llvm-project/llvm/test/CodeGen/X86/select-optimize.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

553 lines
24 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -mtriple=x86_64-unknown-unknown -select-optimize -S < %s | FileCheck %s
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Test base heuristic 1:
;; highly-biased selects assumed to be highly predictable, converted to branches
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; If a select is obviously predictable, turn it into a branch.
define i32 @weighted_select1(i32 %a, i32 %b, i1 %cmp) {
; CHECK-LABEL: @weighted_select1(
; CHECK-NEXT: [[SEL_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL_FROZEN]], label [[SELECT_END:%.*]], label [[SELECT_FALSE:%.*]], !prof [[PROF16:![0-9]+]]
; CHECK: select.false:
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[A:%.*]], [[TMP0:%.*]] ], [ [[B:%.*]], [[SELECT_FALSE]] ]
; CHECK-NEXT: ret i32 [[SEL]]
;
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !15
ret i32 %sel
}
; If a select is obviously predictable (reversed profile weights),
; turn it into a branch.
define i32 @weighted_select2(i32 %a, i32 %b, i1 %cmp) {
; CHECK-LABEL: @weighted_select2(
; CHECK-NEXT: [[SEL_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL_FROZEN]], label [[SELECT_END:%.*]], label [[SELECT_FALSE:%.*]], !prof [[PROF17:![0-9]+]]
; CHECK: select.false:
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[A:%.*]], [[TMP0:%.*]] ], [ [[B:%.*]], [[SELECT_FALSE]] ]
; CHECK-NEXT: ret i32 [[SEL]]
;
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !16
ret i32 %sel
}
; Not obvioulsy predictable select.
define i32 @weighted_select3(i32 %a, i32 %b, i1 %cmp) {
; CHECK-LABEL: @weighted_select3(
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[A:%.*]], i32 [[B:%.*]], !prof [[PROF18:![0-9]+]]
; CHECK-NEXT: ret i32 [[SEL]]
;
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !17
ret i32 %sel
}
; Unpredictable select should not form a branch.
define i32 @unpred_select(i32 %a, i32 %b, i1 %cmp) {
; CHECK-LABEL: @unpred_select(
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[A:%.*]], i32 [[B:%.*]], !unpredictable !19
; CHECK-NEXT: ret i32 [[SEL]]
;
%sel = select i1 %cmp, i32 %a, i32 %b, !unpredictable !20
ret i32 %sel
}
; Predictable select in function with optsize attribute should not form branch.
define i32 @weighted_select_optsize(i32 %a, i32 %b, i1 %cmp) optsize {
; CHECK-LABEL: @weighted_select_optsize(
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[A:%.*]], i32 [[B:%.*]], !prof [[PROF16]]
; CHECK-NEXT: ret i32 [[SEL]]
;
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !15
ret i32 %sel
}
define i32 @weighted_select_pgso(i32 %a, i32 %b, i1 %cmp) !prof !14 {
; CHECK-LABEL: @weighted_select_pgso(
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[A:%.*]], i32 [[B:%.*]], !prof [[PROF16]]
; CHECK-NEXT: ret i32 [[SEL]]
;
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !15
ret i32 %sel
}
; If two selects in a row are predictable, turn them into branches.
define i32 @weighted_selects(i32 %a, i32 %b) !prof !19 {
; CHECK-LABEL: @weighted_selects(
; CHECK-NEXT: [[CMP:%.*]] = icmp ne i32 [[A:%.*]], 0
; CHECK-NEXT: [[SEL_FROZEN:%.*]] = freeze i1 [[CMP]]
; CHECK-NEXT: br i1 [[SEL_FROZEN]], label [[SELECT_END:%.*]], label [[SELECT_FALSE:%.*]], !prof [[PROF16]]
; CHECK: select.false:
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[A]], [[TMP0:%.*]] ], [ [[B:%.*]], [[SELECT_FALSE]] ]
; CHECK-NEXT: [[CMP1:%.*]] = icmp ne i32 [[SEL]], 0
; CHECK-NEXT: [[SEL1_FROZEN:%.*]] = freeze i1 [[CMP1]]
; CHECK-NEXT: br i1 [[SEL1_FROZEN]], label [[SELECT_END1:%.*]], label [[SELECT_FALSE2:%.*]], !prof [[PROF16]]
; CHECK: select.false2:
; CHECK-NEXT: br label [[SELECT_END1]]
; CHECK: select.end1:
; CHECK-NEXT: [[SEL1:%.*]] = phi i32 [ [[B]], [[SELECT_END]] ], [ [[A]], [[SELECT_FALSE2]] ]
; CHECK-NEXT: ret i32 [[SEL1]]
;
%cmp = icmp ne i32 %a, 0
%sel = select i1 %cmp, i32 %a, i32 %b, !prof !15
%cmp1 = icmp ne i32 %sel, 0
%sel1 = select i1 %cmp1, i32 %b, i32 %a, !prof !15
ret i32 %sel1
}
; If select group predictable, turn it into a branch.
define i32 @weighted_select_group(i32 %a, i32 %b, i32 %c, i1 %cmp) !prof !19 {
; CHECK-LABEL: @weighted_select_group(
; CHECK-NEXT: [[A1:%.*]] = add i32 [[A:%.*]], 1
; CHECK-NEXT: [[SEL1_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL1_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_FALSE_SINK:%.*]], !prof [[PROF16]]
; CHECK: select.true.sink:
; CHECK-NEXT: [[C1:%.*]] = add i32 [[C:%.*]], 1
; CHECK-NEXT: br label [[SELECT_END:%.*]]
; CHECK: select.false.sink:
; CHECK-NEXT: [[B1:%.*]] = add i32 [[B:%.*]], 1
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL1:%.*]] = phi i32 [ [[A1]], [[SELECT_TRUE_SINK]] ], [ [[B1]], [[SELECT_FALSE_SINK]] ]
; CHECK-NEXT: [[SEL2:%.*]] = phi i32 [ [[C1]], [[SELECT_TRUE_SINK]] ], [ [[A1]], [[SELECT_FALSE_SINK]] ]
; CHECK-NEXT: call void @llvm.dbg.value(metadata i32 [[SEL1]], metadata [[META22:![0-9]+]], metadata !DIExpression()), !dbg [[DBG26:![0-9]+]]
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[SEL1]], [[SEL2]]
; CHECK-NEXT: ret i32 [[ADD]]
;
%a1 = add i32 %a, 1
%b1 = add i32 %b, 1
%c1 = add i32 %c, 1
%sel1 = select i1 %cmp, i32 %a1, i32 %b1, !prof !15
call void @llvm.dbg.value(metadata i32 %sel1, metadata !24, metadata !DIExpression()), !dbg !DILocation(scope: !23)
%sel2 = select i1 %cmp, i32 %c1, i32 %a1, !prof !15
%add = add i32 %sel1, %sel2
ret i32 %add
}
; Predictable select group with intra-group dependence converted to branch
define i32 @select_group_intra_group(i32 %a, i32 %b, i32 %c, i1 %cmp) {
; CHECK-LABEL: @select_group_intra_group(
; CHECK-NEXT: [[SEL1_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL1_FROZEN]], label [[SELECT_END:%.*]], label [[SELECT_FALSE:%.*]], !prof [[PROF16]]
; CHECK: select.false:
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL1:%.*]] = phi i32 [ [[A:%.*]], [[TMP0:%.*]] ], [ [[B:%.*]], [[SELECT_FALSE]] ]
; CHECK-NEXT: [[SEL2:%.*]] = phi i32 [ [[C:%.*]], [[TMP0]] ], [ [[B]], [[SELECT_FALSE]] ]
; CHECK-NEXT: [[SUB:%.*]] = sub i32 [[SEL1]], [[SEL2]]
; CHECK-NEXT: ret i32 [[SUB]]
;
%sel1 = select i1 %cmp, i32 %a, i32 %b,!prof !15
%sel2 = select i1 %cmp, i32 %c, i32 %sel1, !prof !15
%sub = sub i32 %sel1, %sel2
ret i32 %sub
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Test base heuristic 2:
;; look for expensive instructions in the one-use slice of the cold path
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Select with cold one-use load value operand should form branch and
; sink load
define i32 @expensive_val_operand1(ptr nocapture %a, i32 %y, i1 %cmp) {
; CHECK-LABEL: @expensive_val_operand1(
; CHECK-NEXT: [[SEL_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
; CHECK: select.true.sink:
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[LOAD]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[TMP0:%.*]] ]
; CHECK-NEXT: ret i32 [[SEL]]
;
%load = load i32, ptr %a, align 8
%sel = select i1 %cmp, i32 %load, i32 %y, !prof !17
ret i32 %sel
}
; Expensive hot value operand and cheap cold value operand.
define i32 @expensive_val_operand2(ptr nocapture %a, i32 %x, i1 %cmp) {
; CHECK-LABEL: @expensive_val_operand2(
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[X:%.*]], i32 [[LOAD]], !prof [[PROF18]]
; CHECK-NEXT: ret i32 [[SEL]]
;
%load = load i32, ptr %a, align 8
%sel = select i1 %cmp, i32 %x, i32 %load, !prof !17
ret i32 %sel
}
[SelectOpti] Restrict load sinking This is a follow-up to D133777, which resolved a use-after-free case but did not cover all possible memory bugs due to misplacement of loads. In short, the overall problem was that sinked loads could be moved after state-modifying instructions leading to memory bugs. The solution is to restrict load sinking unless it is found to be sound. i) Within a basic block (to-be-sinked load and select-user are in the same BB), loads can be sinked only if there is no intervening state-modifying instruction. This is a conservative approach to avoid resorting to alias analysis to detect potential memory overlap. ii) Across basic blocks, sinking of loads is avoided. This is because going over multiple basic blocks looking for memory conflicts could be computationally expensive and also unlikely to allow loads to sink. Further, experiments showed that not sinking these loads has a slight positive performance effect. Maybe for some of these loads, having some separation allows enough time for the load to be executed in time for its user. This is not the case for floating point operations that benefit more from sinking. The solution in D133777 was essentially undone in this patch, since the latter is a complete solution to the observed problem. Overall, the performance impact of this patch is minimal. Tested on two internal Google workloads with instrPGO. Search application showed <0.05% perf difference, while the database one showed a slight improvement, but not statistically significant. Reviewed By: davidxl Differential Revision: https://reviews.llvm.org/D133999
2022-09-17 04:34:37 +08:00
; Cold value operand with load in its one-use dependence slice should result
; into a branch with sinked dependence slice.
define i32 @expensive_val_operand3(ptr nocapture %a, i32 %b, i32 %y, i1 %cmp) {
; CHECK-LABEL: @expensive_val_operand3(
; CHECK-NEXT: [[SEL_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
; CHECK: select.true.sink:
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
; CHECK-NEXT: [[X:%.*]] = add i32 [[LOAD]], [[B:%.*]]
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[X]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[TMP0:%.*]] ]
[SelectOpti] Restrict load sinking This is a follow-up to D133777, which resolved a use-after-free case but did not cover all possible memory bugs due to misplacement of loads. In short, the overall problem was that sinked loads could be moved after state-modifying instructions leading to memory bugs. The solution is to restrict load sinking unless it is found to be sound. i) Within a basic block (to-be-sinked load and select-user are in the same BB), loads can be sinked only if there is no intervening state-modifying instruction. This is a conservative approach to avoid resorting to alias analysis to detect potential memory overlap. ii) Across basic blocks, sinking of loads is avoided. This is because going over multiple basic blocks looking for memory conflicts could be computationally expensive and also unlikely to allow loads to sink. Further, experiments showed that not sinking these loads has a slight positive performance effect. Maybe for some of these loads, having some separation allows enough time for the load to be executed in time for its user. This is not the case for floating point operations that benefit more from sinking. The solution in D133777 was essentially undone in this patch, since the latter is a complete solution to the observed problem. Overall, the performance impact of this patch is minimal. Tested on two internal Google workloads with instrPGO. Search application showed <0.05% perf difference, while the database one showed a slight improvement, but not statistically significant. Reviewed By: davidxl Differential Revision: https://reviews.llvm.org/D133999
2022-09-17 04:34:37 +08:00
; CHECK-NEXT: ret i32 [[SEL]]
;
%load = load i32, ptr %a, align 8
%x = add i32 %load, %b
%sel = select i1 %cmp, i32 %x, i32 %y, !prof !17
ret i32 %sel
}
; Expensive cold value operand with unsafe-to-sink (due to func call) load (partial slice sinking).
define i32 @expensive_val_operand4(ptr nocapture %a, i32 %b, i32 %y, i1 %cmp) {
; CHECK-LABEL: @expensive_val_operand4(
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
; CHECK-NEXT: call void @free(ptr [[A]])
; CHECK-NEXT: [[SEL_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
; CHECK: select.true.sink:
; CHECK-NEXT: [[X:%.*]] = add i32 [[LOAD]], [[B:%.*]]
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[X]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[TMP0:%.*]] ]
; CHECK-NEXT: ret i32 [[SEL]]
;
%load = load i32, ptr %a, align 8
call void @free(ptr %a)
%x = add i32 %load, %b
%sel = select i1 %cmp, i32 %x, i32 %y, !prof !17
ret i32 %sel
}
; Expensive cold value operand with unsafe-to-sink (due to lifetime-end marker) load (partial slice sinking).
define i32 @expensive_val_operand5(ptr nocapture %a, i32 %b, i32 %y, i1 %cmp) {
; CHECK-LABEL: @expensive_val_operand5(
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
; CHECK-NEXT: call void @llvm.lifetime.end.p0(i64 2, ptr nonnull [[A]])
[SelectOpti] Restrict load sinking This is a follow-up to D133777, which resolved a use-after-free case but did not cover all possible memory bugs due to misplacement of loads. In short, the overall problem was that sinked loads could be moved after state-modifying instructions leading to memory bugs. The solution is to restrict load sinking unless it is found to be sound. i) Within a basic block (to-be-sinked load and select-user are in the same BB), loads can be sinked only if there is no intervening state-modifying instruction. This is a conservative approach to avoid resorting to alias analysis to detect potential memory overlap. ii) Across basic blocks, sinking of loads is avoided. This is because going over multiple basic blocks looking for memory conflicts could be computationally expensive and also unlikely to allow loads to sink. Further, experiments showed that not sinking these loads has a slight positive performance effect. Maybe for some of these loads, having some separation allows enough time for the load to be executed in time for its user. This is not the case for floating point operations that benefit more from sinking. The solution in D133777 was essentially undone in this patch, since the latter is a complete solution to the observed problem. Overall, the performance impact of this patch is minimal. Tested on two internal Google workloads with instrPGO. Search application showed <0.05% perf difference, while the database one showed a slight improvement, but not statistically significant. Reviewed By: davidxl Differential Revision: https://reviews.llvm.org/D133999
2022-09-17 04:34:37 +08:00
; CHECK-NEXT: [[SEL_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
; CHECK: select.true.sink:
; CHECK-NEXT: [[X:%.*]] = add i32 [[LOAD]], [[B:%.*]]
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[X]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[TMP0:%.*]] ]
; CHECK-NEXT: ret i32 [[SEL]]
;
%load = load i32, ptr %a, align 8
call void @llvm.lifetime.end.p0(i64 2, ptr nonnull %a)
%x = add i32 %load, %b
%sel = select i1 %cmp, i32 %x, i32 %y, !prof !17
ret i32 %sel
}
[SelectOpti] Restrict load sinking This is a follow-up to D133777, which resolved a use-after-free case but did not cover all possible memory bugs due to misplacement of loads. In short, the overall problem was that sinked loads could be moved after state-modifying instructions leading to memory bugs. The solution is to restrict load sinking unless it is found to be sound. i) Within a basic block (to-be-sinked load and select-user are in the same BB), loads can be sinked only if there is no intervening state-modifying instruction. This is a conservative approach to avoid resorting to alias analysis to detect potential memory overlap. ii) Across basic blocks, sinking of loads is avoided. This is because going over multiple basic blocks looking for memory conflicts could be computationally expensive and also unlikely to allow loads to sink. Further, experiments showed that not sinking these loads has a slight positive performance effect. Maybe for some of these loads, having some separation allows enough time for the load to be executed in time for its user. This is not the case for floating point operations that benefit more from sinking. The solution in D133777 was essentially undone in this patch, since the latter is a complete solution to the observed problem. Overall, the performance impact of this patch is minimal. Tested on two internal Google workloads with instrPGO. Search application showed <0.05% perf difference, while the database one showed a slight improvement, but not statistically significant. Reviewed By: davidxl Differential Revision: https://reviews.llvm.org/D133999
2022-09-17 04:34:37 +08:00
; Expensive cold value operand with potentially-unsafe-to-sink load (located
; in a different basic block and thus unchecked for sinkability).
define i32 @expensive_val_operand6(ptr nocapture %a, i32 %b, i32 %y, i1 %cmp) {
; CHECK-LABEL: @expensive_val_operand6(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[A:%.*]], align 8
; CHECK-NEXT: br label [[BB1:%.*]]
; CHECK: bb1:
; CHECK-NEXT: [[SEL_FROZEN:%.*]] = freeze i1 [[CMP:%.*]]
; CHECK-NEXT: br i1 [[SEL_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END:%.*]], !prof [[PROF18]]
; CHECK: select.true.sink:
; CHECK-NEXT: [[X:%.*]] = add i32 [[LOAD]], [[B:%.*]]
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SEL:%.*]] = phi i32 [ [[X]], [[SELECT_TRUE_SINK]] ], [ [[Y:%.*]], [[BB1]] ]
; CHECK-NEXT: ret i32 [[SEL]]
;
entry:
%load = load i32, ptr %a, align 8
br label %bb1
bb1: ; preds = %entry
%x = add i32 %load, %b
%sel = select i1 %cmp, i32 %x, i32 %y, !prof !17
ret i32 %sel
}
; Multiple uses of the load value operand.
[SelectOpti] Restrict load sinking This is a follow-up to D133777, which resolved a use-after-free case but did not cover all possible memory bugs due to misplacement of loads. In short, the overall problem was that sinked loads could be moved after state-modifying instructions leading to memory bugs. The solution is to restrict load sinking unless it is found to be sound. i) Within a basic block (to-be-sinked load and select-user are in the same BB), loads can be sinked only if there is no intervening state-modifying instruction. This is a conservative approach to avoid resorting to alias analysis to detect potential memory overlap. ii) Across basic blocks, sinking of loads is avoided. This is because going over multiple basic blocks looking for memory conflicts could be computationally expensive and also unlikely to allow loads to sink. Further, experiments showed that not sinking these loads has a slight positive performance effect. Maybe for some of these loads, having some separation allows enough time for the load to be executed in time for its user. This is not the case for floating point operations that benefit more from sinking. The solution in D133777 was essentially undone in this patch, since the latter is a complete solution to the observed problem. Overall, the performance impact of this patch is minimal. Tested on two internal Google workloads with instrPGO. Search application showed <0.05% perf difference, while the database one showed a slight improvement, but not statistically significant. Reviewed By: davidxl Differential Revision: https://reviews.llvm.org/D133999
2022-09-17 04:34:37 +08:00
define i32 @expensive_val_operand7(i32 %a, ptr nocapture %b, i32 %x, i1 %cmp) {
; CHECK-LABEL: @expensive_val_operand7(
; CHECK-NEXT: [[LOAD:%.*]] = load i32, ptr [[B:%.*]], align 4
; CHECK-NEXT: [[SEL:%.*]] = select i1 [[CMP:%.*]], i32 [[X:%.*]], i32 [[LOAD]]
; CHECK-NEXT: [[ADD:%.*]] = add i32 [[SEL]], [[LOAD]]
; CHECK-NEXT: ret i32 [[ADD]]
;
%load = load i32, ptr %b, align 4
%sel = select i1 %cmp, i32 %x, i32 %load
%add = add i32 %sel, %load
ret i32 %add
}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Test loop heuristic: loop-level critical-path analysis
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Use of cmov in this test would put a load and a fsub on the critical path.
;; Loop-level analysis should decide to form a branch.
;;
;;double cmov_on_critical_path(int n, double x, ptr a) {
;; for (int i = 0; i < n; i++) {
;; double r = a[i];
;; if (x > r)
;; // 50% of iterations
;; x -= r;
;; }
;; return x;
;;}
define double @cmov_on_critical_path(i32 %n, double %x, ptr nocapture %a) {
; CHECK-LABEL: @cmov_on_critical_path(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[N:%.*]], 0
; CHECK-NEXT: br i1 [[CMP1]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_COND_CLEANUP:%.*]]
; CHECK: for.cond.cleanup:
; CHECK-NEXT: ret double [[X:%.*]]
; CHECK: for.body.preheader:
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[SELECT_END:%.*]] ], [ 0, [[FOR_BODY_PREHEADER]] ]
; CHECK-NEXT: [[X1:%.*]] = phi double [ [[X2:%.*]], [[SELECT_END]] ], [ [[X]], [[FOR_BODY_PREHEADER]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[R:%.*]] = load double, ptr [[ARRAYIDX]], align 8
; CHECK-NEXT: [[CMP2:%.*]] = fcmp ogt double [[X1]], [[R]]
; CHECK-NEXT: [[X2_FROZEN:%.*]] = freeze i1 [[CMP2]]
; CHECK-NEXT: br i1 [[X2_FROZEN]], label [[SELECT_TRUE_SINK:%.*]], label [[SELECT_END]], !prof [[PROF27:![0-9]+]]
; CHECK: select.true.sink:
; CHECK-NEXT: [[SUB:%.*]] = fsub double [[X1]], [[R]]
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[X2]] = phi double [ [[SUB]], [[SELECT_TRUE_SINK]] ], [ [[X1]], [[FOR_BODY]] ]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]]
; CHECK: for.exit:
; CHECK-NEXT: ret double [[X2]]
;
entry:
%cmp1 = icmp sgt i32 %n, 0
br i1 %cmp1, label %for.body.preheader, label %for.cond.cleanup
for.cond.cleanup: ; preds = %entry
ret double %x
for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%x1 = phi double [ %x2, %for.body ], [ %x, %for.body.preheader ]
%arrayidx = getelementptr inbounds double, ptr %a, i64 %indvars.iv
%r = load double, ptr %arrayidx, align 8
%sub = fsub double %x1, %r
%cmp2 = fcmp ogt double %x1, %r
%x2 = select i1 %cmp2, double %sub, double %x1, !prof !18
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.exit, label %for.body
for.exit: ; preds = %for.body
ret double %x2
}
;; The common path includes expensive operations (load and fsub) making
;; branch similarly expensive to cmov, and thus the gain is small.
;; Loop-level analysis should decide on not forming a branch.
;;
;;double small_gain(int n, double x, ptr a) {
;; for (int i = 0; i < n; i++) {
;; double r = a[i];
;; if (x > r)
;; // 99% of iterations
;; x -= r;
;; }
;; return x;
;;}
define double @small_gain(i32 %n, double %x, ptr nocapture %a) {
; CHECK-LABEL: @small_gain(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CMP1:%.*]] = icmp sgt i32 [[N:%.*]], 0
; CHECK-NEXT: br i1 [[CMP1]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_COND_CLEANUP:%.*]]
; CHECK: for.cond.cleanup:
; CHECK-NEXT: ret double [[X:%.*]]
; CHECK: for.body.preheader:
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ [[INDVARS_IV_NEXT:%.*]], [[FOR_BODY]] ], [ 0, [[FOR_BODY_PREHEADER]] ]
; CHECK-NEXT: [[X1:%.*]] = phi double [ [[X2:%.*]], [[FOR_BODY]] ], [ [[X]], [[FOR_BODY_PREHEADER]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[R:%.*]] = load double, ptr [[ARRAYIDX]], align 8
; CHECK-NEXT: [[SUB:%.*]] = fsub double [[X1]], [[R]]
; CHECK-NEXT: [[CMP2:%.*]] = fcmp ole double [[X1]], [[R]]
; CHECK-NEXT: [[X2]] = select i1 [[CMP2]], double [[X1]], double [[SUB]], !prof [[PROF18]]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]]
; CHECK: for.exit:
; CHECK-NEXT: ret double [[X2]]
;
entry:
%cmp1 = icmp sgt i32 %n, 0
br i1 %cmp1, label %for.body.preheader, label %for.cond.cleanup
for.cond.cleanup: ; preds = %entry
ret double %x
for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
%x1 = phi double [ %x2, %for.body ], [ %x, %for.body.preheader ]
%arrayidx = getelementptr inbounds double, ptr %a, i64 %indvars.iv
%r = load double, ptr %arrayidx, align 8
%sub = fsub double %x1, %r
%cmp2 = fcmp ole double %x1, %r
%x2 = select i1 %cmp2, double %x1, double %sub, !prof !17
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.exit, label %for.body
for.exit: ; preds = %for.body
ret double %x2
}
;; One select on the critical path and one off the critical path.
;; Loop-level analysis should decide to form a branch only for
;; the select on the critical path.
;;
;;double loop_select_groups(int n, double x, ptr a, int k) {
;; int c = 0;
;; for (int i = 0; i < n; i++) {
;; double r = a[i];
;; if (x > r)
;; x -= r;
;; if (i == k)
;; c += n;
;; }
;; return x + c;
;;}
define double @loop_select_groups(i32 %n, double %x, ptr nocapture %a, i32 %k) {
; CHECK-LABEL: @loop_select_groups(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[CMP19:%.*]] = icmp sgt i32 [[N:%.*]], 0
; CHECK-NEXT: br i1 [[CMP19]], label [[FOR_BODY_PREHEADER:%.*]], label [[FOR_COND_CLEANUP:%.*]]
; CHECK: for.body.preheader:
; CHECK-NEXT: [[WIDE_TRIP_COUNT:%.*]] = zext i32 [[N]] to i64
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.cond.cleanup.loopexit:
; CHECK-NEXT: [[PHI_CAST:%.*]] = sitofp i32 [[C_1:%.*]] to double
; CHECK-NEXT: br label [[FOR_COND_CLEANUP]]
; CHECK: for.cond.cleanup:
; CHECK-NEXT: [[C_0_LCSSA:%.*]] = phi double [ 0.000000e+00, [[ENTRY:%.*]] ], [ [[PHI_CAST]], [[FOR_COND_CLEANUP_LOOPEXIT:%.*]] ]
; CHECK-NEXT: [[X_ADDR_0_LCSSA:%.*]] = phi double [ [[X:%.*]], [[ENTRY]] ], [ [[X_ADDR_1:%.*]], [[FOR_COND_CLEANUP_LOOPEXIT]] ]
; CHECK-NEXT: [[ADD5:%.*]] = fadd double [[X_ADDR_0_LCSSA]], [[C_0_LCSSA]]
; CHECK-NEXT: ret double [[ADD5]]
; CHECK: for.body:
; CHECK-NEXT: [[INDVARS_IV:%.*]] = phi i64 [ 0, [[FOR_BODY_PREHEADER]] ], [ [[INDVARS_IV_NEXT:%.*]], [[SELECT_END:%.*]] ]
; CHECK-NEXT: [[X_ADDR_022:%.*]] = phi double [ [[X]], [[FOR_BODY_PREHEADER]] ], [ [[X_ADDR_1]], [[SELECT_END]] ]
; CHECK-NEXT: [[C_020:%.*]] = phi i32 [ 0, [[FOR_BODY_PREHEADER]] ], [ [[C_1]], [[SELECT_END]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds double, ptr [[A:%.*]], i64 [[INDVARS_IV]]
; CHECK-NEXT: [[TMP0:%.*]] = load double, ptr [[ARRAYIDX]], align 8
; CHECK-NEXT: [[CMP1:%.*]] = fcmp ogt double [[X_ADDR_022]], [[TMP0]]
; CHECK-NEXT: [[SUB_FROZEN:%.*]] = freeze i1 [[CMP1]]
; CHECK-NEXT: br i1 [[SUB_FROZEN]], label [[SELECT_END]], label [[SELECT_FALSE:%.*]]
; CHECK: select.false:
; CHECK-NEXT: br label [[SELECT_END]]
; CHECK: select.end:
; CHECK-NEXT: [[SUB:%.*]] = phi double [ [[TMP0]], [[FOR_BODY]] ], [ 0.000000e+00, [[SELECT_FALSE]] ]
; CHECK-NEXT: [[X_ADDR_1]] = fsub double [[X_ADDR_022]], [[SUB]]
; CHECK-NEXT: [[TMP1:%.*]] = trunc i64 [[INDVARS_IV]] to i32
; CHECK-NEXT: [[CMP2:%.*]] = icmp eq i32 [[K:%.*]], [[N]]
; CHECK-NEXT: [[ADD:%.*]] = select i1 [[CMP2]], i32 [[N]], i32 0
; CHECK-NEXT: [[C_1]] = add nsw i32 [[ADD]], [[C_020]]
; CHECK-NEXT: [[INDVARS_IV_NEXT]] = add nuw nsw i64 [[INDVARS_IV]], 1
; CHECK-NEXT: [[EXITCOND_NOT:%.*]] = icmp eq i64 [[INDVARS_IV_NEXT]], [[WIDE_TRIP_COUNT]]
; CHECK-NEXT: br i1 [[EXITCOND_NOT]], label [[FOR_COND_CLEANUP_LOOPEXIT]], label [[FOR_BODY]]
;
entry:
%cmp19 = icmp sgt i32 %n, 0
br i1 %cmp19, label %for.body.preheader, label %for.cond.cleanup
for.body.preheader: ; preds = %entry
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.cond.cleanup.loopexit: ; preds = %for.body
%phi.cast = sitofp i32 %c.1 to double
br label %for.cond.cleanup
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
%c.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %phi.cast, %for.cond.cleanup.loopexit ]
%x.addr.0.lcssa = phi double [ %x, %entry ], [ %x.addr.1, %for.cond.cleanup.loopexit ]
%add5 = fadd double %x.addr.0.lcssa, %c.0.lcssa
ret double %add5
for.body: ; preds = %for.body.preheader, %for.body
%indvars.iv = phi i64 [ 0, %for.body.preheader ], [ %indvars.iv.next, %for.body ]
%x.addr.022 = phi double [ %x, %for.body.preheader ], [ %x.addr.1, %for.body ]
%c.020 = phi i32 [ 0, %for.body.preheader ], [ %c.1, %for.body ]
%arrayidx = getelementptr inbounds double, ptr %a, i64 %indvars.iv
%0 = load double, ptr %arrayidx, align 8
%cmp1 = fcmp ogt double %x.addr.022, %0
%sub = select i1 %cmp1, double %0, double 0.000000e+00
%x.addr.1 = fsub double %x.addr.022, %sub
%1 = trunc i64 %indvars.iv to i32
%cmp2 = icmp eq i32 %k, %n
%add = select i1 %cmp2, i32 %n, i32 0
%c.1 = add nsw i32 %add, %c.020
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond.not = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond.not, label %for.cond.cleanup.loopexit, label %for.body
}
; Function Attrs: nounwind readnone speculatable willreturn
declare void @llvm.dbg.value(metadata, metadata, metadata)
; Function Attrs: argmemonly mustprogress nocallback nofree nosync nounwind willreturn
declare void @llvm.lifetime.end.p0(i64 immarg, ptr nocapture)
[SelectOpti] Restrict load sinking This is a follow-up to D133777, which resolved a use-after-free case but did not cover all possible memory bugs due to misplacement of loads. In short, the overall problem was that sinked loads could be moved after state-modifying instructions leading to memory bugs. The solution is to restrict load sinking unless it is found to be sound. i) Within a basic block (to-be-sinked load and select-user are in the same BB), loads can be sinked only if there is no intervening state-modifying instruction. This is a conservative approach to avoid resorting to alias analysis to detect potential memory overlap. ii) Across basic blocks, sinking of loads is avoided. This is because going over multiple basic blocks looking for memory conflicts could be computationally expensive and also unlikely to allow loads to sink. Further, experiments showed that not sinking these loads has a slight positive performance effect. Maybe for some of these loads, having some separation allows enough time for the load to be executed in time for its user. This is not the case for floating point operations that benefit more from sinking. The solution in D133777 was essentially undone in this patch, since the latter is a complete solution to the observed problem. Overall, the performance impact of this patch is minimal. Tested on two internal Google workloads with instrPGO. Search application showed <0.05% perf difference, while the database one showed a slight improvement, but not statistically significant. Reviewed By: davidxl Differential Revision: https://reviews.llvm.org/D133999
2022-09-17 04:34:37 +08:00
declare void @free(ptr nocapture)
!llvm.module.flags = !{!0, !26, !27}
!0 = !{i32 1, !"ProfileSummary", !1}
!1 = !{!2, !3, !4, !5, !6, !7, !8, !9}
!2 = !{!"ProfileFormat", !"InstrProf"}
!3 = !{!"TotalCount", i64 10000}
!4 = !{!"MaxCount", i64 10}
!5 = !{!"MaxInternalCount", i64 1}
!6 = !{!"MaxFunctionCount", i64 1000}
!7 = !{!"NumCounts", i64 3}
!8 = !{!"NumFunctions", i64 3}
!9 = !{!"DetailedSummary", !10}
!10 = !{!11, !12, !13}
!11 = !{i32 10000, i64 100, i32 1}
!12 = !{i32 999000, i64 100, i32 1}
!13 = !{i32 999999, i64 1, i32 2}
!14 = !{!"function_entry_count", i64 0}
!15 = !{!"branch_weights", i32 1, i32 100}
!16 = !{!"branch_weights", i32 100, i32 1}
!17 = !{!"branch_weights", i32 1, i32 99}
!18 = !{!"branch_weights", i32 50, i32 50}
!19 = !{!"function_entry_count", i64 100}
!20 = !{}
!21 = !DIFile(filename: "test.c", directory: "/test")
!22 = distinct !DICompileUnit(language: DW_LANG_C99, file: !21, producer: "clang version 15.0.0", isOptimized: true, emissionKind: FullDebug, globals: !25, splitDebugInlining: false, nameTableKind: None)
!23 = distinct !DISubprogram(name: "test", scope: !21, file: !21, line: 1, unit: !22)
!24 = !DILocalVariable(name: "x", scope: !23)
!25 = !{}
!26 = !{i32 2, !"Dwarf Version", i32 4}
!27 = !{i32 1, !"Debug Info Version", i32 3}
!28 = !{!"branch_weights", i32 30, i32 70}