llvm-project/lld/ELF/Target.cpp

174 lines
5.1 KiB
C++
Raw Normal View History

//===- Target.cpp ---------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
2015-10-14 03:51:57 +08:00
//
// Machine-specific things, such as applying relocations, creation of
// GOT or PLT entries, etc., are handled in this file.
//
2016-08-25 00:36:41 +08:00
// Refer the ELF spec for the single letter variables, S, A or P, used
// in this file.
2015-10-14 03:51:57 +08:00
//
// Some functions defined in this file has "relaxTls" as part of their names.
// They do peephole optimization for TLS variables by rewriting instructions.
// They are not part of the ABI but optional optimization, so you can skip
// them if you are not interested in how TLS variables are optimized.
// See the following paper for the details.
//
// Ulrich Drepper, ELF Handling For Thread-Local Storage
// http://www.akkadia.org/drepper/tls.pdf
//
2015-10-14 03:51:57 +08:00
//===----------------------------------------------------------------------===//
#include "Target.h"
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
#include "InputFiles.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/Object/ELF.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
TargetInfo *elf::Target;
std::string lld::toString(RelType Type) {
StringRef S = getELFRelocationTypeName(elf::Config->EMachine, Type);
if (S == "Unknown")
return ("Unknown (" + Twine(Type) + ")").str();
return S;
}
TargetInfo *elf::getTarget() {
switch (Config->EMachine) {
case EM_386:
case EM_IAMCU:
return getX86TargetInfo();
case EM_AARCH64:
return getAArch64TargetInfo();
case EM_AMDGPU:
return getAMDGPUTargetInfo();
case EM_ARM:
return getARMTargetInfo();
case EM_AVR:
return getAVRTargetInfo();
case EM_MIPS:
switch (Config->EKind) {
case ELF32LEKind:
return getMipsTargetInfo<ELF32LE>();
case ELF32BEKind:
return getMipsTargetInfo<ELF32BE>();
case ELF64LEKind:
return getMipsTargetInfo<ELF64LE>();
case ELF64BEKind:
return getMipsTargetInfo<ELF64BE>();
default:
fatal("unsupported MIPS target");
}
case EM_PPC:
return getPPCTargetInfo();
case EM_PPC64:
return getPPC64TargetInfo();
case EM_SPARCV9:
return getSPARCV9TargetInfo();
case EM_X86_64:
if (Config->EKind == ELF32LEKind)
return getX32TargetInfo();
return getX86_64TargetInfo();
}
fatal("unknown target machine");
}
template <class ELFT> static std::string getErrorLoc(const uint8_t *Loc) {
for (InputSectionBase *D : InputSections) {
auto *IS = dyn_cast_or_null<InputSection>(D);
if (!IS || !IS->getParent())
continue;
uint8_t *ISLoc = IS->getParent()->Loc + IS->OutSecOff;
if (ISLoc <= Loc && Loc < ISLoc + IS->getSize())
return IS->template getLocation<ELFT>(Loc - ISLoc) + ": ";
}
return "";
}
std::string elf::getErrorLocation(const uint8_t *Loc) {
switch (Config->EKind) {
case ELF32LEKind:
return getErrorLoc<ELF32LE>(Loc);
case ELF32BEKind:
return getErrorLoc<ELF32BE>(Loc);
case ELF64LEKind:
return getErrorLoc<ELF64LE>(Loc);
case ELF64BEKind:
return getErrorLoc<ELF64BE>(Loc);
default:
llvm_unreachable("unknown ELF type");
}
}
TargetInfo::~TargetInfo() {}
int64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, RelType Type) const {
return 0;
}
bool TargetInfo::usesOnlyLowPageBits(RelType Type) const { return false; }
bool TargetInfo::needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
const SymbolBody &S) const {
return false;
[ELF] Implement infrastructure for thunk code creation Some targets might require creation of thunks. For example, MIPS targets require stubs to call PIC code from non-PIC one. The patch implements infrastructure for thunk code creation and provides support for MIPS LA25 stubs. Any MIPS PIC code function is invoked with its address in register $t9. So if we have a branch instruction from non-PIC code to the PIC one we cannot make the jump directly and need to create a small stub to save the target function address. See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf - In relocation scanning phase we ask target about thunk creation necessity by calling `TagetInfo::needsThunk` method. The `InputSection` class maintains list of Symbols requires thunk creation. - Reassigning offsets performed for each input sections after relocation scanning complete because position of each section might change due thunk creation. - The patch introduces new dedicated value for DefinedSynthetic symbols DefinedSynthetic::SectionEnd. Synthetic symbol with that value always points to the end of the corresponding output section. That allows to escape updating synthetic symbols if output sections sizes changes after relocation scanning due thunk creation. - In the `InputSection::writeTo` method we write thunks after corresponding input section. Each thunk is written by calling `TargetInfo::writeThunk` method. - The patch supports the only type of thunk code for each target. For now, it is enough. Differential Revision: http://reviews.llvm.org/D17934 llvm-svn: 265059
2016-04-01 05:26:23 +08:00
}
bool TargetInfo::inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const {
return true;
}
void TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
writeGotPlt(Buf, S);
}
RelExpr TargetInfo::adjustRelaxExpr(RelType Type, const uint8_t *Data,
RelExpr Expr) const {
return Expr;
}
void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
llvm_unreachable("Should not have claimed to be relaxable");
}
void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, RelType Type,
uint64_t Val) const {
llvm_unreachable("Should not have claimed to be relaxable");
}
void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, RelType Type,
uint64_t Val) const {
llvm_unreachable("Should not have claimed to be relaxable");
}
void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, RelType Type,
uint64_t Val) const {
llvm_unreachable("Should not have claimed to be relaxable");
}
void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, RelType Type,
uint64_t Val) const {
llvm_unreachable("Should not have claimed to be relaxable");
}
uint64_t TargetInfo::getImageBase() {
// Use -image-base if set. Fall back to the target default if not.
if (Config->ImageBase)
return *Config->ImageBase;
return Config->Pic ? 0 : DefaultImageBase;
}