() || Symb.isCommon() ||
COFF::isReservedSectionNumber(SectionNumber))
return Result;
const coff_section *Section = nullptr;
if (std::error_code EC = getSection(SectionNumber, Section))
return EC;
Result += Section->VirtualAddress;
// The section VirtualAddress does not include ImageBase, and we want to
// return virtual addresses.
Result += getImageBase();
return Result;
}
Fix a crash in running llvm-objdump -t with an invalid Mach-O file already in the test suite. While this is not really an interesting tool and option to run on a Mach-O file to show the symbol table in a generic libObject format it shouldn’t crash. The reason for the crash was in MachOObjectFile::getSymbolType() when it was calling MachOObjectFile::getSymbolSection() without checking its return value for the error case. What makes this fix require a fair bit of diffs is that the method getSymbolType() is in the class ObjectFile defined without an ErrorOr<> so I needed to add that all the sub classes.  And all of the uses needed to be updated and the return value needed to be checked for the error case. The MachOObjectFile version of getSymbolType() “can” get an error in trying to come up with the libObject’s internal SymbolRef::Type when the Mach-O symbol symbol type is an N_SECT type because the code is trying to select from the SymbolRef::ST_Data or SymbolRef::ST_Function values for the SymbolRef::Type. And it needs the Mach-O section to use isData() and isBSS to determine if it will return SymbolRef::ST_Data. One other possible fix I considered is to simply return SymbolRef::ST_Other when MachOObjectFile::getSymbolSection() returned an error. But since in the past when I did such changes that “ate an error in the libObject code” I was asked instead to push the error out of the libObject code I chose not to implement the fix this way. As currently written both the COFF and ELF versions of getSymbolType() can’t get an error. But if isReservedSectionNumber() wanted to check for the two known negative values rather than allowing all negative values or the code wanted to add the same check as in getSymbolAddress() to use getSection() and check for the error then these versions of getSymbolType() could return errors. At the end of the day the error printed now is the generic “Invalid data was encountered while parsing the file” for object_error::parse_failed. In the future when we thread Lang’s new TypedError for recoverable error handling though libObject this will improve. And where the added // Diagnostic(… comment is, it would be changed to produce and error message like “bad section index (42) for symbol at index 8” for this case. llvm-svn: 264187
2016-03-24 04:27:00 +08:00
ErrorOr<SymbolRef::Type> COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
COFFSymbolRef Symb = getCOFFSymbol(Ref);
int32_t SectionNumber = Symb.getSectionNumber();
if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
return SymbolRef::ST_Function;
if (Symb.isAnyUndefined())
return SymbolRef::ST_Unknown;
if (Symb.isCommon())
return SymbolRef::ST_Data;
if (Symb.isFileRecord())
return SymbolRef::ST_File;
// TODO: perhaps we need a new symbol type ST_Section.
if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
return SymbolRef::ST_Debug;
if (!COFF::isReservedSectionNumber(SectionNumber))
return SymbolRef::ST_Data;
return SymbolRef::ST_Other;
}
uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
COFFSymbolRef Symb = getCOFFSymbol(Ref);
uint32_t Result = SymbolRef::SF_None;
if (Symb.isExternal() || Symb.isWeakExternal())
Result |= SymbolRef::SF_Global;
if (Symb.isWeakExternal())
Result |= SymbolRef::SF_Weak;
if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
Result |= SymbolRef::SF_Absolute;
if (Symb.isFileRecord())
Result |= SymbolRef::SF_FormatSpecific;
if (Symb.isSectionDefinition())
Result |= SymbolRef::SF_FormatSpecific;
if (Symb.isCommon())
Result |= SymbolRef::SF_Common;
if (Symb.isAnyUndefined())
Result |= SymbolRef::SF_Undefined;
return Result;
}
uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
COFFSymbolRef Symb = getCOFFSymbol(Ref);
return Symb.getValue();
}
ErrorOr<section_iterator>
COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
COFFSymbolRef Symb = getCOFFSymbol(Ref);
if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
return section_end();
const coff_section *Sec = nullptr;
if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
return EC;
DataRefImpl Ret;
Ret.p = reinterpret_cast<uintptr_t>(Sec);
return section_iterator(SectionRef(Ret, this));
}
unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
return Symb.getSectionNumber();
}
void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
const coff_section *Sec = toSec(Ref);
Sec += 1;
Ref.p = reinterpret_cast<uintptr_t>(Sec);
}
std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
StringRef &Result) const {
const coff_section *Sec = toSec(Ref);
return getSectionName(Sec, Result);
}
uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
uint64_t Result = Sec->VirtualAddress;
// The section VirtualAddress does not include ImageBase, and we want to
// return virtual addresses.
Result += getImageBase();
return Result;
}
uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
return getSectionSize(toSec(Ref));
}
std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
StringRef &Result) const {
const coff_section *Sec = toSec(Ref);
ArrayRef<uint8_t> Res;
std::error_code EC = getSectionContents(Sec, Res);
Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
return EC;
}
uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
return Sec->getAlignment();
}
bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
}
bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
}
bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_MEM_WRITE;
return (Sec->Characteristics & BssFlags) == BssFlags;
}
unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
uintptr_t Offset =
uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
assert((Offset % sizeof(coff_section)) == 0);
return (Offset / sizeof(coff_section)) + 1;
}
bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
// In COFF, a virtual section won't have any in-file
// content, so the file pointer to the content will be zero.
return Sec->PointerToRawData == 0;
}
static uint32_t getNumberOfRelocations(const coff_section *Sec,
MemoryBufferRef M, const uint8_t *base) {
// The field for the number of relocations in COFF section table is only
// 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
// NumberOfRelocations field, and the actual relocation count is stored in the
// VirtualAddress field in the first relocation entry.
if (Sec->hasExtendedRelocations()) {
const coff_relocation *FirstReloc;
if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
base + Sec->PointerToRelocations)))
return 0;
// -1 to exclude this first relocation entry.
return FirstReloc->VirtualAddress - 1;
}
return Sec->NumberOfRelocations;
}
static const coff_relocation *
getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
if (!NumRelocs)
return nullptr;
auto begin = reinterpret_cast<const coff_relocation *>(
Base + Sec->PointerToRelocations);
if (Sec->hasExtendedRelocations()) {
// Skip the first relocation entry repurposed to store the number of
// relocations.
begin++;
}
if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs))
return nullptr;
return begin;
}
relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
const coff_relocation *begin = getFirstReloc(Sec, Data, base());
if (begin && Sec->VirtualAddress != 0)
report_fatal_error("Sections with relocations should have an address of 0");
DataRefImpl Ret;
Ret.p = reinterpret_cast<uintptr_t>(begin);
return relocation_iterator(RelocationRef(Ret, this));
}
relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
const coff_section *Sec = toSec(Ref);
const coff_relocation *I = getFirstReloc(Sec, Data, base());
if (I)
I += getNumberOfRelocations(Sec, Data, base());
DataRefImpl Ret;
Ret.p = reinterpret_cast<uintptr_t>(I);
return relocation_iterator(RelocationRef(Ret, this));
}
// Initialize the pointer to the symbol table.
std::error_code COFFObjectFile::initSymbolTablePtr() {
if (COFFHeader)
if (std::error_code EC = getObject(
SymbolTable16, Data, base() + getPointerToSymbolTable(),
(uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
return EC;
if (COFFBigObjHeader)
if (std::error_code EC = getObject(
SymbolTable32, Data, base() + getPointerToSymbolTable(),
(uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
return EC;
// Find string table. The first four byte of the string table contains the
// total size of the string table, including the size field itself. If the
// string table is empty, the value of the first four byte would be 4.
uint32_t StringTableOffset = getPointerToSymbolTable() +
getNumberOfSymbols() * getSymbolTableEntrySize();
const uint8_t *StringTableAddr = base() + StringTableOffset;
const ulittle32_t *StringTableSizePtr;
if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
return EC;
StringTableSize = *StringTableSizePtr;
if (std::error_code EC =
getObject(StringTable, Data, StringTableAddr, StringTableSize))
return EC;
// Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
// tools like cvtres write a size of 0 for an empty table instead of 4.
if (StringTableSize < 4)
StringTableSize = 4;
// Check that the string table is null terminated if has any in it.
if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
return object_error::parse_failed;
return std::error_code();
}
uint64_t COFFObjectFile::getImageBase() const {
if (PE32Header)
return PE32Header->ImageBase;
else if (PE32PlusHeader)
return PE32PlusHeader->ImageBase;
// This actually comes up in practice.
return 0;
}
// Returns the file offset for the given VA.
std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
uint64_t ImageBase = getImageBase();
uint64_t Rva = Addr - ImageBase;
assert(Rva <= UINT32_MAX);
return getRvaPtr((uint32_t)Rva, Res);
}
// Returns the file offset for the given RVA.
std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
for (const SectionRef &S : sections()) {
const coff_section *Section = getCOFFSection(S);
uint32_t SectionStart = Section->VirtualAddress;
uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
if (SectionStart <= Addr && Addr < SectionEnd) {
uint32_t Offset = Addr - SectionStart;
Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
return std::error_code();
}
}
return object_error::parse_failed;
}
// Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
// table entry.
std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
StringRef &Name) const {
uintptr_t IntPtr = 0;
if (std::error_code EC = getRvaPtr(Rva, IntPtr))
return EC;
const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
return std::error_code();
}
// Find the import table.
std::error_code COFFObjectFile::initImportTablePtr() {
// First, we get the RVA of the import table. If the file lacks a pointer to
// the import table, do nothing.
const data_directory *DataEntry;
if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
return std::error_code();
// Do nothing if the pointer to import table is NULL.
if (DataEntry->RelativeVirtualAddress == 0)
return std::error_code();
uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
// -1 because the last entry is the null entry.
NumberOfImportDirectory = DataEntry->Size /
sizeof(import_directory_table_entry) - 1;
// Find the section that contains the RVA. This is needed because the RVA is
// the import table's memory address which is different from its file offset.
uintptr_t IntPtr = 0;
if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
return EC;
ImportDirectory = reinterpret_cast<
const import_directory_table_entry *>(IntPtr);
return std::error_code();
}
// Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
std::error_code COFFObjectFile::initDelayImportTablePtr() {
const data_directory *DataEntry;
if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
return std::error_code();
if (DataEntry->RelativeVirtualAddress == 0)
return std::error_code();
uint32_t RVA = DataEntry->RelativeVirtualAddress;
NumberOfDelayImportDirectory = DataEntry->Size /
sizeof(delay_import_directory_table_entry) - 1;
uintptr_t IntPtr = 0;
if (std::error_code EC = getRvaPtr(RVA, IntPtr))
return EC;
DelayImportDirectory = reinterpret_cast<
const delay_import_directory_table_entry *>(IntPtr);
return std::error_code();
}
// Find the export table.
std::error_code COFFObjectFile::initExportTablePtr() {
// First, we get the RVA of the export table. If the file lacks a pointer to
// the export table, do nothing.
const data_directory *DataEntry;
if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
return std::error_code();
// Do nothing if the pointer to export table is NULL.
if (DataEntry->RelativeVirtualAddress == 0)
return std::error_code();
uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
uintptr_t IntPtr = 0;
if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
return EC;
2014-01-18 06:11:27 +08:00
ExportDirectory =
reinterpret_cast<const export_directory_table_entry *>(IntPtr);
return std::error_code();
}
std::error_code COFFObjectFile::initBaseRelocPtr() {
const data_directory *DataEntry;
if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
return std::error_code();
if (DataEntry->RelativeVirtualAddress == 0)
return std::error_code();
uintptr_t IntPtr = 0;
if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
return EC;
BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
IntPtr);
BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
IntPtr + DataEntry->Size);
return std::error_code();
}
COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
: ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
ImportDirectory(nullptr), NumberOfImportDirectory(0),
DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
ExportDirectory(nullptr), BaseRelocHeader(nullptr),
BaseRelocEnd(nullptr) {
// Check that we at least have enough room for a header.
if (!checkSize(Data, EC, sizeof(coff_file_header)))
return;
// The current location in the file where we are looking at.
uint64_t CurPtr = 0;
// PE header is optional and is present only in executables. If it exists,
// it is placed right after COFF header.
bool HasPEHeader = false;
// Check if this is a PE/COFF file.
if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
// PE/COFF, seek through MS-DOS compatibility stub and 4-byte
// PE signature to find 'normal' COFF header.
const auto *DH = reinterpret_cast<const dos_header *>(base());
if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
CurPtr = DH->AddressOfNewExeHeader;
// Check the PE magic bytes. ("PE\0\0")
if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
EC = object_error::parse_failed;
return;
}
CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
HasPEHeader = true;
}
}
if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
return;
// It might be a bigobj file, let's check. Note that COFF bigobj and COFF
// import libraries share a common prefix but bigobj is more restrictive.
if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
COFFHeader->NumberOfSections == uint16_t(0xffff) &&
checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
return;
// Verify that we are dealing with bigobj.
if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
sizeof(COFF::BigObjMagic)) == 0) {
COFFHeader = nullptr;
CurPtr += sizeof(coff_bigobj_file_header);
} else {
// It's not a bigobj.
COFFBigObjHeader = nullptr;
}
}
if (COFFHeader) {
// The prior checkSize call may have failed. This isn't a hard error
// because we were just trying to sniff out bigobj.
EC = std::error_code();
CurPtr += sizeof(coff_file_header);
if (COFFHeader->isImportLibrary())
return;
}
if (HasPEHeader) {
const pe32_header *Header;
if ((EC = getObject(Header, Data, base() + CurPtr)))
return;
const uint8_t *DataDirAddr;
uint64_t DataDirSize;
if (Header->Magic == COFF::PE32Header::PE32) {
PE32Header = Header;
DataDirAddr = base() + CurPtr + sizeof(pe32_header);
DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
} else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
} else {
// It's neither PE32 nor PE32+.
EC = object_error::parse_failed;
return;
}
if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
return;
CurPtr += COFFHeader->SizeOfOptionalHeader;
}
if ((EC = getObject(SectionTable, Data, base() + CurPtr,
(uint64_t)getNumberOfSections() * sizeof(coff_section))))
return;
// Initialize the pointer to the symbol table.
if (getPointerToSymbolTable() != 0) {
if ((EC = initSymbolTablePtr()))
return;
} else {
// We had better not have any symbols if we don't have a symbol table.
if (getNumberOfSymbols() != 0) {
EC = object_error::parse_failed;
return;
}
}
// Initialize the pointer to the beginning of the import table.
if ((EC = initImportTablePtr()))
return;
if ((EC = initDelayImportTablePtr()))
return;
// Initialize the pointer to the export table.
if ((EC = initExportTablePtr()))
return;
// Initialize the pointer to the base relocation table.
if ((EC = initBaseRelocPtr()))
return;
EC = std::error_code();
}
basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const {
DataRefImpl Ret;
Ret.p = getSymbolTable();
return basic_symbol_iterator(SymbolRef(Ret, this));
}
basic_symbol_iterator COFFObjectFile::symbol_end_impl() const {
// The symbol table ends where the string table begins.
DataRefImpl Ret;
Ret.p = reinterpret_cast<uintptr_t>(StringTable);
return basic_symbol_iterator(SymbolRef(Ret, this));
}
import_directory_iterator COFFObjectFile::import_directory_begin() const {
return import_directory_iterator(
ImportDirectoryEntryRef(ImportDirectory, 0, this));
}
import_directory_iterator COFFObjectFile::import_directory_end() const {
return import_directory_iterator(
ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this));
}
delay_import_directory_iterator
COFFObjectFile::delay_import_directory_begin() const {
return delay_import_directory_iterator(
DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
}
delay_import_directory_iterator
COFFObjectFile::delay_import_directory_end() const {
return delay_import_directory_iterator(
DelayImportDirectoryEntryRef(
DelayImportDirectory, NumberOfDelayImportDirectory, this));
}
export_directory_iterator COFFObjectFile::export_directory_begin() const {
return export_directory_iterator(
ExportDirectoryEntryRef(ExportDirectory, 0, this));
}
export_directory_iterator COFFObjectFile::export_directory_end() const {
if (!ExportDirectory)
return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
ExportDirectoryEntryRef Ref(ExportDirectory,
ExportDirectory->AddressTableEntries, this);
return export_directory_iterator(Ref);
}
section_iterator COFFObjectFile::section_begin() const {
DataRefImpl Ret;
Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
return section_iterator(SectionRef(Ret, this));
}
section_iterator COFFObjectFile::section_end() const {
DataRefImpl Ret;
int NumSections =
COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
return section_iterator(SectionRef(Ret, this));
}
base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
}
base_reloc_iterator COFFObjectFile::base_reloc_end() const {
return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
}
uint8_t COFFObjectFile::getBytesInAddress() const {
return getArch() == Triple::x86_64 ? 8 : 4;
}
StringRef COFFObjectFile::getFileFormatName() const {
switch(getMachine()) {
case COFF::IMAGE_FILE_MACHINE_I386:
return "COFF-i386";
case COFF::IMAGE_FILE_MACHINE_AMD64:
return "COFF-x86-64";
case COFF::IMAGE_FILE_MACHINE_ARMNT:
return "COFF-ARM";
case COFF::IMAGE_FILE_MACHINE_ARM64:
return "COFF-ARM64";
default:
return "COFF-<unknown arch>";
}
}
unsigned COFFObjectFile::getArch() const {
switch (getMachine()) {
case COFF::IMAGE_FILE_MACHINE_I386:
return Triple::x86;
case COFF::IMAGE_FILE_MACHINE_AMD64:
return Triple::x86_64;
case COFF::IMAGE_FILE_MACHINE_ARMNT:
return Triple::thumb;
case COFF::IMAGE_FILE_MACHINE_ARM64:
return Triple::aarch64;
default:
return Triple::UnknownArch;
}
}
iterator_range<import_directory_iterator>
COFFObjectFile::import_directories() const {
return make_range(import_directory_begin(), import_directory_end());
}
iterator_range<delay_import_directory_iterator>
COFFObjectFile::delay_import_directories() const {
return make_range(delay_import_directory_begin(),
delay_import_directory_end());
}
iterator_range<export_directory_iterator>
COFFObjectFile::export_directories() const {
return make_range(export_directory_begin(), export_directory_end());
}
iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
return make_range(base_reloc_begin(), base_reloc_end());
}
std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
Res = PE32Header;
return std::error_code();
}
std::error_code
COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
Res = PE32PlusHeader;
return std::error_code();
}
std::error_code
COFFObjectFile::getDataDirectory(uint32_t Index,
const data_directory *&Res) const {
// Error if if there's no data directory or the index is out of range.
if (!DataDirectory) {
Res = nullptr;
return object_error::parse_failed;
}
assert(PE32Header || PE32PlusHeader);
uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
: PE32PlusHeader->NumberOfRvaAndSize;
if (Index >= NumEnt) {
Res = nullptr;
return object_error::parse_failed;
}
Res = &DataDirectory[Index];
return std::error_code();
}
std::error_code COFFObjectFile::getSection(int32_t Index,
const coff_section *&Result) const {
Result = nullptr;
if (COFF::isReservedSectionNumber(Index))
return std::error_code();
if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
// We already verified the section table data, so no need to check again.
Result = SectionTable + (Index - 1);
return std::error_code();
}
return object_error::parse_failed;
}
std::error_code COFFObjectFile::getString(uint32_t Offset,
StringRef &Result) const {
if (StringTableSize <= 4)
// Tried to get a string from an empty string table.
return object_error::parse_failed;
if (Offset >= StringTableSize)
return object_error::unexpected_eof;
Result = StringRef(StringTable + Offset);
return std::error_code();
}
std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
StringRef &Res) const {
return getSymbolName(Symbol.getGeneric(), Res);
}
std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
StringRef &Res) const {
// Check for string table entry. First 4 bytes are 0.
if (Symbol->Name.Offset.Zeroes == 0) {
if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
return EC;
return std::error_code();
}
if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
// Null terminated, let ::strlen figure out the length.
Res = StringRef(Symbol->Name.ShortName);
else
// Not null terminated, use all 8 bytes.
Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
return std::error_code();
}
ArrayRef<uint8_t>
COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
const uint8_t *Aux = nullptr;
size_t SymbolSize = getSymbolTableEntrySize();
if (Symbol.getNumberOfAuxSymbols() > 0) {
// AUX data comes immediately after the symbol in COFF
Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
# ifndef NDEBUG
// Verify that the Aux symbol points to a valid entry in the symbol table.
uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
if (Offset < getPointerToSymbolTable() ||
Offset >=
getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
report_fatal_error("Aux Symbol data was outside of symbol table.");
assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
"Aux Symbol data did not point to the beginning of a symbol");
# endif
}
return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
}
std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
StringRef &Res) const {
StringRef Name;
if (Sec->Name[COFF::NameSize - 1] == 0)
// Null terminated, let ::strlen figure out the length.
Name = Sec->Name;
else
// Not null terminated, use all 8 bytes.
Name = StringRef(Sec->Name, COFF::NameSize);
// Check for string table entry. First byte is '/'.
if (Name.startswith("/")) {
uint32_t Offset;
if (Name.startswith("//")) {
if (decodeBase64StringEntry(Name.substr(2), Offset))
return object_error::parse_failed;
} else {
if (Name.substr(1).getAsInteger(10, Offset))
return object_error::parse_failed;
}
if (std::error_code EC = getString(Offset, Name))
return EC;
}
Res = Name;
return std::error_code();
}
uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
// SizeOfRawData and VirtualSize change what they represent depending on
// whether or not we have an executable image.
//
// For object files, SizeOfRawData contains the size of section's data;
// VirtualSize should be zero but isn't due to buggy COFF writers.
//
// For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
// actual section size is in VirtualSize. It is possible for VirtualSize to
// be greater than SizeOfRawData; the contents past that point should be
// considered to be zero.
if (getDOSHeader())
return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
return Sec->SizeOfRawData;
}
std::error_code
COFFObjectFile::getSectionContents(const coff_section *Sec,
ArrayRef<uint8_t> &Res) const {
// PointerToRawData and SizeOfRawData won't make sense for BSS sections,
// don't do anything interesting for them.
assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 &&
"BSS sections don't have contents!");
// The only thing that we need to verify is that the contents is contained
// within the file bounds. We don't need to make sure it doesn't cover other
// data, as there's nothing that says that is not allowed.
uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
uint32_t SectionSize = getSectionSize(Sec);
if (checkOffset(Data, ConStart, SectionSize))
return object_error::parse_failed;
Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
return std::error_code();
}
const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
return reinterpret_cast<const coff_relocation*>(Rel.p);
}
void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
Rel.p = reinterpret_cast<uintptr_t>(
reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
}
uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
const coff_relocation *R = toRel(Rel);
return R->VirtualAddress;
}
symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
const coff_relocation *R = toRel(Rel);
DataRefImpl Ref;
if (R->SymbolTableIndex >= getNumberOfSymbols())
return symbol_end();
if (SymbolTable16)
Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
else if (SymbolTable32)
Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
else
llvm_unreachable("no symbol table pointer!");
return symbol_iterator(SymbolRef(Ref, this));
}
uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
const coff_relocation* R = toRel(Rel);
return R->Type;
}
const coff_section *
COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
return toSec(Section.getRawDataRefImpl());
}
COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
if (SymbolTable16)
return toSymb<coff_symbol16>(Ref);
if (SymbolTable32)
return toSymb<coff_symbol32>(Ref);
llvm_unreachable("no symbol table pointer!");
}
COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
return getCOFFSymbol(Symbol.getRawDataRefImpl());
}
const coff_relocation *
COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
return toRel(Reloc.getRawDataRefImpl());
}
iterator_range<const coff_relocation *>
COFFObjectFile::getRelocations(const coff_section *Sec) const {
const coff_relocation *I = getFirstReloc(Sec, Data, base());
const coff_relocation *E = I;
if (I)
E += getNumberOfRelocations(Sec, Data, base());
return make_range(I, E);
}
#define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
case COFF::reloc_type: \
Res = #reloc_type; \
break;
void COFFObjectFile::getRelocationTypeName(
DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
const coff_relocation *Reloc = toRel(Rel);
StringRef Res;
switch (getMachine()) {
case COFF::IMAGE_FILE_MACHINE_AMD64:
switch (Reloc->Type) {
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
default:
Res = "Unknown";
}
break;
case COFF::IMAGE_FILE_MACHINE_ARMNT:
switch (Reloc->Type) {
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
default:
Res = "Unknown";
}
break;
case COFF::IMAGE_FILE_MACHINE_I386:
switch (Reloc->Type) {
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
default:
Res = "Unknown";
}
break;
default:
Res = "Unknown";
}
Result.append(Res.begin(), Res.end());
}
#undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
bool COFFObjectFile::isRelocatableObject() const {
return !DataDirectory;
}
bool ImportDirectoryEntryRef::
operator==(const ImportDirectoryEntryRef &Other) const {
return ImportTable == Other.ImportTable && Index == Other.Index;
}
void ImportDirectoryEntryRef::moveNext() {
++Index;
}
std::error_code ImportDirectoryEntryRef::getImportTableEntry(
const import_directory_table_entry *&Result) const {
Result = ImportTable + Index;
return std::error_code();
}
static imported_symbol_iterator
makeImportedSymbolIterator(const COFFObjectFile *Object,
uintptr_t Ptr, int Index) {
if (Object->getBytesInAddress() == 4) {
auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
}
auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
}
static imported_symbol_iterator
importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
uintptr_t IntPtr = 0;
Object->getRvaPtr(RVA, IntPtr);
return makeImportedSymbolIterator(Object, IntPtr, 0);
}
static imported_symbol_iterator
importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
uintptr_t IntPtr = 0;
Object->getRvaPtr(RVA, IntPtr);
// Forward the pointer to the last entry which is null.
int Index = 0;
if (Object->getBytesInAddress() == 4) {
auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
while (*Entry++)
++Index;
} else {
auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
while (*Entry++)
++Index;
}
return makeImportedSymbolIterator(Object, IntPtr, Index);
}
imported_symbol_iterator
ImportDirectoryEntryRef::imported_symbol_begin() const {
return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
OwningObject);
}
imported_symbol_iterator
ImportDirectoryEntryRef::imported_symbol_end() const {
return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
OwningObject);
}
iterator_range<imported_symbol_iterator>
ImportDirectoryEntryRef::imported_symbols() const {
return make_range(imported_symbol_begin(), imported_symbol_end());
}
std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
uintptr_t IntPtr = 0;
if (std::error_code EC =
OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return std::error_code();
}
std::error_code
ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
Result = ImportTable[Index].ImportLookupTableRVA;
return std::error_code();
}
std::error_code
ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
Result = ImportTable[Index].ImportAddressTableRVA;
return std::error_code();
}
std::error_code ImportDirectoryEntryRef::getImportLookupEntry(
const import_lookup_table_entry32 *&Result) const {
uintptr_t IntPtr = 0;
uint32_t RVA = ImportTable[Index].ImportLookupTableRVA;
if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
return EC;
Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr);
return std::error_code();
}
bool DelayImportDirectoryEntryRef::
operator==(const DelayImportDirectoryEntryRef &Other) const {
return Table == Other.Table && Index == Other.Index;
}
void DelayImportDirectoryEntryRef::moveNext() {
++Index;
}
imported_symbol_iterator
DelayImportDirectoryEntryRef::imported_symbol_begin() const {
return importedSymbolBegin(Table[Index].DelayImportNameTable,
OwningObject);
}
imported_symbol_iterator
DelayImportDirectoryEntryRef::imported_symbol_end() const {
return importedSymbolEnd(Table[Index].DelayImportNameTable,
OwningObject);
}
iterator_range<imported_symbol_iterator>
DelayImportDirectoryEntryRef::imported_symbols() const {
return make_range(imported_symbol_begin(), imported_symbol_end());
}
std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
uintptr_t IntPtr = 0;
if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return std::error_code();
}
std::error_code DelayImportDirectoryEntryRef::
getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
Result = Table;
return std::error_code();
}
std::error_code DelayImportDirectoryEntryRef::
getImportAddress(int AddrIndex, uint64_t &Result) const {
uint32_t RVA = Table[Index].DelayImportAddressTable +
AddrIndex * (OwningObject->is64() ? 8 : 4);
uintptr_t IntPtr = 0;
if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
return EC;
if (OwningObject->is64())
Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
else
Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
return std::error_code();
}
bool ExportDirectoryEntryRef::
operator==(const ExportDirectoryEntryRef &Other) const {
return ExportTable == Other.ExportTable && Index == Other.Index;
}
void ExportDirectoryEntryRef::moveNext() {
++Index;
}
// Returns the name of the current export symbol. If the symbol is exported only
// by ordinal, the empty string is set as a result.
std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
uintptr_t IntPtr = 0;
if (std::error_code EC =
OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return std::error_code();
}
// Returns the starting ordinal number.
std::error_code
ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
Result = ExportTable->OrdinalBase;
return std::error_code();
}
// Returns the export ordinal of the current export symbol.
std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
Result = ExportTable->OrdinalBase + Index;
return std::error_code();
}
// Returns the address of the current export symbol.
std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
uintptr_t IntPtr = 0;
if (std::error_code EC =
OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
return EC;
2014-01-18 06:11:27 +08:00
const export_address_table_entry *entry =
reinterpret_cast<const export_address_table_entry *>(IntPtr);
Result = entry[Index].ExportRVA;
return std::error_code();
}
// Returns the name of the current export symbol. If the symbol is exported only
// by ordinal, the empty string is set as a result.
std::error_code
ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
uintptr_t IntPtr = 0;
if (std::error_code EC =
OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
return EC;
const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
uint32_t NumEntries = ExportTable->NumberOfNamePointers;
int Offset = 0;
for (const ulittle16_t *I = Start, *E = Start + NumEntries;
I < E; ++I, ++Offset) {
if (*I != Index)
continue;
if (std::error_code EC =
OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
return EC;
const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return std::error_code();
}
Result = "";
return std::error_code();
}
std::error_code ExportDirectoryEntryRef::isForwarder(bool &Result) const {
const data_directory *DataEntry;
if (auto EC = OwningObject->getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
return EC;
uint32_t RVA;
if (auto EC = getExportRVA(RVA))
return EC;
uint32_t Begin = DataEntry->RelativeVirtualAddress;
uint32_t End = DataEntry->RelativeVirtualAddress + DataEntry->Size;
Result = (Begin <= RVA && RVA < End);
return std::error_code();
}
std::error_code ExportDirectoryEntryRef::getForwardTo(StringRef &Result) const {
uint32_t RVA;
if (auto EC = getExportRVA(RVA))
return EC;
uintptr_t IntPtr = 0;
if (auto EC = OwningObject->getRvaPtr(RVA, IntPtr))
return EC;
Result = StringRef(reinterpret_cast<const char *>(IntPtr));
return std::error_code();
}
bool ImportedSymbolRef::
operator==(const ImportedSymbolRef &Other) const {
return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
&& Index == Other.Index;
}
void ImportedSymbolRef::moveNext() {
++Index;
}
std::error_code
ImportedSymbolRef::getSymbolName(StringRef &Result) const {
uint32_t RVA;
if (Entry32) {
// If a symbol is imported only by ordinal, it has no name.
if (Entry32[Index].isOrdinal())
return std::error_code();
RVA = Entry32[Index].getHintNameRVA();
} else {
if (Entry64[Index].isOrdinal())
return std::error_code();
RVA = Entry64[Index].getHintNameRVA();
}
uintptr_t IntPtr = 0;
if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
return EC;
// +2 because the first two bytes is hint.
Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
return std::error_code();
}
std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
uint32_t RVA;
if (Entry32) {
if (Entry32[Index].isOrdinal()) {
Result = Entry32[Index].getOrdinal();
return std::error_code();
}
RVA = Entry32[Index].getHintNameRVA();
} else {
if (Entry64[Index].isOrdinal()) {
Result = Entry64[Index].getOrdinal();
return std::error_code();
}
RVA = Entry64[Index].getHintNameRVA();
}
uintptr_t IntPtr = 0;
if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
return EC;
Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
return std::error_code();
}
ErrorOr<std::unique_ptr<COFFObjectFile>>
ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
std::error_code EC;
std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
if (EC)
return EC;
return std::move(Ret);
}
bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
return Header == Other.Header && Index == Other.Index;
}
void BaseRelocRef::moveNext() {
// Header->BlockSize is the size of the current block, including the
// size of the header itself.
uint32_t Size = sizeof(*Header) +
sizeof(coff_base_reloc_block_entry) * (Index + 1);
if (Size == Header->BlockSize) {
// .reloc contains a list of base relocation blocks. Each block
// consists of the header followed by entries. The header contains
// how many entories will follow. When we reach the end of the
// current block, proceed to the next block.
Header = reinterpret_cast<const coff_base_reloc_block_header *>(
reinterpret_cast<const uint8_t *>(Header) + Size);
Index = 0;
} else {
++Index;
}
}
std::error_code BaseRelocRef::getType(uint8_t &Type) const {
auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
Type = Entry[Index].getType();
return std::error_code();
}
std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
Result = Header->PageRVA + Entry[Index].getOffset();
return std::error_code();
}