llvm-project/llvm/lib/Target/R600/AMDGPUInstrInfo.cpp

267 lines
8.7 KiB
C++
Raw Normal View History

//===-- AMDGPUInstrInfo.cpp - Base class for AMD GPU InstrInfo ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Implementation of the TargetInstrInfo class that is common to all
/// AMD GPUs.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUInstrInfo.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUTargetMachine.h"
#include "AMDIL.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#define GET_INSTRINFO_CTOR
#include "AMDGPUGenInstrInfo.inc"
using namespace llvm;
AMDGPUInstrInfo::AMDGPUInstrInfo(TargetMachine &tm)
: AMDGPUGenInstrInfo(0,0), RI(tm, *this), TM(tm) { }
const AMDGPURegisterInfo &AMDGPUInstrInfo::getRegisterInfo() const {
return RI;
}
bool AMDGPUInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
unsigned &SrcReg, unsigned &DstReg,
unsigned &SubIdx) const {
// TODO: Implement this function
return false;
}
unsigned AMDGPUInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
// TODO: Implement this function
return 0;
}
unsigned AMDGPUInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
// TODO: Implement this function
return 0;
}
bool AMDGPUInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
// TODO: Implement this function
return false;
}
unsigned AMDGPUInstrInfo::isStoreFromStackSlot(const MachineInstr *MI,
int &FrameIndex) const {
// TODO: Implement this function
return 0;
}
unsigned AMDGPUInstrInfo::isStoreFromStackSlotPostFE(const MachineInstr *MI,
int &FrameIndex) const {
// TODO: Implement this function
return 0;
}
bool AMDGPUInstrInfo::hasStoreFromStackSlot(const MachineInstr *MI,
const MachineMemOperand *&MMO,
int &FrameIndex) const {
// TODO: Implement this function
return false;
}
MachineInstr *
AMDGPUInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
MachineBasicBlock::iterator &MBBI,
LiveVariables *LV) const {
// TODO: Implement this function
return NULL;
}
bool AMDGPUInstrInfo::getNextBranchInstr(MachineBasicBlock::iterator &iter,
MachineBasicBlock &MBB) const {
while (iter != MBB.end()) {
switch (iter->getOpcode()) {
default:
break;
case AMDGPU::BRANCH_COND_i32:
case AMDGPU::BRANCH_COND_f32:
case AMDGPU::BRANCH:
return true;
};
++iter;
}
return false;
}
MachineBasicBlock::iterator skipFlowControl(MachineBasicBlock *MBB) {
MachineBasicBlock::iterator tmp = MBB->end();
if (!MBB->size()) {
return MBB->end();
}
while (--tmp) {
if (tmp->getOpcode() == AMDGPU::ENDLOOP
|| tmp->getOpcode() == AMDGPU::ENDIF
|| tmp->getOpcode() == AMDGPU::ELSE) {
if (tmp == MBB->begin()) {
return tmp;
} else {
continue;
}
} else {
return ++tmp;
}
}
return MBB->end();
}
void
AMDGPUInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned SrcReg, bool isKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
assert(!"Not Implemented");
}
void
AMDGPUInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
assert(!"Not Implemented");
}
MachineInstr *
AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
int FrameIndex) const {
// TODO: Implement this function
return 0;
}
MachineInstr*
AMDGPUInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops,
MachineInstr *LoadMI) const {
// TODO: Implement this function
return 0;
}
bool
AMDGPUInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
const SmallVectorImpl<unsigned> &Ops) const {
// TODO: Implement this function
return false;
}
bool
AMDGPUInstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
unsigned Reg, bool UnfoldLoad,
bool UnfoldStore,
SmallVectorImpl<MachineInstr*> &NewMIs) const {
// TODO: Implement this function
return false;
}
bool
AMDGPUInstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
SmallVectorImpl<SDNode*> &NewNodes) const {
// TODO: Implement this function
return false;
}
unsigned
AMDGPUInstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
bool UnfoldLoad, bool UnfoldStore,
unsigned *LoadRegIndex) const {
// TODO: Implement this function
return 0;
}
bool AMDGPUInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
int64_t Offset1, int64_t Offset2,
unsigned NumLoads) const {
assert(Offset2 > Offset1
&& "Second offset should be larger than first offset!");
// If we have less than 16 loads in a row, and the offsets are within 16,
// then schedule together.
// TODO: Make the loads schedule near if it fits in a cacheline
return (NumLoads < 16 && (Offset2 - Offset1) < 16);
}
bool
AMDGPUInstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
const {
// TODO: Implement this function
return true;
}
void AMDGPUInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
// TODO: Implement this function
}
bool AMDGPUInstrInfo::isPredicated(const MachineInstr *MI) const {
// TODO: Implement this function
return false;
}
bool
AMDGPUInstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
const SmallVectorImpl<MachineOperand> &Pred2)
const {
// TODO: Implement this function
return false;
}
bool AMDGPUInstrInfo::DefinesPredicate(MachineInstr *MI,
std::vector<MachineOperand> &Pred) const {
// TODO: Implement this function
return false;
}
bool AMDGPUInstrInfo::isPredicable(MachineInstr *MI) const {
// TODO: Implement this function
return MI->getDesc().isPredicable();
}
bool
AMDGPUInstrInfo::isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
// TODO: Implement this function
return true;
}
bool AMDGPUInstrInfo::isRegisterStore(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_STORE;
}
bool AMDGPUInstrInfo::isRegisterLoad(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & AMDGPU_FLAG_REGISTER_LOAD;
}
void AMDGPUInstrInfo::convertToISA(MachineInstr & MI, MachineFunction &MF,
DebugLoc DL) const {
MachineRegisterInfo &MRI = MF.getRegInfo();
const AMDGPURegisterInfo & RI = getRegisterInfo();
for (unsigned i = 0; i < MI.getNumOperands(); i++) {
MachineOperand &MO = MI.getOperand(i);
// Convert dst regclass to one that is supported by the ISA
if (MO.isReg() && MO.isDef()) {
if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
const TargetRegisterClass * oldRegClass = MRI.getRegClass(MO.getReg());
const TargetRegisterClass * newRegClass = RI.getISARegClass(oldRegClass);
assert(newRegClass);
MRI.setRegClass(MO.getReg(), newRegClass);
}
}
}
}