llvm-project/clang/test/Analysis/malloc-annotations.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

276 lines
6.5 KiB
C
Raw Normal View History

[analyzer] Reimplement dependencies between checkers Unfortunately, up until now, the fact that certain checkers depended on one another was known, but how these actually unfolded was hidden deep within the implementation. For example, many checkers (like RetainCount, Malloc or CString) modelled a certain functionality, and exposed certain reportable bug types to the user. For example, while MallocChecker models many many different types of memory handling, the actual "unix.MallocChecker" checker the user was exposed to was merely and option to this modeling part. Other than this being an ugly mess, this issue made resolving the checker naming issue almost impossible. (The checker naming issue being that if a checker registered more than one checker within its registry function, both checker object recieved the same name) Also, if the user explicitly disabled a checker that was a dependency of another that _was_ explicitly enabled, it implicitly, without "telling" the user, reenabled it. Clearly, changing this to a well structured, declarative form, where the handling of dependencies are done on a higher level is very much preferred. This patch, among the detailed things later, makes checkers declare their dependencies within the TableGen file Checkers.td, and exposes the same functionality to plugins and statically linked non-generated checkers through CheckerRegistry::addDependency. CheckerRegistry now resolves these dependencies, makes sure that checkers are added to CheckerManager in the correct order, and makes sure that if a dependency is disabled, so will be every checker that depends on it. In detail: * Add a new field to the Checker class in CheckerBase.td called Dependencies, which is a list of Checkers. * Move unix checkers before cplusplus, as there is no forward declaration in tblgen :/ * Add the following new checkers: - StackAddrEscapeBase - StackAddrEscapeBase - CStringModeling - DynamicMemoryModeling (base of the MallocChecker family) - IteratorModeling (base of the IteratorChecker family) - ValistBase - SecuritySyntaxChecker (base of bcmp, bcopy, etc...) - NSOrCFErrorDerefChecker (base of NSErrorChecker and CFErrorChecker) - IvarInvalidationModeling (base of IvarInvalidation checker family) - RetainCountBase (base of RetainCount and OSObjectRetainCount) * Clear up and registry functions in MallocChecker, happily remove old FIXMEs. * Add a new addDependency function to CheckerRegistry. * Neatly format RUN lines in files I looked at while debugging. Big thanks to Artem Degrachev for all the guidance through this project! Differential Revision: https://reviews.llvm.org/D54438 llvm-svn: 352287
2019-01-27 04:06:54 +08:00
// RUN: %clang_analyze_cc1 -analyzer-store=region -verify \
// RUN: -analyzer-checker=core \
// RUN: -analyzer-checker=alpha.deadcode.UnreachableCode \
[analyzer] Reimplement dependencies between checkers Unfortunately, up until now, the fact that certain checkers depended on one another was known, but how these actually unfolded was hidden deep within the implementation. For example, many checkers (like RetainCount, Malloc or CString) modelled a certain functionality, and exposed certain reportable bug types to the user. For example, while MallocChecker models many many different types of memory handling, the actual "unix.MallocChecker" checker the user was exposed to was merely and option to this modeling part. Other than this being an ugly mess, this issue made resolving the checker naming issue almost impossible. (The checker naming issue being that if a checker registered more than one checker within its registry function, both checker object recieved the same name) Also, if the user explicitly disabled a checker that was a dependency of another that _was_ explicitly enabled, it implicitly, without "telling" the user, reenabled it. Clearly, changing this to a well structured, declarative form, where the handling of dependencies are done on a higher level is very much preferred. This patch, among the detailed things later, makes checkers declare their dependencies within the TableGen file Checkers.td, and exposes the same functionality to plugins and statically linked non-generated checkers through CheckerRegistry::addDependency. CheckerRegistry now resolves these dependencies, makes sure that checkers are added to CheckerManager in the correct order, and makes sure that if a dependency is disabled, so will be every checker that depends on it. In detail: * Add a new field to the Checker class in CheckerBase.td called Dependencies, which is a list of Checkers. * Move unix checkers before cplusplus, as there is no forward declaration in tblgen :/ * Add the following new checkers: - StackAddrEscapeBase - StackAddrEscapeBase - CStringModeling - DynamicMemoryModeling (base of the MallocChecker family) - IteratorModeling (base of the IteratorChecker family) - ValistBase - SecuritySyntaxChecker (base of bcmp, bcopy, etc...) - NSOrCFErrorDerefChecker (base of NSErrorChecker and CFErrorChecker) - IvarInvalidationModeling (base of IvarInvalidation checker family) - RetainCountBase (base of RetainCount and OSObjectRetainCount) * Clear up and registry functions in MallocChecker, happily remove old FIXMEs. * Add a new addDependency function to CheckerRegistry. * Neatly format RUN lines in files I looked at while debugging. Big thanks to Artem Degrachev for all the guidance through this project! Differential Revision: https://reviews.llvm.org/D54438 llvm-svn: 352287
2019-01-27 04:06:54 +08:00
// RUN: -analyzer-checker=alpha.core.CastSize \
// RUN: -analyzer-checker=unix.Malloc \
// RUN: -analyzer-config unix.DynamicMemoryModeling:Optimistic=true %s
typedef __typeof(sizeof(int)) size_t;
void *malloc(size_t);
void free(void *);
void *realloc(void *ptr, size_t size);
void *calloc(size_t nmemb, size_t size);
void __attribute((ownership_returns(malloc))) *my_malloc(size_t);
void __attribute((ownership_takes(malloc, 1))) my_free(void *);
void my_freeBoth(void *, void *)
__attribute((ownership_holds(malloc, 1, 2)));
void __attribute((ownership_returns(malloc, 1))) *my_malloc2(size_t);
void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
// Duplicate attributes are silly, but not an error.
// Duplicate attribute has no extra effect.
// If two are of different kinds, that is an error and reported as such.
void __attribute((ownership_holds(malloc, 1)))
__attribute((ownership_holds(malloc, 1)))
__attribute((ownership_holds(malloc, 3))) my_hold2(void *, void *, void *);
void *my_malloc3(size_t);
void *myglobalpointer;
struct stuff {
void *somefield;
};
struct stuff myglobalstuff;
void f1() {
int *p = malloc(12);
return; // expected-warning{{Potential leak of memory pointed to by}}
}
void f2() {
int *p = malloc(12);
free(p);
free(p); // expected-warning{{Attempt to free released memory}}
}
void f2_realloc_0() {
int *p = malloc(12);
realloc(p,0);
realloc(p,0); // expected-warning{{Attempt to free released memory}}
}
void f2_realloc_1() {
int *p = malloc(12);
int *q = realloc(p,0); // no-warning
}
// ownership attributes tests
void naf1() {
int *p = my_malloc3(12);
return; // no-warning
}
void n2af1() {
int *p = my_malloc2(12);
return; // expected-warning{{Potential leak of memory pointed to by}}
}
void af1() {
int *p = my_malloc(12);
return; // expected-warning{{Potential leak of memory pointed to by}}
}
void af1_b() {
int *p = my_malloc(12);
} // expected-warning{{Potential leak of memory pointed to by}}
void af1_c() {
myglobalpointer = my_malloc(12); // no-warning
}
void af1_d() {
struct stuff mystuff;
mystuff.somefield = my_malloc(12);
} // expected-warning{{Potential leak of memory pointed to by}}
// Test that we can pass out allocated memory via pointer-to-pointer.
void af1_e(void **pp) {
*pp = my_malloc(42); // no-warning
}
void af1_f(struct stuff *somestuff) {
somestuff->somefield = my_malloc(12); // no-warning
}
// Allocating memory for a field via multiple indirections to our arguments is OK.
void af1_g(struct stuff **pps) {
*pps = my_malloc(sizeof(struct stuff)); // no-warning
(*pps)->somefield = my_malloc(42); // no-warning
}
void af2() {
int *p = my_malloc(12);
my_free(p);
free(p); // expected-warning{{Attempt to free released memory}}
}
void af2b() {
int *p = my_malloc(12);
free(p);
my_free(p); // expected-warning{{Attempt to free released memory}}
}
void af2c() {
int *p = my_malloc(12);
free(p);
my_hold(p); // expected-warning{{Attempt to free released memory}}
}
void af2d() {
int *p = my_malloc(12);
free(p);
my_hold2(0, 0, p); // expected-warning{{Attempt to free released memory}}
}
// No leak if malloc returns null.
void af2e() {
int *p = my_malloc(12);
if (!p)
return; // no-warning
free(p); // no-warning
}
// This case inflicts a possible double-free.
void af3() {
int *p = my_malloc(12);
my_hold(p);
free(p); // expected-warning{{Attempt to free non-owned memory}}
}
int * af4() {
int *p = my_malloc(12);
my_free(p);
return p; // expected-warning{{Use of memory after it is freed}}
}
// This case is (possibly) ok, be conservative
int * af5() {
int *p = my_malloc(12);
my_hold(p);
return p; // no-warning
}
// This case tests that storing malloc'ed memory to a static variable which is
// then returned is not leaked. In the absence of known contracts for functions
// or inter-procedural analysis, this is a conservative answer.
int *f3() {
static int *p = 0;
p = malloc(12);
return p; // no-warning
}
// This case tests that storing malloc'ed memory to a static global variable
// which is then returned is not leaked. In the absence of known contracts for
// functions or inter-procedural analysis, this is a conservative answer.
static int *p_f4 = 0;
int *f4() {
p_f4 = malloc(12);
return p_f4; // no-warning
}
int *f5() {
int *q = malloc(12);
q = realloc(q, 20);
return q; // no-warning
}
void f6() {
int *p = malloc(12);
if (!p)
return; // no-warning
else
free(p);
}
void f6_realloc() {
int *p = malloc(12);
if (!p)
return; // no-warning
else
realloc(p,0);
}
char *doit2();
void pr6069() {
char *buf = doit2();
free(buf);
}
void pr6293() {
free(0);
}
void f7() {
char *x = (char*) malloc(4);
free(x);
x[0] = 'a'; // expected-warning{{Use of memory after it is freed}}
}
void f7_realloc() {
char *x = (char*) malloc(4);
realloc(x,0);
x[0] = 'a'; // expected-warning{{Use of memory after it is freed}}
}
void PR6123() {
int *x = malloc(11); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
}
void PR7217() {
int *buf = malloc(2); // expected-warning{{Cast a region whose size is not a multiple of the destination type size}}
buf[1] = 'c'; // not crash
}
void mallocCastToVoid() {
void *p = malloc(2);
const void *cp = p; // not crash
free(p);
}
void mallocCastToFP() {
void *p = malloc(2);
void (*fp)() = p; // not crash
free(p);
}
// This tests that malloc() buffers are undefined by default
char mallocGarbage () {
char *buf = malloc(2);
char result = buf[1]; // expected-warning{{undefined}}
free(buf);
return result;
}
// This tests that calloc() buffers need to be freed
void callocNoFree () {
char *buf = calloc(2,2);
return; // expected-warning{{Potential leak of memory pointed to by}}
}
// These test that calloc() buffers are zeroed by default
char callocZeroesGood () {
char *buf = calloc(2,2);
char result = buf[3]; // no-warning
if (buf[1] == 0) {
free(buf);
}
return result; // no-warning
}
char callocZeroesBad () {
char *buf = calloc(2,2);
char result = buf[3]; // no-warning
if (buf[1] != 0) {
free(buf); // expected-warning{{never executed}}
}
return result; // expected-warning{{Potential leak of memory pointed to by}}
}
void testMultipleFreeAnnotations() {
int *p = malloc(12);
int *q = malloc(12);
my_freeBoth(p, q);
}