llvm-project/llvm/lib/Target/AMDGPU/AMDGPULegalizerInfo.cpp

559 lines
19 KiB
C++
Raw Normal View History

//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST,
const GCNTargetMachine &TM) {
using namespace TargetOpcode;
auto GetAddrSpacePtr = [&TM](unsigned AS) {
return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
};
const LLT S1 = LLT::scalar(1);
const LLT S8 = LLT::scalar(8);
const LLT S16 = LLT::scalar(16);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
const LLT S128 = LLT::scalar(128);
const LLT S256 = LLT::scalar(256);
const LLT S512 = LLT::scalar(512);
const LLT V2S16 = LLT::vector(2, 16);
const LLT V4S16 = LLT::vector(4, 16);
const LLT V8S16 = LLT::vector(8, 16);
const LLT V2S32 = LLT::vector(2, 32);
const LLT V3S32 = LLT::vector(3, 32);
const LLT V4S32 = LLT::vector(4, 32);
const LLT V5S32 = LLT::vector(5, 32);
const LLT V6S32 = LLT::vector(6, 32);
const LLT V7S32 = LLT::vector(7, 32);
const LLT V8S32 = LLT::vector(8, 32);
const LLT V9S32 = LLT::vector(9, 32);
const LLT V10S32 = LLT::vector(10, 32);
const LLT V11S32 = LLT::vector(11, 32);
const LLT V12S32 = LLT::vector(12, 32);
const LLT V13S32 = LLT::vector(13, 32);
const LLT V14S32 = LLT::vector(14, 32);
const LLT V15S32 = LLT::vector(15, 32);
const LLT V16S32 = LLT::vector(16, 32);
const LLT V2S64 = LLT::vector(2, 64);
const LLT V3S64 = LLT::vector(3, 64);
const LLT V4S64 = LLT::vector(4, 64);
const LLT V5S64 = LLT::vector(5, 64);
const LLT V6S64 = LLT::vector(6, 64);
const LLT V7S64 = LLT::vector(7, 64);
const LLT V8S64 = LLT::vector(8, 64);
std::initializer_list<LLT> AllS32Vectors =
{V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32};
std::initializer_list<LLT> AllS64Vectors =
{V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64};
const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
const LLT CodePtr = FlatPtr;
const LLT AddrSpaces[] = {
GlobalPtr,
ConstantPtr,
LocalPtr,
FlatPtr,
PrivatePtr
};
setAction({G_BRCOND, S1}, Legal);
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_UMULH, G_SMULH})
.legalFor({S32})
.clampScalar(0, S32, S32)
.scalarize(0);
// Report legal for any types we can handle anywhere. For the cases only legal
// on the SALU, RegBankSelect will be able to re-legalize.
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalFor({S32, S1, S64, V2S32, V2S16, V4S16})
.clampScalar(0, S32, S64)
.scalarize(0);
getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO,
G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
.legalFor({{S32, S1}})
.clampScalar(0, S32, S32);
getActionDefinitionsBuilder(G_BITCAST)
.legalForCartesianProduct({S32, V2S16})
.legalForCartesianProduct({S64, V2S32, V4S16})
.legalForCartesianProduct({V2S64, V4S32})
// Don't worry about the size constraint.
.legalIf(all(isPointer(0), isPointer(1)));
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({S32, S64, S16});
// G_IMPLICIT_DEF is a no-op so we can make it legal for any value type that
// can fit in a register.
// FIXME: We need to legalize several more operations before we can add
// a test case for size > 512.
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() <= 512;
})
.clampScalar(0, S1, S512);
// FIXME: i1 operands to intrinsics should always be legal, but other i1
// values may not be legal. We need to figure out how to distinguish
// between these two scenarios.
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({S1, S32, S64, GlobalPtr,
LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
.clampScalar(0, S32, S64)
.widenScalarToNextPow2(0)
.legalIf(isPointer(0));
setAction({G_FRAME_INDEX, PrivatePtr}, Legal);
getActionDefinitionsBuilder({G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA})
.legalFor({S32, S64})
.scalarize(0)
.clampScalar(0, S32, S64);
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor({{S32, S64}, {S16, S32}})
.scalarize(0);
getActionDefinitionsBuilder(G_FPEXT)
.legalFor({{S64, S32}, {S32, S16}})
.lowerFor({{S64, S16}}) // FIXME: Implement
.scalarize(0);
getActionDefinitionsBuilder(G_FSUB)
// Use actual fsub instruction
.legalFor({S32})
// Must use fadd + fneg
.lowerFor({S64, S16, V2S16})
.scalarize(0)
.clampScalar(0, S32, S64);
getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
.legalFor({{S64, S32}, {S32, S16}, {S64, S16},
{S32, S1}, {S64, S1}, {S16, S1},
// FIXME: Hack
{S32, S8}, {S128, S32}, {S128, S64}, {S32, LLT::scalar(24)}})
.scalarize(0);
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalFor({{S32, S32}, {S64, S32}})
.scalarize(0);
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalFor({{S32, S32}, {S32, S64}})
.scalarize(0);
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND})
.legalFor({S32, S64})
.scalarize(0);
for (LLT PtrTy : AddrSpaces) {
LLT IdxTy = LLT::scalar(PtrTy.getSizeInBits());
setAction({G_GEP, PtrTy}, Legal);
setAction({G_GEP, 1, IdxTy}, Legal);
}
// FIXME: When RegBankSelect inserts copies, it will only create new registers
// with scalar types. This means we can end up with G_LOAD/G_STORE/G_GEP
// instruction with scalar types for their pointer operands. In assert builds,
// the instruction selector will assert if it sees a generic instruction which
// isn't legal, so we need to tell it that scalar types are legal for pointer
// operands
setAction({G_GEP, S64}, Legal);
setAction({G_BLOCK_ADDR, CodePtr}, Legal);
getActionDefinitionsBuilder(G_ICMP)
.legalForCartesianProduct(
{S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
.legalFor({{S1, S32}, {S1, S64}})
.widenScalarToNextPow2(1)
.clampScalar(1, S32, S64)
.scalarize(0)
.legalIf(all(typeIs(0, S1), isPointer(1)));
getActionDefinitionsBuilder(G_FCMP)
.legalFor({{S1, S32}, {S1, S64}})
.widenScalarToNextPow2(1)
.clampScalar(1, S32, S64)
.scalarize(0);
// FIXME: fexp, flog2, flog10 needs to be custom lowered.
getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2,
G_FLOG, G_FLOG2, G_FLOG10})
.legalFor({S32})
.scalarize(0);
// The 64-bit versions produce 32-bit results, but only on the SALU.
getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF,
G_CTTZ, G_CTTZ_ZERO_UNDEF,
G_CTPOP})
.legalFor({{S32, S32}, {S32, S64}})
.clampScalar(0, S32, S32)
.clampScalar(1, S32, S64);
// TODO: Scalarize
// TODO: Expand for > s32
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({S32})
.clampScalar(0, S32, S32)
.scalarize(0);
auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
return [=](const LegalityQuery &Query) {
return Query.Types[TypeIdx0].getSizeInBits() <
Query.Types[TypeIdx1].getSizeInBits();
};
};
auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
return [=](const LegalityQuery &Query) {
return Query.Types[TypeIdx0].getSizeInBits() >
Query.Types[TypeIdx1].getSizeInBits();
};
};
getActionDefinitionsBuilder(G_INTTOPTR)
// List the common cases
.legalForCartesianProduct({GlobalPtr, ConstantPtr, FlatPtr}, {S64})
.legalForCartesianProduct({LocalPtr, PrivatePtr}, {S32})
.scalarize(0)
// Accept any address space as long as the size matches
.legalIf(sameSize(0, 1))
.widenScalarIf(smallerThan(1, 0),
[](const LegalityQuery &Query) {
return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
})
.narrowScalarIf(greaterThan(1, 0),
[](const LegalityQuery &Query) {
return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
});
getActionDefinitionsBuilder(G_PTRTOINT)
// List the common cases
.legalForCartesianProduct({GlobalPtr, ConstantPtr, FlatPtr}, {S64})
.legalForCartesianProduct({LocalPtr, PrivatePtr}, {S32})
.scalarize(0)
// Accept any address space as long as the size matches
.legalIf(sameSize(0, 1))
.widenScalarIf(smallerThan(0, 1),
[](const LegalityQuery &Query) {
return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
})
.narrowScalarIf(
greaterThan(0, 1),
[](const LegalityQuery &Query) {
return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
});
getActionDefinitionsBuilder({G_LOAD, G_STORE})
.narrowScalarIf([](const LegalityQuery &Query) {
unsigned Size = Query.Types[0].getSizeInBits();
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
return (Size > 32 && MemSize < Size);
},
[](const LegalityQuery &Query) {
return std::make_pair(0, LLT::scalar(32));
})
.fewerElementsIf([=, &ST](const LegalityQuery &Query) {
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
return (MemSize == 96) &&
Query.Types[0].isVector() &&
ST.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS;
},
[=](const LegalityQuery &Query) {
return std::make_pair(0, V2S32);
})
.legalIf([=, &ST](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
unsigned Size = Ty0.getSizeInBits();
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
if (Size < 32 || (Size > 32 && MemSize < Size))
return false;
if (Ty0.isVector() && Size != MemSize)
return false;
// TODO: Decompose private loads into 4-byte components.
// TODO: Illegal flat loads on SI
switch (MemSize) {
case 8:
case 16:
return Size == 32;
case 32:
case 64:
case 128:
return true;
case 96:
// XXX hasLoadX3
return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS);
case 256:
case 512:
// TODO: constant loads
default:
return false;
}
})
.clampScalar(0, S32, S64);
auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
.legalForTypesWithMemSize({
{S32, GlobalPtr, 8},
{S32, GlobalPtr, 16},
{S32, LocalPtr, 8},
{S32, LocalPtr, 16},
{S32, PrivatePtr, 8},
{S32, PrivatePtr, 16}});
if (ST.hasFlatAddressSpace()) {
ExtLoads.legalForTypesWithMemSize({{S32, FlatPtr, 8},
{S32, FlatPtr, 16}});
}
ExtLoads.clampScalar(0, S32, S32)
.widenScalarToNextPow2(0)
.unsupportedIfMemSizeNotPow2()
.lower();
auto &Atomics = getActionDefinitionsBuilder(
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG})
.legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
{S64, GlobalPtr}, {S64, LocalPtr}});
if (ST.hasFlatAddressSpace()) {
Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
}
// TODO: Pointer types, any 32-bit or 64-bit vector
getActionDefinitionsBuilder(G_SELECT)
.legalForCartesianProduct({S32, S64, V2S32, V2S16, V4S16,
GlobalPtr, LocalPtr, FlatPtr, PrivatePtr,
LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1})
.clampScalar(0, S32, S64)
.fewerElementsIf(
[=](const LegalityQuery &Query) {
if (Query.Types[1].isVector())
return true;
LLT Ty = Query.Types[0];
// FIXME: Hack until odd splits handled
return Ty.isVector() &&
(Ty.getScalarSizeInBits() > 32 || Ty.getNumElements() % 2 != 0);
},
scalarize(0))
// FIXME: Handle 16-bit vectors better
.fewerElementsIf(
[=](const LegalityQuery &Query) {
return Query.Types[0].isVector() &&
Query.Types[0].getElementType().getSizeInBits() < 32;},
scalarize(0))
.scalarize(1)
.clampMaxNumElements(0, S32, 2)
.clampMaxNumElements(0, LocalPtr, 2)
.clampMaxNumElements(0, PrivatePtr, 2)
.legalIf(all(isPointer(0), typeIs(1, S1)));
// TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
// be more flexible with the shift amount type.
auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
.legalFor({{S32, S32}, {S64, S32}});
if (ST.has16BitInsts()) {
Shifts.legalFor({{S16, S32}, {S16, S16}});
Shifts.clampScalar(0, S16, S64);
} else
Shifts.clampScalar(0, S32, S64);
Shifts.clampScalar(1, S32, S32);
for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
unsigned IdxTypeIdx = 2;
getActionDefinitionsBuilder(Op)
.legalIf([=](const LegalityQuery &Query) {
const LLT &VecTy = Query.Types[VecTypeIdx];
const LLT &IdxTy = Query.Types[IdxTypeIdx];
return VecTy.getSizeInBits() % 32 == 0 &&
VecTy.getSizeInBits() <= 512 &&
IdxTy.getSizeInBits() == 32;
})
.clampScalar(EltTypeIdx, S32, S64)
.clampScalar(VecTypeIdx, S32, S64)
.clampScalar(IdxTypeIdx, S32, S32);
}
getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
.unsupportedIf([=](const LegalityQuery &Query) {
const LLT &EltTy = Query.Types[1].getElementType();
return Query.Types[0] != EltTy;
});
// FIXME: Doesn't handle extract of illegal sizes.
getActionDefinitionsBuilder({G_EXTRACT, G_INSERT})
.legalIf([=](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
return (Ty0.getSizeInBits() % 16 == 0) &&
(Ty1.getSizeInBits() % 16 == 0);
})
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT &Ty1 = Query.Types[1];
return (Ty1.getScalarSizeInBits() < 16);
},
// TODO Use generic LegalizeMutation
[](const LegalityQuery &Query) {
LLT Ty1 = Query.Types[1];
unsigned NewEltSizeInBits =
std::max(1 << Log2_32_Ceil(Ty1.getScalarSizeInBits()), 16);
if (Ty1.isVector()) {
return std::make_pair(1, LLT::vector(Ty1.getNumElements(),
NewEltSizeInBits));
}
return std::make_pair(1, LLT::scalar(NewEltSizeInBits));
});
// TODO: vectors of pointers
getActionDefinitionsBuilder(G_BUILD_VECTOR)
.legalForCartesianProduct(AllS32Vectors, {S32})
.legalForCartesianProduct(AllS64Vectors, {S64})
.clampNumElements(0, V16S32, V16S32)
.clampNumElements(0, V2S64, V8S64)
.minScalarSameAs(1, 0)
// FIXME: Sort of a hack to make progress on other legalizations.
.legalIf([=](const LegalityQuery &Query) {
return Query.Types[0].getScalarSizeInBits() <= 32 ||
Query.Types[0].getScalarSizeInBits() == 64;
});
// TODO: Support any combination of v2s32
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
.legalFor({{V4S32, V2S32},
{V8S32, V2S32},
{V8S32, V4S32},
{V4S64, V2S64},
{V4S16, V2S16},
{V8S16, V2S16},
{V8S16, V4S16},
{LLT::vector(4, LocalPtr), LLT::vector(2, LocalPtr)},
{LLT::vector(4, PrivatePtr), LLT::vector(2, PrivatePtr)}});
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT &Ty = Query.Types[TypeIdx];
if (Ty.isVector()) {
const LLT &EltTy = Ty.getElementType();
if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
return true;
if (!isPowerOf2_32(EltTy.getSizeInBits()))
return true;
}
return false;
};
getActionDefinitionsBuilder(Op)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
// Clamp the little scalar to s8-s256 and make it a power of 2. It's not
// worth considering the multiples of 64 since 2*192 and 2*384 are not
// valid.
.clampScalar(LitTyIdx, S16, S256)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
// Break up vectors with weird elements into scalars
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
scalarize(0))
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
scalarize(1))
.clampScalar(BigTyIdx, S32, S512)
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT &Ty = Query.Types[BigTyIdx];
return !isPowerOf2_32(Ty.getSizeInBits()) &&
Ty.getSizeInBits() % 16 != 0;
},
[=](const LegalityQuery &Query) {
// Pick the next power of 2, or a multiple of 64 over 128.
// Whichever is smaller.
const LLT &Ty = Query.Types[BigTyIdx];
unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
if (NewSizeInBits >= 256) {
unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
if (RoundedTo < NewSizeInBits)
NewSizeInBits = RoundedTo;
}
return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
})
.legalIf([=](const LegalityQuery &Query) {
const LLT &BigTy = Query.Types[BigTyIdx];
const LLT &LitTy = Query.Types[LitTyIdx];
if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
return false;
if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
return false;
return BigTy.getSizeInBits() % 16 == 0 &&
LitTy.getSizeInBits() % 16 == 0 &&
BigTy.getSizeInBits() <= 512;
})
// Any vectors left are the wrong size. Scalarize them.
.scalarize(0)
.scalarize(1);
}
computeTables();
verify(*ST.getInstrInfo());
}