llvm-project/llvm/lib/Analysis/ProfileSummaryInfo.cpp

228 lines
8.5 KiB
C++
Raw Normal View History

//===- ProfileSummaryInfo.cpp - Global profile summary information --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that provides access to the global profile summary
// information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ProfileSummary.h"
using namespace llvm;
// The following two parameters determine the threshold for a count to be
// considered hot/cold. These two parameters are percentile values (multiplied
// by 10000). If the counts are sorted in descending order, the minimum count to
// reach ProfileSummaryCutoffHot gives the threshold to determine a hot count.
// Similarly, the minimum count to reach ProfileSummaryCutoffCold gives the
// threshold for determining cold count (everything <= this threshold is
// considered cold).
static cl::opt<int> ProfileSummaryCutoffHot(
"profile-summary-cutoff-hot", cl::Hidden, cl::init(999000), cl::ZeroOrMore,
cl::desc("A count is hot if it exceeds the minimum count to"
" reach this percentile of total counts."));
static cl::opt<int> ProfileSummaryCutoffCold(
"profile-summary-cutoff-cold", cl::Hidden, cl::init(999999), cl::ZeroOrMore,
cl::desc("A count is cold if it is below the minimum count"
" to reach this percentile of total counts."));
// Find the minimum count to reach a desired percentile of counts.
static uint64_t getMinCountForPercentile(SummaryEntryVector &DS,
uint64_t Percentile) {
auto Compare = [](const ProfileSummaryEntry &Entry, uint64_t Percentile) {
return Entry.Cutoff < Percentile;
};
auto It = std::lower_bound(DS.begin(), DS.end(), Percentile, Compare);
// The required percentile has to be <= one of the percentiles in the
// detailed summary.
if (It == DS.end())
report_fatal_error("Desired percentile exceeds the maximum cutoff");
return It->MinCount;
}
// The profile summary metadata may be attached either by the frontend or by
// any backend passes (IR level instrumentation, for example). This method
// checks if the Summary is null and if so checks if the summary metadata is now
// available in the module and parses it to get the Summary object.
void ProfileSummaryInfo::computeSummary() {
if (Summary)
return;
auto *SummaryMD = M.getProfileSummary();
if (!SummaryMD)
return;
Summary.reset(ProfileSummary::getFromMD(SummaryMD));
}
/// Returns true if the function's entry is hot. If it returns false, it
/// either means it is not hot or it is unknown whether it is hot or not (for
/// example, no profile data is available).
bool ProfileSummaryInfo::isFunctionEntryHot(const Function *F) {
computeSummary();
if (!F || !Summary)
return false;
auto FunctionCount = F->getEntryCount();
// FIXME: The heuristic used below for determining hotness is based on
// preliminary SPEC tuning for inliner. This will eventually be a
// convenience method that calls isHotCount.
return FunctionCount && isHotCount(FunctionCount.getValue());
}
/// Returns true if the function's entry is a cold. If it returns false, it
/// either means it is not cold or it is unknown whether it is cold or not (for
/// example, no profile data is available).
bool ProfileSummaryInfo::isFunctionEntryCold(const Function *F) {
computeSummary();
if (!F)
return false;
if (F->hasFnAttribute(Attribute::Cold)) {
return true;
}
if (!Summary)
return false;
auto FunctionCount = F->getEntryCount();
// FIXME: The heuristic used below for determining coldness is based on
// preliminary SPEC tuning for inliner. This will eventually be a
// convenience method that calls isHotCount.
return FunctionCount && isColdCount(FunctionCount.getValue());
}
/// Compute the hot and cold thresholds.
void ProfileSummaryInfo::computeThresholds() {
if (!Summary)
computeSummary();
if (!Summary)
return;
auto &DetailedSummary = Summary->getDetailedSummary();
HotCountThreshold =
getMinCountForPercentile(DetailedSummary, ProfileSummaryCutoffHot);
ColdCountThreshold =
getMinCountForPercentile(DetailedSummary, ProfileSummaryCutoffCold);
}
bool ProfileSummaryInfo::isHotCount(uint64_t C) {
if (!HotCountThreshold)
computeThresholds();
return HotCountThreshold && C >= HotCountThreshold.getValue();
}
bool ProfileSummaryInfo::isColdCount(uint64_t C) {
if (!ColdCountThreshold)
computeThresholds();
return ColdCountThreshold && C <= ColdCountThreshold.getValue();
}
bool ProfileSummaryInfo::isHotBB(const BasicBlock *B, BlockFrequencyInfo *BFI) {
auto Count = BFI->getBlockProfileCount(B);
if (Count && isHotCount(*Count))
return true;
// Use extractProfTotalWeight to get BB count.
// For Sample PGO, BFI may not provide accurate BB count due to errors
// magnified during sample count propagation. This serves as a backup plan
// to ensure all hot BB will not be missed.
// The query currently has false positives as branch instruction cloning does
// not update/scale branch weights. Unlike false negatives, this will not cause
// performance problem.
uint64_t TotalCount;
auto *TI = B->getTerminator();
return extractProfTotalWeight(TI, TotalCount) && isHotCount(TotalCount);
}
bool ProfileSummaryInfo::isColdBB(const BasicBlock *B,
BlockFrequencyInfo *BFI) {
auto Count = BFI->getBlockProfileCount(B);
return Count && isColdCount(*Count);
}
bool ProfileSummaryInfo::extractProfTotalWeight(const Instruction *I,
uint64_t &TotalCount) {
// Use profile weight on metadata only for sample profiling where block counts
// could differ from the count of an instruction within the block.
if (Summary.get()->getKind() != ProfileSummary::PSK_Sample)
return false;
return (isa<CallInst>(I) ||
(isa<TerminatorInst>(I) && !isa<ReturnInst>(I))) &&
I->extractProfTotalWeight(TotalCount);
}
bool ProfileSummaryInfo::isHotCallSite(const CallSite &CS,
BlockFrequencyInfo *BFI) {
auto *CallInst = CS.getInstruction();
if (!CS)
return false;
// Check if there is a profile metadata on the instruction. If it is present,
// determine hotness solely based on that.
uint64_t TotalCount;
if (extractProfTotalWeight(CallInst, TotalCount))
return isHotCount(TotalCount);
return BFI && isHotBB(CallInst->getParent(), BFI);
}
bool ProfileSummaryInfo::isColdCallSite(const CallSite &CS,
BlockFrequencyInfo *BFI) {
auto *CallInst = CS.getInstruction();
if (!CS)
return false;
// Check if there is a profile metadata on the instruction. If it is present,
// and tells that the callsite is not cold, then return false;
uint64_t TotalCount;
if (extractProfTotalWeight(CallInst, TotalCount) && !isColdCount(TotalCount))
return false;
return BFI && isColdBB(CallInst->getParent(), BFI);
}
INITIALIZE_PASS(ProfileSummaryInfoWrapperPass, "profile-summary-info",
"Profile summary info", false, true)
ProfileSummaryInfoWrapperPass::ProfileSummaryInfoWrapperPass()
: ImmutablePass(ID) {
initializeProfileSummaryInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool ProfileSummaryInfoWrapperPass::doInitialization(Module &M) {
PSI.reset(new ProfileSummaryInfo(M));
return false;
}
bool ProfileSummaryInfoWrapperPass::doFinalization(Module &M) {
PSI.reset();
return false;
}
[PM] Change the static object whose address is used to uniquely identify analyses to have a common type which is enforced rather than using a char object and a `void *` type when used as an identifier. This has a number of advantages. First, it at least helps some of the confusion raised in Justin Lebar's code review of why `void *` was being used everywhere by having a stronger type that connects to documentation about this. However, perhaps more importantly, it addresses a serious issue where the alignment of these pointer-like identifiers was unknown. This made it hard to use them in pointer-like data structures. We were already dodging this in dangerous ways to create the "all analyses" entry. In a subsequent patch I attempted to use these with TinyPtrVector and things fell apart in a very bad way. And it isn't just a compile time or type system issue. Worse than that, the actual alignment of these pointer-like opaque identifiers wasn't guaranteed to be a useful alignment as they were just characters. This change introduces a type to use as the "key" object whose address forms the opaque identifier. This both forces the objects to have proper alignment, and provides type checking that we get it right everywhere. It also makes the types somewhat less mysterious than `void *`. We could go one step further and introduce a truly opaque pointer-like type to return from the `ID()` static function rather than returning `AnalysisKey *`, but that didn't seem to be a clear win so this is just the initial change to get to a reliably typed and aligned object serving is a key for all the analyses. Thanks to Richard Smith and Justin Lebar for helping pick plausible names and avoid making this refactoring many times. =] And thanks to Sean for the super fast review! While here, I've tried to move away from the "PassID" nomenclature entirely as it wasn't really helping and is overloaded with old pass manager constructs. Now we have IDs for analyses, and key objects whose address can be used as IDs. Where possible and clear I've shortened this to just "ID". In a few places I kept "AnalysisID" to make it clear what was being identified. Differential Revision: https://reviews.llvm.org/D27031 llvm-svn: 287783
2016-11-24 01:53:26 +08:00
AnalysisKey ProfileSummaryAnalysis::Key;
ProfileSummaryInfo ProfileSummaryAnalysis::run(Module &M,
ModuleAnalysisManager &) {
return ProfileSummaryInfo(M);
}
PreservedAnalyses ProfileSummaryPrinterPass::run(Module &M,
ModuleAnalysisManager &AM) {
ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
OS << "Functions in " << M.getName() << " with hot/cold annotations: \n";
for (auto &F : M) {
OS << F.getName();
if (PSI.isFunctionEntryHot(&F))
OS << " :hot entry ";
else if (PSI.isFunctionEntryCold(&F))
OS << " :cold entry ";
OS << "\n";
}
return PreservedAnalyses::all();
}
char ProfileSummaryInfoWrapperPass::ID = 0;