llvm-project/clang-tools-extra/clangd/Hover.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1156 lines
42 KiB
C++
Raw Normal View History

//===--- Hover.cpp - Information about code at the cursor location --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Hover.h"
#include "AST.h"
#include "CodeCompletionStrings.h"
#include "FindTarget.h"
#include "ParsedAST.h"
#include "Selection.h"
#include "SourceCode.h"
#include "index/SymbolCollector.h"
#include "support/Logger.h"
#include "support/Markup.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Index/IndexSymbol.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <string>
namespace clang {
namespace clangd {
namespace {
PrintingPolicy getPrintingPolicy(PrintingPolicy Base) {
Base.AnonymousTagLocations = false;
Base.TerseOutput = true;
Base.PolishForDeclaration = true;
Base.ConstantsAsWritten = true;
Base.SuppressTemplateArgsInCXXConstructors = true;
return Base;
}
/// Given a declaration \p D, return a human-readable string representing the
/// local scope in which it is declared, i.e. class(es) and method name. Returns
/// an empty string if it is not local.
std::string getLocalScope(const Decl *D) {
std::vector<std::string> Scopes;
const DeclContext *DC = D->getDeclContext();
// ObjC scopes won't have multiple components for us to join, instead:
// - Methods: "-[Class methodParam1:methodParam2]"
// - Classes, categories, and protocols: "MyClass(Category)"
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
return printObjCMethod(*MD);
else if (const ObjCContainerDecl *CD = dyn_cast<ObjCContainerDecl>(DC))
return printObjCContainer(*CD);
auto GetName = [](const TypeDecl *D) {
if (!D->getDeclName().isEmpty()) {
PrintingPolicy Policy = D->getASTContext().getPrintingPolicy();
Policy.SuppressScope = true;
return declaredType(D).getAsString(Policy);
}
if (auto RD = dyn_cast<RecordDecl>(D))
return ("(anonymous " + RD->getKindName() + ")").str();
return std::string("");
};
while (DC) {
if (const TypeDecl *TD = dyn_cast<TypeDecl>(DC))
Scopes.push_back(GetName(TD));
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
Scopes.push_back(FD->getNameAsString());
DC = DC->getParent();
}
return llvm::join(llvm::reverse(Scopes), "::");
}
/// Returns the human-readable representation for namespace containing the
/// declaration \p D. Returns empty if it is contained global namespace.
std::string getNamespaceScope(const Decl *D) {
const DeclContext *DC = D->getDeclContext();
// ObjC does not have the concept of namespaces, so instead we support
// local scopes.
if (isa<ObjCMethodDecl, ObjCContainerDecl>(DC))
return "";
if (const TagDecl *TD = dyn_cast<TagDecl>(DC))
return getNamespaceScope(TD);
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
return getNamespaceScope(FD);
if (const NamespaceDecl *NSD = dyn_cast<NamespaceDecl>(DC)) {
// Skip inline/anon namespaces.
if (NSD->isInline() || NSD->isAnonymousNamespace())
return getNamespaceScope(NSD);
}
if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
return printQualifiedName(*ND);
return "";
}
std::string printDefinition(const Decl *D, const PrintingPolicy &PP) {
std::string Definition;
llvm::raw_string_ostream OS(Definition);
D->print(OS, PP);
OS.flush();
return Definition;
}
std::string printType(QualType QT, const PrintingPolicy &PP) {
// TypePrinter doesn't resolve decltypes, so resolve them here.
// FIXME: This doesn't handle composite types that contain a decltype in them.
// We should rather have a printing policy for that.
while (!QT.isNull() && QT->isDecltypeType())
QT = QT->getAs<DecltypeType>()->getUnderlyingType();
std::string Result;
llvm::raw_string_ostream OS(Result);
// Special case: if the outer type is a tag type without qualifiers, then
// include the tag for extra clarity.
// This isn't very idiomatic, so don't attempt it for complex cases, including
// pointers/references, template specializations, etc.
if (!QT.isNull() && !QT.hasQualifiers() && PP.SuppressTagKeyword) {
if (auto *TT = llvm::dyn_cast<TagType>(QT.getTypePtr()))
OS << TT->getDecl()->getKindName() << " ";
}
OS.flush();
QT.print(OS, PP);
return Result;
}
std::string printType(const TemplateTypeParmDecl *TTP) {
std::string Res = TTP->wasDeclaredWithTypename() ? "typename" : "class";
if (TTP->isParameterPack())
Res += "...";
return Res;
}
std::string printType(const NonTypeTemplateParmDecl *NTTP,
const PrintingPolicy &PP) {
std::string Res = printType(NTTP->getType(), PP);
if (NTTP->isParameterPack())
Res += "...";
return Res;
}
std::string printType(const TemplateTemplateParmDecl *TTP,
const PrintingPolicy &PP) {
std::string Res;
llvm::raw_string_ostream OS(Res);
OS << "template <";
llvm::StringRef Sep = "";
for (const Decl *Param : *TTP->getTemplateParameters()) {
OS << Sep;
Sep = ", ";
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
OS << printType(TTP);
else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
OS << printType(NTTP, PP);
else if (const auto *TTPD = dyn_cast<TemplateTemplateParmDecl>(Param))
OS << printType(TTPD, PP);
}
// FIXME: TemplateTemplateParameter doesn't store the info on whether this
// param was a "typename" or "class".
OS << "> class";
return OS.str();
}
std::vector<HoverInfo::Param>
fetchTemplateParameters(const TemplateParameterList *Params,
const PrintingPolicy &PP) {
assert(Params);
std::vector<HoverInfo::Param> TempParameters;
for (const Decl *Param : *Params) {
HoverInfo::Param P;
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
P.Type = printType(TTP);
if (!TTP->getName().empty())
P.Name = TTP->getNameAsString();
if (TTP->hasDefaultArgument())
P.Default = TTP->getDefaultArgument().getAsString(PP);
} else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
P.Type = printType(NTTP, PP);
if (IdentifierInfo *II = NTTP->getIdentifier())
P.Name = II->getName().str();
if (NTTP->hasDefaultArgument()) {
P.Default.emplace();
llvm::raw_string_ostream Out(*P.Default);
NTTP->getDefaultArgument()->printPretty(Out, nullptr, PP);
}
} else if (const auto *TTPD = dyn_cast<TemplateTemplateParmDecl>(Param)) {
P.Type = printType(TTPD, PP);
if (!TTPD->getName().empty())
P.Name = TTPD->getNameAsString();
if (TTPD->hasDefaultArgument()) {
P.Default.emplace();
llvm::raw_string_ostream Out(*P.Default);
TTPD->getDefaultArgument().getArgument().print(PP, Out,
/*IncludeType*/ false);
}
}
TempParameters.push_back(std::move(P));
}
return TempParameters;
}
const FunctionDecl *getUnderlyingFunction(const Decl *D) {
// Extract lambda from variables.
if (const VarDecl *VD = llvm::dyn_cast<VarDecl>(D)) {
auto QT = VD->getType();
if (!QT.isNull()) {
while (!QT->getPointeeType().isNull())
QT = QT->getPointeeType();
if (const auto *CD = QT->getAsCXXRecordDecl())
return CD->getLambdaCallOperator();
}
}
// Non-lambda functions.
return D->getAsFunction();
}
// Returns the decl that should be used for querying comments, either from index
// or AST.
const NamedDecl *getDeclForComment(const NamedDecl *D) {
if (const auto *TSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>(D)) {
// Template may not be instantiated e.g. if the type didn't need to be
// complete; fallback to primary template.
if (TSD->getTemplateSpecializationKind() == TSK_Undeclared)
return TSD->getSpecializedTemplate();
if (const auto *TIP = TSD->getTemplateInstantiationPattern())
return TIP;
}
if (const auto *TSD = llvm::dyn_cast<VarTemplateSpecializationDecl>(D)) {
if (TSD->getTemplateSpecializationKind() == TSK_Undeclared)
return TSD->getSpecializedTemplate();
if (const auto *TIP = TSD->getTemplateInstantiationPattern())
return TIP;
}
if (const auto *FD = D->getAsFunction())
if (const auto *TIP = FD->getTemplateInstantiationPattern())
return TIP;
return D;
}
// Look up information about D from the index, and add it to Hover.
void enhanceFromIndex(HoverInfo &Hover, const NamedDecl &ND,
const SymbolIndex *Index) {
assert(&ND == getDeclForComment(&ND));
// We only add documentation, so don't bother if we already have some.
if (!Hover.Documentation.empty() || !Index)
return;
// Skip querying for non-indexable symbols, there's no point.
// We're searching for symbols that might be indexed outside this main file.
if (!SymbolCollector::shouldCollectSymbol(ND, ND.getASTContext(),
SymbolCollector::Options(),
/*IsMainFileOnly=*/false))
return;
auto ID = getSymbolID(&ND);
if (!ID)
return;
LookupRequest Req;
Req.IDs.insert(ID);
Index->lookup(Req, [&](const Symbol &S) {
Hover.Documentation = std::string(S.Documentation);
});
}
// Default argument might exist but be unavailable, in the case of unparsed
// arguments for example. This function returns the default argument if it is
// available.
const Expr *getDefaultArg(const ParmVarDecl *PVD) {
// Default argument can be unparsed or uninstantiated. For the former we
// can't do much, as token information is only stored in Sema and not
// attached to the AST node. For the latter though, it is safe to proceed as
// the expression is still valid.
if (!PVD->hasDefaultArg() || PVD->hasUnparsedDefaultArg())
return nullptr;
return PVD->hasUninstantiatedDefaultArg() ? PVD->getUninstantiatedDefaultArg()
: PVD->getDefaultArg();
}
HoverInfo::Param toHoverInfoParam(const ParmVarDecl *PVD,
const PrintingPolicy &PP) {
HoverInfo::Param Out;
Out.Type = printType(PVD->getType(), PP);
if (!PVD->getName().empty())
Out.Name = PVD->getNameAsString();
if (const Expr *DefArg = getDefaultArg(PVD)) {
Out.Default.emplace();
llvm::raw_string_ostream OS(*Out.Default);
DefArg->printPretty(OS, nullptr, PP);
}
return Out;
}
// Populates Type, ReturnType, and Parameters for function-like decls.
void fillFunctionTypeAndParams(HoverInfo &HI, const Decl *D,
const FunctionDecl *FD,
const PrintingPolicy &PP) {
HI.Parameters.emplace();
for (const ParmVarDecl *PVD : FD->parameters())
HI.Parameters->emplace_back(toHoverInfoParam(PVD, PP));
// We don't want any type info, if name already contains it. This is true for
// constructors/destructors and conversion operators.
const auto NK = FD->getDeclName().getNameKind();
if (NK == DeclarationName::CXXConstructorName ||
NK == DeclarationName::CXXDestructorName ||
NK == DeclarationName::CXXConversionFunctionName)
return;
HI.ReturnType = printType(FD->getReturnType(), PP);
QualType QT = FD->getType();
if (const VarDecl *VD = llvm::dyn_cast<VarDecl>(D)) // Lambdas
QT = VD->getType().getDesugaredType(D->getASTContext());
HI.Type = printType(QT, PP);
// FIXME: handle variadics.
}
// Non-negative numbers are printed using min digits
// 0 => 0x0
// 100 => 0x64
// Negative numbers are sign-extended to 32/64 bits
// -2 => 0xfffffffe
// -2^32 => 0xfffffffeffffffff
static llvm::FormattedNumber printHex(const llvm::APSInt &V) {
uint64_t Bits = V.getExtValue();
if (V.isNegative() && V.getMinSignedBits() <= 32)
return llvm::format_hex(uint32_t(Bits), 0);
return llvm::format_hex(Bits, 0);
}
llvm::Optional<std::string> printExprValue(const Expr *E,
const ASTContext &Ctx) {
// InitListExpr has two forms, syntactic and semantic. They are the same thing
// (refer to a same AST node) in most cases.
// When they are different, RAV returns the syntactic form, and we should feed
// the semantic form to EvaluateAsRValue.
if (const auto *ILE = llvm::dyn_cast<InitListExpr>(E)) {
if (!ILE->isSemanticForm())
E = ILE->getSemanticForm();
}
// Evaluating [[foo]]() as "&foo" isn't useful, and prevents us walking up
// to the enclosing call. Evaluating an expression of void type doesn't
// produce a meaningful result.
QualType T = E->getType();
if (T.isNull() || T->isFunctionType() || T->isFunctionPointerType() ||
T->isFunctionReferenceType() || T->isVoidType())
return llvm::None;
Expr::EvalResult Constant;
// Attempt to evaluate. If expr is dependent, evaluation crashes!
if (E->isValueDependent() || !E->EvaluateAsRValue(Constant, Ctx) ||
// Disable printing for record-types, as they are usually confusing and
// might make clang crash while printing the expressions.
Constant.Val.isStruct() || Constant.Val.isUnion())
return llvm::None;
// Show enums symbolically, not numerically like APValue::printPretty().
if (T->isEnumeralType() && Constant.Val.getInt().getMinSignedBits() <= 64) {
// Compare to int64_t to avoid bit-width match requirements.
int64_t Val = Constant.Val.getInt().getExtValue();
for (const EnumConstantDecl *ECD :
T->castAs<EnumType>()->getDecl()->enumerators())
if (ECD->getInitVal() == Val)
return llvm::formatv("{0} ({1})", ECD->getNameAsString(),
printHex(Constant.Val.getInt()))
.str();
}
// Show hex value of integers if they're at least 10 (or negative!)
if (T->isIntegralOrEnumerationType() &&
Constant.Val.getInt().getMinSignedBits() <= 64 &&
Constant.Val.getInt().uge(10))
return llvm::formatv("{0} ({1})", Constant.Val.getAsString(Ctx, T),
printHex(Constant.Val.getInt()))
.str();
return Constant.Val.getAsString(Ctx, T);
}
llvm::Optional<std::string> printExprValue(const SelectionTree::Node *N,
const ASTContext &Ctx) {
for (; N; N = N->Parent) {
2020-01-04 23:28:41 +08:00
// Try to evaluate the first evaluatable enclosing expression.
if (const Expr *E = N->ASTNode.get<Expr>()) {
// Once we cross an expression of type 'cv void', the evaluated result
// has nothing to do with our original cursor position.
if (!E->getType().isNull() && E->getType()->isVoidType())
break;
if (auto Val = printExprValue(E, Ctx))
return Val;
} else if (N->ASTNode.get<Decl>() || N->ASTNode.get<Stmt>()) {
// Refuse to cross certain non-exprs. (TypeLoc are OK as part of Exprs).
// This tries to ensure we're showing a value related to the cursor.
break;
}
}
return llvm::None;
}
llvm::Optional<StringRef> fieldName(const Expr *E) {
const auto *ME = llvm::dyn_cast<MemberExpr>(E->IgnoreCasts());
if (!ME || !llvm::isa<CXXThisExpr>(ME->getBase()->IgnoreCasts()))
return llvm::None;
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 18:26:47 +08:00
const auto *Field = llvm::dyn_cast<FieldDecl>(ME->getMemberDecl());
if (!Field || !Field->getDeclName().isIdentifier())
return llvm::None;
return Field->getDeclName().getAsIdentifierInfo()->getName();
}
// If CMD is of the form T foo() { return FieldName; } then returns "FieldName".
llvm::Optional<StringRef> getterVariableName(const CXXMethodDecl *CMD) {
assert(CMD->hasBody());
if (CMD->getNumParams() != 0 || CMD->isVariadic())
return llvm::None;
const auto *Body = llvm::dyn_cast<CompoundStmt>(CMD->getBody());
const auto *OnlyReturn = (Body && Body->size() == 1)
? llvm::dyn_cast<ReturnStmt>(Body->body_front())
: nullptr;
if (!OnlyReturn || !OnlyReturn->getRetValue())
return llvm::None;
return fieldName(OnlyReturn->getRetValue());
}
// If CMD is one of the forms:
// void foo(T arg) { FieldName = arg; }
// R foo(T arg) { FieldName = arg; return *this; }
// void foo(T arg) { FieldName = std::move(arg); }
// R foo(T arg) { FieldName = std::move(arg); return *this; }
// then returns "FieldName"
llvm::Optional<StringRef> setterVariableName(const CXXMethodDecl *CMD) {
assert(CMD->hasBody());
if (CMD->isConst() || CMD->getNumParams() != 1 || CMD->isVariadic())
return llvm::None;
const ParmVarDecl *Arg = CMD->getParamDecl(0);
if (Arg->isParameterPack())
return llvm::None;
const auto *Body = llvm::dyn_cast<CompoundStmt>(CMD->getBody());
if (!Body || Body->size() == 0 || Body->size() > 2)
return llvm::None;
// If the second statement exists, it must be `return this` or `return *this`.
if (Body->size() == 2) {
auto *Ret = llvm::dyn_cast<ReturnStmt>(Body->body_back());
if (!Ret || !Ret->getRetValue())
return llvm::None;
const Expr *RetVal = Ret->getRetValue()->IgnoreCasts();
if (const auto *UO = llvm::dyn_cast<UnaryOperator>(RetVal)) {
if (UO->getOpcode() != UO_Deref)
return llvm::None;
RetVal = UO->getSubExpr()->IgnoreCasts();
}
if (!llvm::isa<CXXThisExpr>(RetVal))
return llvm::None;
}
// The first statement must be an assignment of the arg to a field.
const Expr *LHS, *RHS;
if (const auto *BO = llvm::dyn_cast<BinaryOperator>(Body->body_front())) {
if (BO->getOpcode() != BO_Assign)
return llvm::None;
LHS = BO->getLHS();
RHS = BO->getRHS();
} else if (const auto *COCE =
llvm::dyn_cast<CXXOperatorCallExpr>(Body->body_front())) {
if (COCE->getOperator() != OO_Equal || COCE->getNumArgs() != 2)
return llvm::None;
LHS = COCE->getArg(0);
RHS = COCE->getArg(1);
} else {
return llvm::None;
}
// Detect the case when the item is moved into the field.
if (auto *CE = llvm::dyn_cast<CallExpr>(RHS->IgnoreCasts())) {
if (CE->getNumArgs() != 1)
return llvm::None;
auto *ND = llvm::dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl());
if (!ND || !ND->getIdentifier() || ND->getName() != "move" ||
!ND->isInStdNamespace())
return llvm::None;
RHS = CE->getArg(0);
}
auto *DRE = llvm::dyn_cast<DeclRefExpr>(RHS->IgnoreCasts());
if (!DRE || DRE->getDecl() != Arg)
return llvm::None;
return fieldName(LHS);
}
std::string synthesizeDocumentation(const NamedDecl *ND) {
if (const auto *CMD = llvm::dyn_cast<CXXMethodDecl>(ND)) {
// Is this an ordinary, non-static method whose definition is visible?
if (CMD->getDeclName().isIdentifier() && !CMD->isStatic() &&
(CMD = llvm::dyn_cast_or_null<CXXMethodDecl>(CMD->getDefinition())) &&
CMD->hasBody()) {
if (const auto GetterField = getterVariableName(CMD))
return llvm::formatv("Trivial accessor for `{0}`.", *GetterField);
if (const auto SetterField = setterVariableName(CMD))
return llvm::formatv("Trivial setter for `{0}`.", *SetterField);
}
}
return "";
}
/// Generate a \p Hover object given the declaration \p D.
HoverInfo getHoverContents(const NamedDecl *D, const PrintingPolicy &PP,
const SymbolIndex *Index) {
HoverInfo HI;
const ASTContext &Ctx = D->getASTContext();
HI.AccessSpecifier = getAccessSpelling(D->getAccess()).str();
HI.NamespaceScope = getNamespaceScope(D);
if (!HI.NamespaceScope->empty())
HI.NamespaceScope->append("::");
HI.LocalScope = getLocalScope(D);
if (!HI.LocalScope.empty())
HI.LocalScope.append("::");
HI.Name = printName(Ctx, *D);
const auto *CommentD = getDeclForComment(D);
HI.Documentation = getDeclComment(Ctx, *CommentD);
enhanceFromIndex(HI, *CommentD, Index);
if (HI.Documentation.empty())
HI.Documentation = synthesizeDocumentation(D);
HI.Kind = index::getSymbolInfo(D).Kind;
// Fill in template params.
if (const TemplateDecl *TD = D->getDescribedTemplate()) {
HI.TemplateParameters =
fetchTemplateParameters(TD->getTemplateParameters(), PP);
D = TD;
} else if (const FunctionDecl *FD = D->getAsFunction()) {
if (const auto *FTD = FD->getDescribedTemplate()) {
HI.TemplateParameters =
fetchTemplateParameters(FTD->getTemplateParameters(), PP);
D = FTD;
}
}
// Fill in types and params.
if (const FunctionDecl *FD = getUnderlyingFunction(D))
fillFunctionTypeAndParams(HI, D, FD, PP);
else if (const auto *VD = dyn_cast<ValueDecl>(D))
HI.Type = printType(VD->getType(), PP);
else if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(D))
HI.Type = TTP->wasDeclaredWithTypename() ? "typename" : "class";
else if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(D))
HI.Type = printType(TTP, PP);
// Fill in value with evaluated initializer if possible.
if (const auto *Var = dyn_cast<VarDecl>(D)) {
if (const Expr *Init = Var->getInit())
HI.Value = printExprValue(Init, Ctx);
} else if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
// Dependent enums (e.g. nested in template classes) don't have values yet.
if (!ECD->getType()->isDependentType())
HI.Value = ECD->getInitVal().toString(10);
}
HI.Definition = printDefinition(D, PP);
return HI;
}
/// Generate a \p Hover object given the macro \p MacroDecl.
HoverInfo getHoverContents(const DefinedMacro &Macro, ParsedAST &AST) {
HoverInfo HI;
SourceManager &SM = AST.getSourceManager();
HI.Name = std::string(Macro.Name);
HI.Kind = index::SymbolKind::Macro;
// FIXME: Populate documentation
// FIXME: Populate parameters
// Try to get the full definition, not just the name
SourceLocation StartLoc = Macro.Info->getDefinitionLoc();
SourceLocation EndLoc = Macro.Info->getDefinitionEndLoc();
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 18:26:47 +08:00
// Ensure that EndLoc is a valid offset. For example it might come from
// preamble, and source file might've changed, in such a scenario EndLoc still
// stays valid, but getLocForEndOfToken will fail as it is no longer a valid
// offset.
// Note that this check is just to ensure there's text data inside the range.
// It will still succeed even when the data inside the range is irrelevant to
// macro definition.
if (SM.getPresumedLoc(EndLoc, /*UseLineDirectives=*/false).isValid()) {
EndLoc = Lexer::getLocForEndOfToken(EndLoc, 0, SM, AST.getLangOpts());
bool Invalid;
StringRef Buffer = SM.getBufferData(SM.getFileID(StartLoc), &Invalid);
if (!Invalid) {
unsigned StartOffset = SM.getFileOffset(StartLoc);
unsigned EndOffset = SM.getFileOffset(EndLoc);
if (EndOffset <= Buffer.size() && StartOffset < EndOffset)
HI.Definition =
("#define " + Buffer.substr(StartOffset, EndOffset - StartOffset))
.str();
}
}
return HI;
}
llvm::Optional<HoverInfo> getThisExprHoverContents(const CXXThisExpr *CTE,
ASTContext &ASTCtx,
const PrintingPolicy &PP) {
QualType OriginThisType = CTE->getType()->getPointeeType();
QualType ClassType = declaredType(OriginThisType->getAsTagDecl());
// For partial specialization class, origin `this` pointee type will be
// parsed as `InjectedClassNameType`, which will ouput template arguments
// like "type-parameter-0-0". So we retrieve user written class type in this
// case.
QualType PrettyThisType = ASTCtx.getPointerType(
QualType(ClassType.getTypePtr(), OriginThisType.getCVRQualifiers()));
HoverInfo HI;
HI.Name = "this";
HI.Definition = printType(PrettyThisType, PP);
return HI;
}
/// Generate a HoverInfo object given the deduced type \p QT
HoverInfo getDeducedTypeHoverContents(QualType QT, const syntax::Token &Tok,
ASTContext &ASTCtx,
const PrintingPolicy &PP,
const SymbolIndex *Index) {
HoverInfo HI;
// FIXME: distinguish decltype(auto) vs decltype(expr)
HI.Name = tok::getTokenName(Tok.kind());
HI.Kind = index::SymbolKind::TypeAlias;
if (QT->isUndeducedAutoType()) {
HI.Definition = "/* not deduced */";
} else {
HI.Definition = printType(QT, PP);
if (const auto *D = QT->getAsTagDecl()) {
const auto *CommentD = getDeclForComment(D);
HI.Documentation = getDeclComment(ASTCtx, *CommentD);
enhanceFromIndex(HI, *CommentD, Index);
}
}
return HI;
}
bool isLiteral(const Expr *E) {
// Unfortunately there's no common base Literal classes inherits from
// (apart from Expr), therefore these exclusions.
return llvm::isa<CharacterLiteral>(E) || llvm::isa<CompoundLiteralExpr>(E) ||
llvm::isa<CXXBoolLiteralExpr>(E) ||
llvm::isa<CXXNullPtrLiteralExpr>(E) ||
llvm::isa<FixedPointLiteral>(E) || llvm::isa<FloatingLiteral>(E) ||
llvm::isa<ImaginaryLiteral>(E) || llvm::isa<IntegerLiteral>(E) ||
llvm::isa<StringLiteral>(E) || llvm::isa<UserDefinedLiteral>(E);
}
llvm::StringLiteral getNameForExpr(const Expr *E) {
// FIXME: Come up with names for `special` expressions.
//
// It's an known issue for GCC5, https://godbolt.org/z/Z_tbgi. Work around
// that by using explicit conversion constructor.
//
// TODO: Once GCC5 is fully retired and not the minimal requirement as stated
// in `GettingStarted`, please remove the explicit conversion constructor.
return llvm::StringLiteral("expression");
}
// Generates hover info for `this` and evaluatable expressions.
// FIXME: Support hover for literals (esp user-defined)
llvm::Optional<HoverInfo> getHoverContents(const Expr *E, ParsedAST &AST,
const PrintingPolicy &PP,
const SymbolIndex *Index) {
// There's not much value in hovering over "42" and getting a hover card
// saying "42 is an int", similar for other literals.
if (isLiteral(E))
return llvm::None;
HoverInfo HI;
// For `this` expr we currently generate hover with pointee type.
if (const CXXThisExpr *CTE = dyn_cast<CXXThisExpr>(E))
return getThisExprHoverContents(CTE, AST.getASTContext(), PP);
// For expressions we currently print the type and the value, iff it is
// evaluatable.
if (auto Val = printExprValue(E, AST.getASTContext())) {
HI.Type = printType(E->getType(), PP);
HI.Value = *Val;
HI.Name = std::string(getNameForExpr(E));
return HI;
}
return llvm::None;
}
bool isParagraphBreak(llvm::StringRef Rest) {
return Rest.ltrim(" \t").startswith("\n");
}
bool punctuationIndicatesLineBreak(llvm::StringRef Line) {
constexpr llvm::StringLiteral Punctuation = R"txt(.:,;!?)txt";
Line = Line.rtrim();
return !Line.empty() && Punctuation.contains(Line.back());
}
bool isHardLineBreakIndicator(llvm::StringRef Rest) {
// '-'/'*' md list, '@'/'\' documentation command, '>' md blockquote,
// '#' headings, '`' code blocks
constexpr llvm::StringLiteral LinebreakIndicators = R"txt(-*@\>#`)txt";
Rest = Rest.ltrim(" \t");
if (Rest.empty())
return false;
if (LinebreakIndicators.contains(Rest.front()))
return true;
if (llvm::isDigit(Rest.front())) {
llvm::StringRef AfterDigit = Rest.drop_while(llvm::isDigit);
if (AfterDigit.startswith(".") || AfterDigit.startswith(")"))
return true;
}
return false;
}
bool isHardLineBreakAfter(llvm::StringRef Line, llvm::StringRef Rest) {
// Should we also consider whether Line is short?
return punctuationIndicatesLineBreak(Line) || isHardLineBreakIndicator(Rest);
}
void addLayoutInfo(const NamedDecl &ND, HoverInfo &HI) {
if (ND.isInvalidDecl())
return;
const auto &Ctx = ND.getASTContext();
if (auto *RD = llvm::dyn_cast<RecordDecl>(&ND)) {
if (auto Size = Ctx.getTypeSizeInCharsIfKnown(RD->getTypeForDecl()))
HI.Size = Size->getQuantity();
return;
}
if (const auto *FD = llvm::dyn_cast<FieldDecl>(&ND)) {
const auto *Record = FD->getParent();
if (Record)
Record = Record->getDefinition();
if (Record && !Record->isInvalidDecl() && !Record->isDependentType()) {
HI.Offset = Ctx.getFieldOffset(FD) / 8;
if (auto Size = Ctx.getTypeSizeInCharsIfKnown(FD->getType()))
HI.Size = Size->getQuantity();
}
return;
}
}
// If N is passed as argument to a function, fill HI.CalleeArgInfo with
// information about that argument.
void maybeAddCalleeArgInfo(const SelectionTree::Node *N, HoverInfo &HI,
const PrintingPolicy &PP) {
const auto &OuterNode = N->outerImplicit();
if (!OuterNode.Parent)
return;
const auto *CE = OuterNode.Parent->ASTNode.get<CallExpr>();
if (!CE)
return;
const FunctionDecl *FD = CE->getDirectCallee();
// For non-function-call-like operatators (e.g. operator+, operator<<) it's
// not immediattely obvious what the "passed as" would refer to and, given
// fixed function signature, the value would be very low anyway, so we choose
// to not support that.
// Both variadic functions and operator() (especially relevant for lambdas)
// should be supported in the future.
if (!FD || FD->isOverloadedOperator() || FD->isVariadic())
return;
// Find argument index for N.
for (unsigned I = 0; I < CE->getNumArgs() && I < FD->getNumParams(); ++I) {
if (CE->getArg(I) != OuterNode.ASTNode.get<Expr>())
continue;
// Extract matching argument from function declaration.
if (const ParmVarDecl *PVD = FD->getParamDecl(I))
HI.CalleeArgInfo.emplace(toHoverInfoParam(PVD, PP));
break;
}
if (!HI.CalleeArgInfo)
return;
// If we found a matching argument, also figure out if it's a
// [const-]reference. For this we need to walk up the AST from the arg itself
// to CallExpr and check all implicit casts, constructor calls, etc.
HoverInfo::PassType PassType;
if (const auto *E = N->ASTNode.get<Expr>()) {
if (E->getType().isConstQualified())
PassType.PassBy = HoverInfo::PassType::ConstRef;
}
for (auto *CastNode = N->Parent;
CastNode != OuterNode.Parent && !PassType.Converted;
CastNode = CastNode->Parent) {
if (const auto *ImplicitCast = CastNode->ASTNode.get<ImplicitCastExpr>()) {
switch (ImplicitCast->getCastKind()) {
case CK_NoOp:
case CK_DerivedToBase:
case CK_UncheckedDerivedToBase:
// If it was a reference before, it's still a reference.
if (PassType.PassBy != HoverInfo::PassType::Value)
PassType.PassBy = ImplicitCast->getType().isConstQualified()
? HoverInfo::PassType::ConstRef
: HoverInfo::PassType::Ref;
break;
case CK_LValueToRValue:
case CK_ArrayToPointerDecay:
case CK_FunctionToPointerDecay:
case CK_NullToPointer:
case CK_NullToMemberPointer:
// No longer a reference, but we do not show this as type conversion.
PassType.PassBy = HoverInfo::PassType::Value;
break;
default:
PassType.PassBy = HoverInfo::PassType::Value;
PassType.Converted = true;
break;
}
} else if (const auto *CtorCall =
CastNode->ASTNode.get<CXXConstructExpr>()) {
// We want to be smart about copy constructors. They should not show up as
// type conversion, but instead as passing by value.
if (CtorCall->getConstructor()->isCopyConstructor())
PassType.PassBy = HoverInfo::PassType::Value;
else
PassType.Converted = true;
} else { // Unknown implicit node, assume type conversion.
PassType.PassBy = HoverInfo::PassType::Value;
PassType.Converted = true;
}
}
HI.CallPassType.emplace(PassType);
}
} // namespace
llvm::Optional<HoverInfo> getHover(ParsedAST &AST, Position Pos,
format::FormatStyle Style,
const SymbolIndex *Index) {
PrintingPolicy PP =
getPrintingPolicy(AST.getASTContext().getPrintingPolicy());
const SourceManager &SM = AST.getSourceManager();
auto CurLoc = sourceLocationInMainFile(SM, Pos);
if (!CurLoc) {
llvm::consumeError(CurLoc.takeError());
return llvm::None;
}
const auto &TB = AST.getTokens();
auto TokensTouchingCursor = syntax::spelledTokensTouching(*CurLoc, TB);
// Early exit if there were no tokens around the cursor.
if (TokensTouchingCursor.empty())
return llvm::None;
// To be used as a backup for highlighting the selected token, we use back as
// it aligns better with biases elsewhere (editors tend to send the position
// for the left of the hovered token).
CharSourceRange HighlightRange =
TokensTouchingCursor.back().range(SM).toCharRange(SM);
llvm::Optional<HoverInfo> HI;
// Macros and deducedtype only works on identifiers and auto/decltype keywords
// respectively. Therefore they are only trggered on whichever works for them,
// similar to SelectionTree::create().
for (const auto &Tok : TokensTouchingCursor) {
if (Tok.kind() == tok::identifier) {
// Prefer the identifier token as a fallback highlighting range.
HighlightRange = Tok.range(SM).toCharRange(SM);
if (auto M = locateMacroAt(Tok, AST.getPreprocessor())) {
HI = getHoverContents(*M, AST);
break;
}
} else if (Tok.kind() == tok::kw_auto || Tok.kind() == tok::kw_decltype) {
if (auto Deduced = getDeducedType(AST.getASTContext(), Tok.location())) {
HI = getDeducedTypeHoverContents(*Deduced, Tok, AST.getASTContext(), PP,
Index);
HighlightRange = Tok.range(SM).toCharRange(SM);
break;
}
// If we can't find interesting hover information for this
// auto/decltype keyword, return nothing to avoid showing
// irrelevant or incorrect informations.
return llvm::None;
}
}
// If it wasn't auto/decltype or macro, look for decls and expressions.
if (!HI) {
auto Offset = SM.getFileOffset(*CurLoc);
// Editors send the position on the left of the hovered character.
// So our selection tree should be biased right. (Tested with VSCode).
SelectionTree ST =
SelectionTree::createRight(AST.getASTContext(), TB, Offset, Offset);
std::vector<const Decl *> Result;
if (const SelectionTree::Node *N = ST.commonAncestor()) {
// FIXME: Fill in HighlightRange with range coming from N->ASTNode.
auto Decls = explicitReferenceTargets(N->ASTNode, DeclRelation::Alias,
AST.getHeuristicResolver());
if (!Decls.empty()) {
HI = getHoverContents(Decls.front(), PP, Index);
// Layout info only shown when hovering on the field/class itself.
if (Decls.front() == N->ASTNode.get<Decl>())
addLayoutInfo(*Decls.front(), *HI);
// Look for a close enclosing expression to show the value of.
if (!HI->Value)
HI->Value = printExprValue(N, AST.getASTContext());
maybeAddCalleeArgInfo(N, *HI, PP);
} else if (const Expr *E = N->ASTNode.get<Expr>()) {
HI = getHoverContents(E, AST, PP, Index);
}
// FIXME: support hovers for other nodes?
// - built-in types
}
}
if (!HI)
return llvm::None;
auto Replacements = format::reformat(
Style, HI->Definition, tooling::Range(0, HI->Definition.size()));
if (auto Formatted =
tooling::applyAllReplacements(HI->Definition, Replacements))
HI->Definition = *Formatted;
HI->SymRange = halfOpenToRange(SM, HighlightRange);
return HI;
}
markup::Document HoverInfo::present() const {
markup::Document Output;
// Header contains a text of the form:
// variable `var`
//
// class `X`
//
// function `foo`
//
// expression
//
// Note that we are making use of a level-3 heading because VSCode renders
// level 1 and 2 headers in a huge font, see
// https://github.com/microsoft/vscode/issues/88417 for details.
markup::Paragraph &Header = Output.addHeading(3);
if (Kind != index::SymbolKind::Unknown)
Header.appendText(index::getSymbolKindString(Kind)).appendSpace();
assert(!Name.empty() && "hover triggered on a nameless symbol");
Header.appendCode(Name);
// Put a linebreak after header to increase readability.
Output.addRuler();
// Print Types on their own lines to reduce chances of getting line-wrapped by
// editor, as they might be long.
if (ReturnType) {
// For functions we display signature in a list form, e.g.:
// → `x`
// Parameters:
// - `bool param1`
// - `int param2 = 5`
Output.addParagraph().appendText("").appendCode(*ReturnType);
if (Parameters && !Parameters->empty()) {
Output.addParagraph().appendText("Parameters: ");
markup::BulletList &L = Output.addBulletList();
for (const auto &Param : *Parameters) {
std::string Buffer;
llvm::raw_string_ostream OS(Buffer);
OS << Param;
L.addItem().addParagraph().appendCode(std::move(OS.str()));
}
}
} else if (Type) {
Output.addParagraph().appendText("Type: ").appendCode(*Type);
}
if (Value) {
markup::Paragraph &P = Output.addParagraph();
P.appendText("Value = ");
P.appendCode(*Value);
}
if (Offset)
Output.addParagraph().appendText(
llvm::formatv("Offset: {0} byte{1}", *Offset, *Offset == 1 ? "" : "s")
.str());
if (Size)
Output.addParagraph().appendText(
llvm::formatv("Size: {0} byte{1}", *Size, *Size == 1 ? "" : "s").str());
if (CalleeArgInfo) {
assert(CallPassType);
std::string Buffer;
llvm::raw_string_ostream OS(Buffer);
OS << "Passed ";
if (CallPassType->PassBy != HoverInfo::PassType::Value) {
OS << "by ";
if (CallPassType->PassBy == HoverInfo::PassType::ConstRef)
OS << "const ";
OS << "reference ";
}
if (CalleeArgInfo->Name)
OS << "as " << CalleeArgInfo->Name;
if (CallPassType->Converted && CalleeArgInfo->Type)
OS << " (converted to " << CalleeArgInfo->Type << ")";
Output.addParagraph().appendText(OS.str());
}
if (!Documentation.empty())
parseDocumentation(Documentation, Output);
if (!Definition.empty()) {
Output.addRuler();
std::string ScopeComment;
// Drop trailing "::".
if (!LocalScope.empty()) {
// Container name, e.g. class, method, function.
// We might want to propagate some info about container type to print
// function foo, class X, method X::bar, etc.
ScopeComment =
"// In " + llvm::StringRef(LocalScope).rtrim(':').str() + '\n';
} else if (NamespaceScope && !NamespaceScope->empty()) {
ScopeComment = "// In namespace " +
llvm::StringRef(*NamespaceScope).rtrim(':').str() + '\n';
}
std::string DefinitionWithAccess = !AccessSpecifier.empty()
? AccessSpecifier + ": " + Definition
: Definition;
// Note that we don't print anything for global namespace, to not annoy
// non-c++ projects or projects that are not making use of namespaces.
Output.addCodeBlock(ScopeComment + DefinitionWithAccess);
}
return Output;
}
// If the backtick at `Offset` starts a probable quoted range, return the range
// (including the quotes).
llvm::Optional<llvm::StringRef> getBacktickQuoteRange(llvm::StringRef Line,
unsigned Offset) {
assert(Line[Offset] == '`');
// The open-quote is usually preceded by whitespace.
llvm::StringRef Prefix = Line.substr(0, Offset);
constexpr llvm::StringLiteral BeforeStartChars = " \t(=";
if (!Prefix.empty() && !BeforeStartChars.contains(Prefix.back()))
return llvm::None;
// The quoted string must be nonempty and usually has no leading/trailing ws.
auto Next = Line.find('`', Offset + 1);
if (Next == llvm::StringRef::npos)
return llvm::None;
llvm::StringRef Contents = Line.slice(Offset + 1, Next);
if (Contents.empty() || isWhitespace(Contents.front()) ||
isWhitespace(Contents.back()))
return llvm::None;
// The close-quote is usually followed by whitespace or punctuation.
llvm::StringRef Suffix = Line.substr(Next + 1);
constexpr llvm::StringLiteral AfterEndChars = " \t)=.,;:";
if (!Suffix.empty() && !AfterEndChars.contains(Suffix.front()))
return llvm::None;
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 18:26:47 +08:00
return Line.slice(Offset, Next + 1);
}
void parseDocumentationLine(llvm::StringRef Line, markup::Paragraph &Out) {
// Probably this is appendText(Line), but scan for something interesting.
for (unsigned I = 0; I < Line.size(); ++I) {
switch (Line[I]) {
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 18:26:47 +08:00
case '`':
if (auto Range = getBacktickQuoteRange(Line, I)) {
Out.appendText(Line.substr(0, I));
Out.appendCode(Range->trim("`"), /*Preserve=*/true);
return parseDocumentationLine(Line.substr(I + Range->size()), Out);
}
break;
}
}
Out.appendText(Line).appendSpace();
}
void parseDocumentation(llvm::StringRef Input, markup::Document &Output) {
std::vector<llvm::StringRef> ParagraphLines;
auto FlushParagraph = [&] {
if (ParagraphLines.empty())
return;
auto &P = Output.addParagraph();
for (llvm::StringRef Line : ParagraphLines)
parseDocumentationLine(Line, P);
ParagraphLines.clear();
};
llvm::StringRef Line, Rest;
for (std::tie(Line, Rest) = Input.split('\n');
!(Line.empty() && Rest.empty());
std::tie(Line, Rest) = Rest.split('\n')) {
// After a linebreak remove spaces to avoid 4 space markdown code blocks.
// FIXME: make FlushParagraph handle this.
Line = Line.ltrim();
if (!Line.empty())
ParagraphLines.push_back(Line);
if (isParagraphBreak(Rest) || isHardLineBreakAfter(Line, Rest)) {
FlushParagraph();
}
}
FlushParagraph();
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const HoverInfo::Param &P) {
std::vector<llvm::StringRef> Output;
if (P.Type)
Output.push_back(*P.Type);
if (P.Name)
Output.push_back(*P.Name);
OS << llvm::join(Output, " ");
if (P.Default)
OS << " = " << *P.Default;
return OS;
}
} // namespace clangd
} // namespace clang