llvm-project/llvm/test/CodeGen/AArch64/GlobalISel/arm64-fallback.ll

261 lines
12 KiB
LLVM
Raw Normal View History

; RUN: not llc -O0 -global-isel -global-isel-abort=1 -verify-machineinstrs %s -o - 2>&1 | FileCheck %s --check-prefix=ERROR
; RUN: llc -O0 -global-isel -global-isel-abort=0 -verify-machineinstrs %s -o - 2>&1 | FileCheck %s --check-prefix=FALLBACK
; RUN: llc -O0 -global-isel -global-isel-abort=2 -pass-remarks-missed='gisel*' -verify-machineinstrs %s -o %t.out 2> %t.err
; RUN: FileCheck %s --check-prefix=FALLBACK-WITH-REPORT-OUT < %t.out
; RUN: FileCheck %s --check-prefix=FALLBACK-WITH-REPORT-ERR < %t.err
; RUN: not llc -global-isel -mtriple aarch64_be %s -o - 2>&1 | FileCheck %s --check-prefix=BIG-ENDIAN
; This file checks that the fallback path to selection dag works.
; The test is fragile in the sense that it must be updated to expose
; something that fails with global-isel.
; When we cannot produce a test case anymore, that means we can remove
; the fallback path.
target datalayout = "e-m:o-i64:64-i128:128-n32:64-S128"
target triple = "aarch64--"
; BIG-ENDIAN: unable to translate in big endian mode
; We use __fixunstfti as the common denominator for __fixunstfti on Linux and
; ___fixunstfti on iOS
; ERROR: unable to lower arguments: i128 (i128)* (in function: ABIi128)
; FALLBACK: ldr q0,
; FALLBACK-NEXT: bl __fixunstfti
;
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to lower arguments: i128 (i128)* (in function: ABIi128)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for ABIi128
; FALLBACK-WITH-REPORT-OUT-LABEL: ABIi128:
; FALLBACK-WITH-REPORT-OUT: ldr q0,
; FALLBACK-WITH-REPORT-OUT-NEXT: bl __fixunstfti
define i128 @ABIi128(i128 %arg1) {
%farg1 = bitcast i128 %arg1 to fp128
%res = fptoui fp128 %farg1 to i128
ret i128 %res
}
; The key problem here is that we may fail to create an MBB referenced by a
; PHI. If so, we cannot complete the G_PHI and mustn't try or bad things
; happen.
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: cannot select: G_STORE %6:gpr(s32), %2:gpr(p0) :: (store seq_cst 4 into %ir.addr) (in function: pending_phis)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for pending_phis
; FALLBACK-WITH-REPORT-OUT-LABEL: pending_phis:
define i32 @pending_phis(i1 %tst, i32 %val, i32* %addr) {
br i1 %tst, label %true, label %false
end:
%res = phi i32 [%val, %true], [42, %false]
ret i32 %res
true:
store atomic i32 42, i32* %addr seq_cst, align 4
br label %end
false:
br label %end
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %2:_(s32) = G_ZEXTLOAD %1:_(p0) :: (load 3 from `i24* undef`, align 1) (in function: odd_type_load)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for odd_type_load
; FALLBACK-WITH-REPORT-OUT-LABEL: odd_type_load
define i32 @odd_type_load() {
entry:
%ld = load i24, i24* undef, align 1
%cst = zext i24 %ld to i32
ret i32 %cst
}
; General legalizer inability to handle types whose size wasn't a power of 2.
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: G_STORE %1:_(s42), %0:_(p0) :: (store 6 into %ir.addr, align 8) (in function: odd_type)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for odd_type
; FALLBACK-WITH-REPORT-OUT-LABEL: odd_type:
define void @odd_type(i42* %addr) {
%val42 = load i42, i42* %addr
store i42 %val42, i42* %addr
ret void
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: G_STORE %1:_(<7 x s32>), %0:_(p0) :: (store 28 into %ir.addr, align 32) (in function: odd_vector)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for odd_vector
; FALLBACK-WITH-REPORT-OUT-LABEL: odd_vector:
define void @odd_vector(<7 x i32>* %addr) {
%vec = load <7 x i32>, <7 x i32>* %addr
store <7 x i32> %vec, <7 x i32>* %addr
ret void
}
; AArch64 was asserting instead of returning an invalid mapping for unknown
; sizes.
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to translate instruction: ret: ' ret i128 undef' (in function: sequence_sizes)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for sequence_sizes
; FALLBACK-WITH-REPORT-LABEL: sequence_sizes:
define i128 @sequence_sizes([8 x i8] %in) {
ret i128 undef
}
; Just to make sure we don't accidentally emit a normal load/store.
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: cannot select: %2:gpr(s64) = G_LOAD %0:gpr(p0) :: (load seq_cst 8 from %ir.addr) (in function: atomic_ops)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for atomic_ops
; FALLBACK-WITH-REPORT-LABEL: atomic_ops:
define i64 @atomic_ops(i64* %addr) {
store atomic i64 0, i64* %addr unordered, align 8
%res = load atomic i64, i64* %addr seq_cst, align 8
ret i64 %res
}
; Make sure we don't mess up metadata arguments.
declare void @llvm.write_register.i64(metadata, i64)
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to translate instruction: call: ' call void @llvm.write_register.i64(metadata !0, i64 0)' (in function: test_write_register_intrin)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for test_write_register_intrin
; FALLBACK-WITH-REPORT-LABEL: test_write_register_intrin:
define void @test_write_register_intrin() {
call void @llvm.write_register.i64(metadata !{!"sp"}, i64 0)
ret void
}
@_ZTIi = external global i8*
declare i32 @__gxx_personality_v0(...)
; Check that we fallback on invoke translation failures.
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to translate instruction: invoke: ' invoke void %callee(i128 0)
; FALLBACK-WITH-REPORT-NEXT: to label %continue unwind label %broken' (in function: invoke_weird_type)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for invoke_weird_type
; FALLBACK-WITH-REPORT-OUT-LABEL: invoke_weird_type:
define void @invoke_weird_type(void(i128)* %callee) personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
invoke void %callee(i128 0)
to label %continue unwind label %broken
broken:
landingpad { i8*, i32 } catch i8* bitcast(i8** @_ZTIi to i8*)
ret void
continue:
ret void
}
; Check that we fallback on invoke translation failures.
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %0:_(s128) = G_FCONSTANT fp128 0xL00000000000000004000000000000000
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for test_quad_dump
; FALLBACK-WITH-REPORT-OUT-LABEL: test_quad_dump:
define fp128 @test_quad_dump() {
ret fp128 0xL00000000000000004000000000000000
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %2:_(p0) = G_EXTRACT_VECTOR_ELT %0:_(<2 x p0>), %3:_(s64) (in function: vector_of_pointers_extractelement)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for vector_of_pointers_extractelement
; FALLBACK-WITH-REPORT-OUT-LABEL: vector_of_pointers_extractelement:
@var = global <2 x i16*> zeroinitializer
define void @vector_of_pointers_extractelement() {
br label %end
block:
%dummy = extractelement <2 x i16*> %vec, i32 0
store i16* %dummy, i16** undef
ret void
end:
%vec = load <2 x i16*>, <2 x i16*>* undef
br label %block
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: G_STORE %2:_(<2 x p0>), %1:_(p0) :: (store 16 into `<2 x i16*>* undef`) (in function: vector_of_pointers_insertelement)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for vector_of_pointers_insertelement
; FALLBACK-WITH-REPORT-OUT-LABEL: vector_of_pointers_insertelement:
define void @vector_of_pointers_insertelement() {
br label %end
block:
%dummy = insertelement <2 x i16*> %vec, i16* null, i32 0
store <2 x i16*> %dummy, <2 x i16*>* undef
ret void
end:
%vec = load <2 x i16*>, <2 x i16*>* undef
br label %block
}
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
; FALLBACK-WITH-REPORT-ERR remark: <unknown>:0:0: unable to legalize instruction: G_STORE %3, %4 :: (store 12 into `i96* undef`, align 16) (in function: nonpow2_add_narrowing)
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for nonpow2_add_narrowing
; FALLBACK-WITH-REPORT-OUT-LABEL: nonpow2_add_narrowing:
define void @nonpow2_add_narrowing() {
%a = add i128 undef, undef
%b = trunc i128 %a to i96
%dummy = add i96 %b, %b
store i96 %dummy, i96* undef
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
ret void
}
; FALLBACK-WITH-REPORT-ERR remark: <unknown>:0:0: unable to legalize instruction: G_STORE %3, %4 :: (store 12 into `i96* undef`, align 16) (in function: nonpow2_add_narrowing)
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for nonpow2_or_narrowing
; FALLBACK-WITH-REPORT-OUT-LABEL: nonpow2_or_narrowing:
define void @nonpow2_or_narrowing() {
%a = add i128 undef, undef
%b = trunc i128 %a to i96
%dummy = or i96 %b, %b
store i96 %dummy, i96* undef
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
ret void
}
; FALLBACK-WITH-REPORT-ERR remark: <unknown>:0:0: unable to legalize instruction: G_STORE %0, %1 :: (store 12 into `i96* undef`, align 16) (in function: nonpow2_load_narrowing)
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for nonpow2_load_narrowing
; FALLBACK-WITH-REPORT-OUT-LABEL: nonpow2_load_narrowing:
define void @nonpow2_load_narrowing() {
%dummy = load i96, i96* undef
store i96 %dummy, i96* undef
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
ret void
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %4:_(s64) = G_EXTRACT %3:_(s96), 0 (in function: nonpow2_store_narrowing)
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for nonpow2_store_narrowing
; FALLBACK-WITH-REPORT-OUT-LABEL: nonpow2_store_narrowing:
define void @nonpow2_store_narrowing(i96* %c) {
%a = add i128 undef, undef
%b = trunc i128 %a to i96
store i96 %b, i96* %c
ret void
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %0:_(s96) = G_CONSTANT i96 0 (in function: nonpow2_constant_narrowing)
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for nonpow2_constant_narrowing
; FALLBACK-WITH-REPORT-OUT-LABEL: nonpow2_constant_narrowing:
define void @nonpow2_constant_narrowing() {
store i96 0, i96* undef
ret void
}
; Currently can't handle vector lengths that aren't an exact multiple of
; natively supported vector lengths. Test that the fall-back works for those.
; FALLBACK-WITH-REPORT-ERR-G_IMPLICIT_DEF-LEGALIZABLE: (FIXME: this is what is expected once we can legalize non-pow-of-2 G_IMPLICIT_DEF) remark: <unknown>:0:0: unable to legalize instruction: %1:_(<7 x s64>) = G_ADD %0, %0 (in function: nonpow2_vector_add_fewerelements
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %2:_(s64) = G_EXTRACT_VECTOR_ELT %1:_(<7 x s64>), %3:_(s64) (in function: nonpow2_vector_add_fewerelements)
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for nonpow2_vector_add_fewerelements
; FALLBACK-WITH-REPORT-OUT-LABEL: nonpow2_vector_add_fewerelements:
define void @nonpow2_vector_add_fewerelements() {
%dummy = add <7 x i64> undef, undef
%ex = extractelement <7 x i64> %dummy, i64 0
store i64 %ex, i64* undef
[GlobalISel] Enable legalizing non-power-of-2 sized types. This changes the interface of how targets describe how to legalize, see the below description. 1. Interface for targets to describe how to legalize. In GlobalISel, the API in the LegalizerInfo class is the main interface for targets to specify which types are legal for which operations, and what to do to turn illegal type/operation combinations into legal ones. For each operation the type sizes that can be legalized without having to change the size of the type are specified with a call to setAction. This isn't different to how GlobalISel worked before. For example, for a target that supports 32 and 64 bit adds natively: for (auto Ty : {s32, s64}) setAction({G_ADD, 0, s32}, Legal); or for a target that needs a library call for a 32 bit division: setAction({G_SDIV, s32}, Libcall); The main conceptual change to the LegalizerInfo API, is in specifying how to legalize the type sizes for which a change of size is needed. For example, in the above example, how to specify how all types from i1 to i8388607 (apart from s32 and s64 which are legal) need to be legalized and expressed in terms of operations on the available legal sizes (again, i32 and i64 in this case). Before, the implementation only allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0, s128}, NarrowScalar). A worse limitation was that if you'd wanted to specify how to legalize all the sized types as allowed by the LLVM-IR LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times and probably would need a lot of memory to store all of these specifications. Instead, the legalization actions that need to change the size of the type are specified now using a "SizeChangeStrategy". For example: setLegalizeScalarToDifferentSizeStrategy( G_ADD, 0, widenToLargerAndNarrowToLargest); This example indicates that for type sizes for which there is a larger size that can be legalized towards, do it by Widening the size. For example, G_ADD on s17 will be legalized by first doing WidenScalar to make it s32, after which it's legal. The "NarrowToLargest" indicates what to do if there is no larger size that can be legalized towards. E.g. G_ADD on s92 will be legalized by doing NarrowScalar to s64. Another example, taken from the ARM backend is: for (unsigned Op : {G_SDIV, G_UDIV}) { setLegalizeScalarToDifferentSizeStrategy(Op, 0, widenToLargerTypesUnsupportedOtherwise); if (ST.hasDivideInARMMode()) setAction({Op, s32}, Legal); else setAction({Op, s32}, Libcall); } For this example, G_SDIV on s8, on a target without a divide instruction, would be legalized by first doing action (WidenScalar, s32), followed by (Libcall, s32). The same principle is also followed for when the number of vector lanes on vector data types need to be changed, e.g.: setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal); setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal); setLegalizeVectorElementToDifferentSizeStrategy( G_ADD, 0, widenToLargerTypesUnsupportedOtherwise); As currently implemented here, vector types are legalized by first making the vector element size legal, followed by then making the number of lanes legal. The strategy to follow in the first step is set by a call to setLegalizeVectorElementToDifferentSizeStrategy, see example above. The strategy followed in the second step "moreToWiderTypesAndLessToWidest" (see code for its definition), indicating that vectors are widened to more elements so they map to natively supported vector widths, or when there isn't a legal wider vector, split the vector to map it to the widest vector supported. Therefore, for the above specification, some example legalizations are: * getAction({G_ADD, LLT::vector(3, 3)}) returns {WidenScalar, LLT::vector(3, 8)} * getAction({G_ADD, LLT::vector(3, 8)}) then returns {MoreElements, LLT::vector(8, 8)} * getAction({G_ADD, LLT::vector(20, 8)}) returns {FewerElements, LLT::vector(16, 8)} 2. Key implementation aspects. How to legalize a specific (operation, type index, size) tuple is represented by mapping intervals of integers representing a range of size types to an action to take, e.g.: setScalarAction({G_ADD, LLT:scalar(1)}, {{1, WidenScalar}, // bit sizes [ 1, 31[ {32, Legal}, // bit sizes [32, 33[ {33, WidenScalar}, // bit sizes [33, 64[ {64, Legal}, // bit sizes [64, 65[ {65, NarrowScalar} // bit sizes [65, +inf[ }); Please note that most of the code to do the actual lowering of non-power-of-2 sized types is currently missing, this is just trying to make it possible for targets to specify what is legal, and how non-legal types should be legalized. Probably quite a bit of further work is needed in the actual legalizing and the other passes in GlobalISel to support non-power-of-2 sized types. I hope the documentation in LegalizerInfo.h and the examples provided in the various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well enough how this is meant to be used. This drops the need for LLT::{half,double}...Size(). Differential Revision: https://reviews.llvm.org/D30529 llvm-svn: 317560
2017-11-07 18:34:34 +08:00
ret void
}
%swift_error = type {i64, i8}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to lower arguments due to swifterror/swiftself: void (%swift_error**)* (in function: swifterror_param)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for swifterror_param
define void @swifterror_param(%swift_error** swifterror %error_ptr_ref) {
ret void
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to translate instruction: alloca: ' %error_ptr_ref = alloca swifterror %swift_error*' (in function: swifterror_alloca)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for swifterror_alloca
; We can't currently test the call parameters being swifterror because the value
; must come from a swifterror alloca or parameter, at which point we already
; fallback. As long as those cases work however we should be fine.
define void @swifterror_alloca(i8* %error_ref) {
entry:
%error_ptr_ref = alloca swifterror %swift_error*
store %swift_error* null, %swift_error** %error_ptr_ref
call void @swifterror_param(%swift_error** swifterror %error_ptr_ref)
ret void
}