2013-01-31 20:12:40 +08:00
|
|
|
//===-- AArch64MCTargetDesc.cpp - AArch64 Target Descriptions -------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file provides AArch64 specific target descriptions.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "AArch64MCTargetDesc.h"
|
|
|
|
#include "AArch64ELFStreamer.h"
|
|
|
|
#include "AArch64MCAsmInfo.h"
|
|
|
|
#include "InstPrinter/AArch64InstPrinter.h"
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
|
|
#include "llvm/MC/MCCodeGenInfo.h"
|
|
|
|
#include "llvm/MC/MCInstrAnalysis.h"
|
|
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
|
|
#include "llvm/MC/MCStreamer.h"
|
|
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
|
|
|
|
|
|
#define GET_REGINFO_MC_DESC
|
|
|
|
#include "AArch64GenRegisterInfo.inc"
|
|
|
|
|
|
|
|
#define GET_INSTRINFO_MC_DESC
|
|
|
|
#include "AArch64GenInstrInfo.inc"
|
|
|
|
|
|
|
|
#define GET_SUBTARGETINFO_MC_DESC
|
|
|
|
#include "AArch64GenSubtargetInfo.inc"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
MCSubtargetInfo *AArch64_MC::createAArch64MCSubtargetInfo(StringRef TT,
|
|
|
|
StringRef CPU,
|
|
|
|
StringRef FS) {
|
|
|
|
MCSubtargetInfo *X = new MCSubtargetInfo();
|
|
|
|
InitAArch64MCSubtargetInfo(X, TT, CPU, "");
|
|
|
|
return X;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static MCInstrInfo *createAArch64MCInstrInfo() {
|
|
|
|
MCInstrInfo *X = new MCInstrInfo();
|
|
|
|
InitAArch64MCInstrInfo(X);
|
|
|
|
return X;
|
|
|
|
}
|
|
|
|
|
|
|
|
static MCRegisterInfo *createAArch64MCRegisterInfo(StringRef Triple) {
|
|
|
|
MCRegisterInfo *X = new MCRegisterInfo();
|
|
|
|
InitAArch64MCRegisterInfo(X, AArch64::X30);
|
|
|
|
return X;
|
|
|
|
}
|
|
|
|
|
2013-05-13 09:16:13 +08:00
|
|
|
static MCAsmInfo *createAArch64MCAsmInfo(const MCRegisterInfo &MRI,
|
|
|
|
StringRef TT) {
|
2013-01-31 20:12:40 +08:00
|
|
|
Triple TheTriple(TT);
|
|
|
|
|
|
|
|
MCAsmInfo *MAI = new AArch64ELFMCAsmInfo();
|
2013-05-13 09:16:13 +08:00
|
|
|
unsigned Reg = MRI.getDwarfRegNum(AArch64::XSP, true);
|
|
|
|
MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(0, Reg, 0);
|
|
|
|
MAI->addInitialFrameState(Inst);
|
2013-01-31 20:12:40 +08:00
|
|
|
|
|
|
|
return MAI;
|
|
|
|
}
|
|
|
|
|
|
|
|
static MCCodeGenInfo *createAArch64MCCodeGenInfo(StringRef TT, Reloc::Model RM,
|
|
|
|
CodeModel::Model CM,
|
|
|
|
CodeGenOpt::Level OL) {
|
|
|
|
MCCodeGenInfo *X = new MCCodeGenInfo();
|
|
|
|
if (RM == Reloc::Default || RM == Reloc::DynamicNoPIC) {
|
|
|
|
// On ELF platforms the default static relocation model has a smart enough
|
|
|
|
// linker to cope with referencing external symbols defined in a shared
|
|
|
|
// library. Hence DynamicNoPIC doesn't need to be promoted to PIC.
|
|
|
|
RM = Reloc::Static;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CM == CodeModel::Default)
|
|
|
|
CM = CodeModel::Small;
|
2013-05-05 04:13:59 +08:00
|
|
|
else if (CM == CodeModel::JITDefault) {
|
|
|
|
// The default MCJIT memory managers make no guarantees about where they can
|
|
|
|
// find an executable page; JITed code needs to be able to refer to globals
|
|
|
|
// no matter how far away they are.
|
|
|
|
CM = CodeModel::Large;
|
|
|
|
}
|
2013-01-31 20:12:40 +08:00
|
|
|
|
|
|
|
X->InitMCCodeGenInfo(RM, CM, OL);
|
|
|
|
return X;
|
|
|
|
}
|
|
|
|
|
|
|
|
static MCStreamer *createMCStreamer(const Target &T, StringRef TT,
|
|
|
|
MCContext &Ctx, MCAsmBackend &MAB,
|
|
|
|
raw_ostream &OS,
|
|
|
|
MCCodeEmitter *Emitter,
|
|
|
|
bool RelaxAll,
|
|
|
|
bool NoExecStack) {
|
|
|
|
Triple TheTriple(TT);
|
|
|
|
|
|
|
|
return createAArch64ELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll, NoExecStack);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static MCInstPrinter *createAArch64MCInstPrinter(const Target &T,
|
|
|
|
unsigned SyntaxVariant,
|
|
|
|
const MCAsmInfo &MAI,
|
|
|
|
const MCInstrInfo &MII,
|
|
|
|
const MCRegisterInfo &MRI,
|
|
|
|
const MCSubtargetInfo &STI) {
|
|
|
|
if (SyntaxVariant == 0)
|
|
|
|
return new AArch64InstPrinter(MAI, MII, MRI, STI);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class AArch64MCInstrAnalysis : public MCInstrAnalysis {
|
|
|
|
public:
|
|
|
|
AArch64MCInstrAnalysis(const MCInstrInfo *Info) : MCInstrAnalysis(Info) {}
|
|
|
|
|
|
|
|
virtual bool isUnconditionalBranch(const MCInst &Inst) const {
|
|
|
|
if (Inst.getOpcode() == AArch64::Bcc
|
|
|
|
&& Inst.getOperand(0).getImm() == A64CC::AL)
|
|
|
|
return true;
|
|
|
|
return MCInstrAnalysis::isUnconditionalBranch(Inst);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool isConditionalBranch(const MCInst &Inst) const {
|
|
|
|
if (Inst.getOpcode() == AArch64::Bcc
|
|
|
|
&& Inst.getOperand(0).getImm() == A64CC::AL)
|
|
|
|
return false;
|
|
|
|
return MCInstrAnalysis::isConditionalBranch(Inst);
|
|
|
|
}
|
|
|
|
|
MC: Disassembled CFG reconstruction.
This patch builds on some existing code to do CFG reconstruction from
a disassembled binary:
- MCModule represents the binary, and has a list of MCAtoms.
- MCAtom represents either disassembled instructions (MCTextAtom), or
contiguous data (MCDataAtom), and covers a specific range of addresses.
- MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is
backed by an MCTextAtom, and has the usual successors/predecessors.
- MCObjectDisassembler creates a module from an ObjectFile using a
disassembler. It first builds an atom for each section. It can also
construct the CFG, and this splits the text atoms into basic blocks.
MCModule and MCAtom were only sketched out; MCFunction and MCBB were
implemented under the experimental "-cfg" llvm-objdump -macho option.
This cleans them up for further use; llvm-objdump -d -cfg now generates
graphviz files for each function found in the binary.
In the future, MCObjectDisassembler may be the right place to do
"intelligent" disassembly: for example, handling constant islands is just
a matter of splitting the atom, using information that may be available
in the ObjectFile. Also, better initial atom formation than just using
sections is possible using symbols (and things like Mach-O's
function_starts load command).
This brings two minor regressions in llvm-objdump -macho -cfg:
- The printing of a relocation's referenced symbol.
- An annotation on loop BBs, i.e., which are their own successor.
Relocation printing is replaced by the MCSymbolizer; the basic CFG
annotation will be superseded by more related functionality.
llvm-svn: 182628
2013-05-24 09:07:04 +08:00
|
|
|
bool evaluateBranch(const MCInst &Inst, uint64_t Addr,
|
|
|
|
uint64_t Size, uint64_t &Target) const {
|
2013-01-31 20:12:40 +08:00
|
|
|
unsigned LblOperand = Inst.getOpcode() == AArch64::Bcc ? 1 : 0;
|
|
|
|
// FIXME: We only handle PCRel branches for now.
|
|
|
|
if (Info->get(Inst.getOpcode()).OpInfo[LblOperand].OperandType
|
|
|
|
!= MCOI::OPERAND_PCREL)
|
MC: Disassembled CFG reconstruction.
This patch builds on some existing code to do CFG reconstruction from
a disassembled binary:
- MCModule represents the binary, and has a list of MCAtoms.
- MCAtom represents either disassembled instructions (MCTextAtom), or
contiguous data (MCDataAtom), and covers a specific range of addresses.
- MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is
backed by an MCTextAtom, and has the usual successors/predecessors.
- MCObjectDisassembler creates a module from an ObjectFile using a
disassembler. It first builds an atom for each section. It can also
construct the CFG, and this splits the text atoms into basic blocks.
MCModule and MCAtom were only sketched out; MCFunction and MCBB were
implemented under the experimental "-cfg" llvm-objdump -macho option.
This cleans them up for further use; llvm-objdump -d -cfg now generates
graphviz files for each function found in the binary.
In the future, MCObjectDisassembler may be the right place to do
"intelligent" disassembly: for example, handling constant islands is just
a matter of splitting the atom, using information that may be available
in the ObjectFile. Also, better initial atom formation than just using
sections is possible using symbols (and things like Mach-O's
function_starts load command).
This brings two minor regressions in llvm-objdump -macho -cfg:
- The printing of a relocation's referenced symbol.
- An annotation on loop BBs, i.e., which are their own successor.
Relocation printing is replaced by the MCSymbolizer; the basic CFG
annotation will be superseded by more related functionality.
llvm-svn: 182628
2013-05-24 09:07:04 +08:00
|
|
|
return false;
|
2013-01-31 20:12:40 +08:00
|
|
|
|
|
|
|
int64_t Imm = Inst.getOperand(LblOperand).getImm();
|
MC: Disassembled CFG reconstruction.
This patch builds on some existing code to do CFG reconstruction from
a disassembled binary:
- MCModule represents the binary, and has a list of MCAtoms.
- MCAtom represents either disassembled instructions (MCTextAtom), or
contiguous data (MCDataAtom), and covers a specific range of addresses.
- MCBasicBlock and MCFunction form the reconstructed CFG. An MCBB is
backed by an MCTextAtom, and has the usual successors/predecessors.
- MCObjectDisassembler creates a module from an ObjectFile using a
disassembler. It first builds an atom for each section. It can also
construct the CFG, and this splits the text atoms into basic blocks.
MCModule and MCAtom were only sketched out; MCFunction and MCBB were
implemented under the experimental "-cfg" llvm-objdump -macho option.
This cleans them up for further use; llvm-objdump -d -cfg now generates
graphviz files for each function found in the binary.
In the future, MCObjectDisassembler may be the right place to do
"intelligent" disassembly: for example, handling constant islands is just
a matter of splitting the atom, using information that may be available
in the ObjectFile. Also, better initial atom formation than just using
sections is possible using symbols (and things like Mach-O's
function_starts load command).
This brings two minor regressions in llvm-objdump -macho -cfg:
- The printing of a relocation's referenced symbol.
- An annotation on loop BBs, i.e., which are their own successor.
Relocation printing is replaced by the MCSymbolizer; the basic CFG
annotation will be superseded by more related functionality.
llvm-svn: 182628
2013-05-24 09:07:04 +08:00
|
|
|
Target = Addr + Imm;
|
|
|
|
return true;
|
2013-01-31 20:12:40 +08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static MCInstrAnalysis *createAArch64MCInstrAnalysis(const MCInstrInfo *Info) {
|
|
|
|
return new AArch64MCInstrAnalysis(Info);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
extern "C" void LLVMInitializeAArch64TargetMC() {
|
|
|
|
// Register the MC asm info.
|
|
|
|
RegisterMCAsmInfoFn A(TheAArch64Target, createAArch64MCAsmInfo);
|
|
|
|
|
|
|
|
// Register the MC codegen info.
|
|
|
|
TargetRegistry::RegisterMCCodeGenInfo(TheAArch64Target,
|
|
|
|
createAArch64MCCodeGenInfo);
|
|
|
|
|
|
|
|
// Register the MC instruction info.
|
|
|
|
TargetRegistry::RegisterMCInstrInfo(TheAArch64Target,
|
|
|
|
createAArch64MCInstrInfo);
|
|
|
|
|
|
|
|
// Register the MC register info.
|
|
|
|
TargetRegistry::RegisterMCRegInfo(TheAArch64Target,
|
|
|
|
createAArch64MCRegisterInfo);
|
|
|
|
|
|
|
|
// Register the MC subtarget info.
|
|
|
|
using AArch64_MC::createAArch64MCSubtargetInfo;
|
|
|
|
TargetRegistry::RegisterMCSubtargetInfo(TheAArch64Target,
|
|
|
|
createAArch64MCSubtargetInfo);
|
|
|
|
|
|
|
|
// Register the MC instruction analyzer.
|
|
|
|
TargetRegistry::RegisterMCInstrAnalysis(TheAArch64Target,
|
|
|
|
createAArch64MCInstrAnalysis);
|
|
|
|
|
|
|
|
// Register the MC Code Emitter
|
|
|
|
TargetRegistry::RegisterMCCodeEmitter(TheAArch64Target,
|
|
|
|
createAArch64MCCodeEmitter);
|
|
|
|
|
|
|
|
// Register the asm backend.
|
|
|
|
TargetRegistry::RegisterMCAsmBackend(TheAArch64Target,
|
|
|
|
createAArch64AsmBackend);
|
|
|
|
|
|
|
|
// Register the object streamer.
|
|
|
|
TargetRegistry::RegisterMCObjectStreamer(TheAArch64Target,
|
|
|
|
createMCStreamer);
|
|
|
|
|
|
|
|
// Register the MCInstPrinter.
|
|
|
|
TargetRegistry::RegisterMCInstPrinter(TheAArch64Target,
|
|
|
|
createAArch64MCInstPrinter);
|
|
|
|
}
|