llvm-project/llvm/lib/Target/Mips/MipsInstrFPU.td

614 lines
26 KiB
TableGen
Raw Normal View History

//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the Mips FPU instruction set.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
// - 32 64-bit registers (default mode)
// - 16 even 32-bit registers (32-bit compatible mode) for
// single and double access.
// * 32bit fp:
// - 16 even 32-bit registers - single and double (aliased)
// - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//
// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 3, [SDTCisInt<0>,
SDTCisVT<1, i32>,
SDTCisVT<2, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
SDTCisVT<2, i32>]>;
def SDT_MipsCMovFP : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisVT<2, i32>,
SDTCisSameAs<1, 3>]>;
def SDT_MipsTruncIntFP : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>;
def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisVT<1, i32>,
SDTCisSameAs<1, 2>]>;
def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisVT<1, f64>,
SDTCisVT<2, i32>]>;
def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
[SDNPHasChain, SDNPOptInGlue]>;
def MipsTruncIntFP : SDNode<"MipsISD::TruncIntFP", SDT_MipsTruncIntFP>;
def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
SDT_MipsExtractElementF64>;
// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
def condcode : Operand<i32>;
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
def IsFP64bit : Predicate<"Subtarget.isFP64bit()">,
AssemblerPredicate<"FeatureFP64Bit">;
def NotFP64bit : Predicate<"!Subtarget.isFP64bit()">,
AssemblerPredicate<"!FeatureFP64Bit">;
def IsSingleFloat : Predicate<"Subtarget.isSingleFloat()">,
AssemblerPredicate<"FeatureSingleFloat">;
def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">,
AssemblerPredicate<"!FeatureSingleFloat">;
// FP immediate patterns.
def fpimm0 : PatLeaf<(fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def fpimm0neg : PatLeaf<(fpimm), [{
return N->isExactlyValue(-0.0);
}]>;
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//
// A set of multiclasses is used to address the register usage.
//
// S32 - single precision in 16 32bit even fp registers
// single precision in 32 32bit fp registers in SingleOnly mode
// S64 - single precision in 32 64bit fp registers (In64BitMode)
// D32 - double precision in 16 32bit even fp registers
// D64 - double precision in 32 64bit fp registers (In64BitMode)
//
// Only S32 and D32 are supported right now.
//===----------------------------------------------------------------------===//
class ADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin, bit IsComm,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft),
!strconcat(opstr, "\t$fd, $fs, $ft"),
[(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR, opstr> {
let isCommutable = IsComm;
}
multiclass ADDS_M<string opstr, InstrItinClass Itin, bit IsComm,
SDPatternOperator OpNode = null_frag> {
def _D32 : MMRel, ADDS_FT<opstr, AFGR64Opnd, Itin, IsComm, OpNode>,
Requires<[NotFP64bit, HasStdEnc]>;
def _D64 : ADDS_FT<opstr, FGR64Opnd, Itin,
IsComm, OpNode>,
Requires<[IsFP64bit, HasStdEnc]> {
string DecoderNamespace = "Mips64";
}
}
class ABSS_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
InstSE<(outs DstRC:$fd), (ins SrcRC:$fs), !strconcat(opstr, "\t$fd, $fs"),
[(set DstRC:$fd, (OpNode SrcRC:$fs))], Itin, FrmFR, opstr>,
NeverHasSideEffects;
multiclass ABSS_M<string opstr, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> {
def _D32 : MMRel, ABSS_FT<opstr, AFGR64Opnd, AFGR64Opnd, Itin, OpNode>,
Requires<[NotFP64bit, HasStdEnc]>;
def _D64 : ABSS_FT<opstr, FGR64Opnd, FGR64Opnd, Itin, OpNode>,
Requires<[IsFP64bit, HasStdEnc]> {
string DecoderNamespace = "Mips64";
}
}
multiclass ROUND_M<string opstr, InstrItinClass Itin> {
def _D32 : MMRel, ABSS_FT<opstr, FGR32Opnd, AFGR64Opnd, Itin>,
Requires<[NotFP64bit, HasStdEnc]>;
def _D64 : ABSS_FT<opstr, FGR32Opnd, FGR64Opnd, Itin>,
Requires<[IsFP64bit, HasStdEnc]> {
let DecoderNamespace = "Mips64";
}
}
class MFC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
InstSE<(outs DstRC:$rt), (ins SrcRC:$fs), !strconcat(opstr, "\t$rt, $fs"),
[(set DstRC:$rt, (OpNode SrcRC:$fs))], Itin, FrmFR>;
class MTC1_FT<string opstr, RegisterOperand DstRC, RegisterOperand SrcRC,
InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
InstSE<(outs DstRC:$fs), (ins SrcRC:$rt), !strconcat(opstr, "\t$rt, $fs"),
[(set DstRC:$fs, (OpNode SrcRC:$rt))], Itin, FrmFR>;
class LW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs RC:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(set RC:$rt, (OpNode addrDefault:$addr))], Itin, FrmFI, opstr> {
let DecoderMethod = "DecodeFMem";
let mayLoad = 1;
}
class SW_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode= null_frag> :
InstSE<(outs), (ins RC:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
[(OpNode RC:$rt, addrDefault:$addr)], Itin, FrmFI, opstr> {
let DecoderMethod = "DecodeFMem";
let mayStore = 1;
}
class MADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
!strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
[(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))], Itin, FrmFR>;
class NMADDS_FT<string opstr, RegisterOperand RC, InstrItinClass Itin,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
!strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
[(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))],
Itin, FrmFR>;
class LWXC1_FT<string opstr, RegisterOperand DRC,
InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
InstSE<(outs DRC:$fd), (ins PtrRC:$base, PtrRC:$index),
!strconcat(opstr, "\t$fd, ${index}(${base})"),
[(set DRC:$fd, (OpNode (add iPTR:$base, iPTR:$index)))], Itin,
FrmFI, opstr> {
let AddedComplexity = 20;
}
class SWXC1_FT<string opstr, RegisterOperand DRC,
InstrItinClass Itin, SDPatternOperator OpNode = null_frag> :
InstSE<(outs), (ins DRC:$fs, PtrRC:$base, PtrRC:$index),
!strconcat(opstr, "\t$fs, ${index}(${base})"),
[(OpNode DRC:$fs, (add iPTR:$base, iPTR:$index))], Itin,
FrmFI, opstr> {
let AddedComplexity = 20;
}
class BC1F_FT<string opstr, DAGOperand opnd, InstrItinClass Itin,
SDPatternOperator Op = null_frag> :
InstSE<(outs), (ins FCCRegsOpnd:$fcc, opnd:$offset),
!strconcat(opstr, "\t$fcc, $offset"),
[(MipsFPBrcond Op, FCCRegsOpnd:$fcc, bb:$offset)], Itin,
FrmFI, opstr> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
let Defs = [AT];
}
class CEQS_FT<string typestr, RegisterClass RC, InstrItinClass Itin,
SDPatternOperator OpNode = null_frag> :
InstSE<(outs), (ins RC:$fs, RC:$ft, condcode:$cond),
!strconcat("c.$cond.", typestr, "\t$fs, $ft"),
[(OpNode RC:$fs, RC:$ft, imm:$cond)], Itin, FrmFR,
!strconcat("c.$cond.", typestr)> {
let Defs = [FCC0];
let isCodeGenOnly = 1;
}
class C_COND_FT<string CondStr, string Typestr, RegisterOperand RC> :
InstSE<(outs), (ins RC:$fs, RC:$ft),
!strconcat("c.", CondStr, ".", Typestr, "\t$fs, $ft"), [], IIFcmp,
FrmFR>;
multiclass C_COND_M<string TypeStr, RegisterOperand RC, bits<5> fmt> {
def C_F_#NAME : C_COND_FT<"f", TypeStr, RC>, C_COND_FM<fmt, 0>;
def C_UN_#NAME : C_COND_FT<"un", TypeStr, RC>, C_COND_FM<fmt, 1>;
def C_EQ_#NAME : C_COND_FT<"eq", TypeStr, RC>, C_COND_FM<fmt, 2>;
def C_UEQ_#NAME : C_COND_FT<"ueq", TypeStr, RC>, C_COND_FM<fmt, 3>;
def C_OLT_#NAME : C_COND_FT<"olt", TypeStr, RC>, C_COND_FM<fmt, 4>;
def C_ULT_#NAME : C_COND_FT<"ult", TypeStr, RC>, C_COND_FM<fmt, 5>;
def C_OLE_#NAME : C_COND_FT<"ole", TypeStr, RC>, C_COND_FM<fmt, 6>;
def C_ULE_#NAME : C_COND_FT<"ule", TypeStr, RC>, C_COND_FM<fmt, 7>;
def C_SF_#NAME : C_COND_FT<"sf", TypeStr, RC>, C_COND_FM<fmt, 8>;
def C_NGLE_#NAME : C_COND_FT<"ngle", TypeStr, RC>, C_COND_FM<fmt, 9>;
def C_SEQ_#NAME : C_COND_FT<"seq", TypeStr, RC>, C_COND_FM<fmt, 10>;
def C_NGL_#NAME : C_COND_FT<"ngl", TypeStr, RC>, C_COND_FM<fmt, 11>;
def C_LT_#NAME : C_COND_FT<"lt", TypeStr, RC>, C_COND_FM<fmt, 12>;
def C_NGE_#NAME : C_COND_FT<"nge", TypeStr, RC>, C_COND_FM<fmt, 13>;
def C_LE_#NAME : C_COND_FT<"le", TypeStr, RC>, C_COND_FM<fmt, 14>;
def C_NGT_#NAME : C_COND_FT<"ngt", TypeStr, RC>, C_COND_FM<fmt, 15>;
}
defm S : C_COND_M<"s", FGR32Opnd, 16>;
defm D32 : C_COND_M<"d", AFGR64Opnd, 17>,
Requires<[NotFP64bit, HasStdEnc]>;
let DecoderNamespace = "Mips64" in
defm D64 : C_COND_M<"d", FGR64Opnd, 17>, Requires<[IsFP64bit, HasStdEnc]>;
//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
def ROUND_W_S : MMRel, ABSS_FT<"round.w.s", FGR32Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0xc, 16>;
def TRUNC_W_S : MMRel, ABSS_FT<"trunc.w.s", FGR32Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0xd, 16>;
def CEIL_W_S : MMRel, ABSS_FT<"ceil.w.s", FGR32Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0xe, 16>;
def FLOOR_W_S : MMRel, ABSS_FT<"floor.w.s", FGR32Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0xf, 16>;
def CVT_W_S : MMRel, ABSS_FT<"cvt.w.s", FGR32Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x24, 16>;
defm ROUND_W : ROUND_M<"round.w.d", IIFcvt>, ABSS_FM<0xc, 17>;
defm TRUNC_W : ROUND_M<"trunc.w.d", IIFcvt>, ABSS_FM<0xd, 17>;
defm CEIL_W : ROUND_M<"ceil.w.d", IIFcvt>, ABSS_FM<0xe, 17>;
defm FLOOR_W : ROUND_M<"floor.w.d", IIFcvt>, ABSS_FM<0xf, 17>;
defm CVT_W : ROUND_M<"cvt.w.d", IIFcvt>, ABSS_FM<0x24, 17>;
let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64" in {
def ROUND_L_S : ABSS_FT<"round.l.s", FGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x8, 16>;
def ROUND_L_D64 : ABSS_FT<"round.l.d", FGR64Opnd, FGR64Opnd, IIFcvt>,
ABSS_FM<0x8, 17>;
def TRUNC_L_S : ABSS_FT<"trunc.l.s", FGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x9, 16>;
def TRUNC_L_D64 : ABSS_FT<"trunc.l.d", FGR64Opnd, FGR64Opnd, IIFcvt>,
ABSS_FM<0x9, 17>;
def CEIL_L_S : ABSS_FT<"ceil.l.s", FGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0xa, 16>;
def CEIL_L_D64 : ABSS_FT<"ceil.l.d", FGR64Opnd, FGR64Opnd, IIFcvt>,
ABSS_FM<0xa, 17>;
def FLOOR_L_S : ABSS_FT<"floor.l.s", FGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0xb, 16>;
def FLOOR_L_D64 : ABSS_FT<"floor.l.d", FGR64Opnd, FGR64Opnd, IIFcvt>,
ABSS_FM<0xb, 17>;
}
def CVT_S_W : MMRel, ABSS_FT<"cvt.s.w", FGR32Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x20, 20>;
def CVT_L_S : MMRel, ABSS_FT<"cvt.l.s", FGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x25, 16>;
def CVT_L_D64: MMRel, ABSS_FT<"cvt.l.d", FGR64Opnd, FGR64Opnd, IIFcvt>,
ABSS_FM<0x25, 17>;
let Predicates = [NotFP64bit, HasStdEnc] in {
def CVT_S_D32 : MMRel, ABSS_FT<"cvt.s.d", FGR32Opnd, AFGR64Opnd, IIFcvt>,
ABSS_FM<0x20, 17>;
def CVT_D32_W : MMRel, ABSS_FT<"cvt.d.w", AFGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x21, 20>;
def CVT_D32_S : MMRel, ABSS_FT<"cvt.d.s", AFGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x21, 16>;
}
let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64" in {
def CVT_S_D64 : ABSS_FT<"cvt.s.d", FGR32Opnd, FGR64Opnd, IIFcvt>,
ABSS_FM<0x20, 17>;
def CVT_S_L : ABSS_FT<"cvt.s.l", FGR32Opnd, FGR64Opnd, IIFcvt>,
ABSS_FM<0x20, 21>;
def CVT_D64_W : ABSS_FT<"cvt.d.w", FGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x21, 20>;
def CVT_D64_S : ABSS_FT<"cvt.d.s", FGR64Opnd, FGR32Opnd, IIFcvt>,
ABSS_FM<0x21, 16>;
def CVT_D64_L : ABSS_FT<"cvt.d.l", FGR64Opnd, FGR64Opnd, IIFcvt>,
ABSS_FM<0x21, 21>;
}
let isPseudo = 1, isCodeGenOnly = 1 in {
def PseudoCVT_S_W : ABSS_FT<"", FGR32Opnd, GPR32Opnd, IIFcvt>;
def PseudoCVT_D32_W : ABSS_FT<"", AFGR64Opnd, GPR32Opnd, IIFcvt>;
def PseudoCVT_S_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, IIFcvt>;
def PseudoCVT_D64_W : ABSS_FT<"", FGR64Opnd, GPR32Opnd, IIFcvt>;
def PseudoCVT_D64_L : ABSS_FT<"", FGR64Opnd, GPR64Opnd, IIFcvt>;
}
let Predicates = [NoNaNsFPMath, HasStdEnc] in {
def FABS_S : MMRel, ABSS_FT<"abs.s", FGR32Opnd, FGR32Opnd, IIFcvt, fabs>,
ABSS_FM<0x5, 16>;
def FNEG_S : MMRel, ABSS_FT<"neg.s", FGR32Opnd, FGR32Opnd, IIFcvt, fneg>,
ABSS_FM<0x7, 16>;
defm FABS : ABSS_M<"abs.d", IIFcvt, fabs>, ABSS_FM<0x5, 17>;
defm FNEG : ABSS_M<"neg.d", IIFcvt, fneg>, ABSS_FM<0x7, 17>;
}
def FSQRT_S : MMRel, ABSS_FT<"sqrt.s", FGR32Opnd, FGR32Opnd, IIFsqrtSingle,
fsqrt>, ABSS_FM<0x4, 16>;
defm FSQRT : ABSS_M<"sqrt.d", IIFsqrtDouble, fsqrt>, ABSS_FM<0x4, 17>;
// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,
// regardless of register aliasing.
/// Move Control Registers From/To CPU Registers
def CFC1 : MFC1_FT<"cfc1", GPR32Opnd, CCROpnd, IIFmove>, MFC1_FM<2>;
def CTC1 : MTC1_FT<"ctc1", CCROpnd, GPR32Opnd, IIFmove>, MFC1_FM<6>;
def MFC1 : MFC1_FT<"mfc1", GPR32Opnd, FGR32Opnd, IIFmoveC1, bitconvert>,
MFC1_FM<0>;
def MTC1 : MTC1_FT<"mtc1", FGR32Opnd, GPR32Opnd, IIFmoveC1, bitconvert>,
MFC1_FM<4>;
def MFHC1 : MFC1_FT<"mfhc1", GPR32Opnd, FGRH32Opnd, IIFmoveC1>,
MFC1_FM<3>;
def MTHC1 : MTC1_FT<"mthc1", FGRH32Opnd, GPR32Opnd, IIFmoveC1>,
MFC1_FM<7>;
def DMFC1 : MFC1_FT<"dmfc1", GPR64Opnd, FGR64Opnd, IIFmoveC1,
bitconvert>, MFC1_FM<1>;
def DMTC1 : MTC1_FT<"dmtc1", FGR64Opnd, GPR64Opnd, IIFmoveC1,
bitconvert>, MFC1_FM<5>;
def FMOV_S : MMRel, ABSS_FT<"mov.s", FGR32Opnd, FGR32Opnd, IIFmove>,
ABSS_FM<0x6, 16>;
def FMOV_D32 : MMRel, ABSS_FT<"mov.d", AFGR64Opnd, AFGR64Opnd, IIFmove>,
ABSS_FM<0x6, 17>, Requires<[NotFP64bit, HasStdEnc]>;
def FMOV_D64 : ABSS_FT<"mov.d", FGR64Opnd, FGR64Opnd, IIFmove>,
ABSS_FM<0x6, 17>, Requires<[IsFP64bit, HasStdEnc]> {
let DecoderNamespace = "Mips64";
}
/// Floating Point Memory Instructions
let Predicates = [HasStdEnc] in {
def LWC1 : MMRel, LW_FT<"lwc1", FGR32Opnd, IIFLoad, load>, LW_FM<0x31>;
def SWC1 : MMRel, SW_FT<"swc1", FGR32Opnd, IIFStore, store>, LW_FM<0x39>;
}
let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64" in {
def LDC164 : LW_FT<"ldc1", FGR64Opnd, IIFLoad, load>, LW_FM<0x35>;
def SDC164 : SW_FT<"sdc1", FGR64Opnd, IIFStore, store>, LW_FM<0x3d>;
}
let Predicates = [NotFP64bit, HasStdEnc] in {
def LDC1 : MMRel, LW_FT<"ldc1", AFGR64Opnd, IIFLoad, load>, LW_FM<0x35>;
def SDC1 : MMRel, SW_FT<"sdc1", AFGR64Opnd, IIFStore, store>, LW_FM<0x3d>;
}
/// Cop2 Memory Instructions
let Predicates = [HasStdEnc] in {
def LWC2 : LW_FT<"lwc2", COP2Opnd, NoItinerary, load>, LW_FM<0x32>;
def SWC2 : SW_FT<"swc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3a>;
def LDC2 : LW_FT<"ldc2", COP2Opnd, NoItinerary, load>, LW_FM<0x36>;
def SDC2 : SW_FT<"sdc2", COP2Opnd, NoItinerary, store>, LW_FM<0x3e>;
}
// Indexed loads and stores.
let Predicates = [HasFPIdx, HasStdEnc] in {
def LWXC1 : MMRel, LWXC1_FT<"lwxc1", FGR32Opnd, IIFLoad, load>, LWXC1_FM<0>;
def SWXC1 : MMRel, SWXC1_FT<"swxc1", FGR32Opnd, IIFStore, store>,
SWXC1_FM<8>;
}
let Predicates = [HasFPIdx, NotFP64bit, HasStdEnc, NotInMicroMips] in {
def LDXC1 : LWXC1_FT<"ldxc1", AFGR64Opnd, IIFLoad, load>, LWXC1_FM<1>;
def SDXC1 : SWXC1_FT<"sdxc1", AFGR64Opnd, IIFStore, store>, SWXC1_FM<9>;
}
let Predicates = [HasFPIdx, IsFP64bit, HasStdEnc],
DecoderNamespace="Mips64" in {
def LDXC164 : LWXC1_FT<"ldxc1", FGR64Opnd, IIFLoad, load>, LWXC1_FM<1>;
def SDXC164 : SWXC1_FT<"sdxc1", FGR64Opnd, IIFStore, store>, SWXC1_FM<9>;
}
// Load/store doubleword indexed unaligned.
let Predicates = [NotFP64bit, HasStdEnc] in {
def LUXC1 : MMRel, LWXC1_FT<"luxc1", AFGR64Opnd, IIFLoad>, LWXC1_FM<0x5>;
def SUXC1 : MMRel, SWXC1_FT<"suxc1", AFGR64Opnd, IIFStore>, SWXC1_FM<0xd>;
}
let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace="Mips64" in {
def LUXC164 : LWXC1_FT<"luxc1", FGR64Opnd, IIFLoad>, LWXC1_FM<0x5>;
def SUXC164 : SWXC1_FT<"suxc1", FGR64Opnd, IIFStore>, SWXC1_FM<0xd>;
}
/// Floating-point Aritmetic
def FADD_S : MMRel, ADDS_FT<"add.s", FGR32Opnd, IIFadd, 1, fadd>,
ADDS_FM<0x00, 16>;
defm FADD : ADDS_M<"add.d", IIFadd, 1, fadd>, ADDS_FM<0x00, 17>;
def FDIV_S : MMRel, ADDS_FT<"div.s", FGR32Opnd, IIFdivSingle, 0, fdiv>,
ADDS_FM<0x03, 16>;
defm FDIV : ADDS_M<"div.d", IIFdivDouble, 0, fdiv>, ADDS_FM<0x03, 17>;
def FMUL_S : MMRel, ADDS_FT<"mul.s", FGR32Opnd, IIFmulSingle, 1, fmul>,
ADDS_FM<0x02, 16>;
defm FMUL : ADDS_M<"mul.d", IIFmulDouble, 1, fmul>, ADDS_FM<0x02, 17>;
def FSUB_S : MMRel, ADDS_FT<"sub.s", FGR32Opnd, IIFadd, 0, fsub>,
ADDS_FM<0x01, 16>;
defm FSUB : ADDS_M<"sub.d", IIFadd, 0, fsub>, ADDS_FM<0x01, 17>;
let Predicates = [HasMips32r2, HasStdEnc] in {
def MADD_S : MADDS_FT<"madd.s", FGR32Opnd, IIFmulSingle, fadd>,
MADDS_FM<4, 0>;
def MSUB_S : MADDS_FT<"msub.s", FGR32Opnd, IIFmulSingle, fsub>,
MADDS_FM<5, 0>;
}
let Predicates = [HasMips32r2, NoNaNsFPMath, HasStdEnc] in {
def NMADD_S : NMADDS_FT<"nmadd.s", FGR32Opnd, IIFmulSingle, fadd>,
MADDS_FM<6, 0>;
def NMSUB_S : NMADDS_FT<"nmsub.s", FGR32Opnd, IIFmulSingle, fsub>,
MADDS_FM<7, 0>;
}
let Predicates = [HasMips32r2, NotFP64bit, HasStdEnc] in {
def MADD_D32 : MADDS_FT<"madd.d", AFGR64Opnd, IIFmulDouble, fadd>,
MADDS_FM<4, 1>;
def MSUB_D32 : MADDS_FT<"msub.d", AFGR64Opnd, IIFmulDouble, fsub>,
MADDS_FM<5, 1>;
}
let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStdEnc] in {
def NMADD_D32 : NMADDS_FT<"nmadd.d", AFGR64Opnd, IIFmulDouble, fadd>,
MADDS_FM<6, 1>;
def NMSUB_D32 : NMADDS_FT<"nmsub.d", AFGR64Opnd, IIFmulDouble, fsub>,
MADDS_FM<7, 1>;
}
let Predicates = [HasMips32r2, IsFP64bit, HasStdEnc], isCodeGenOnly=1 in {
def MADD_D64 : MADDS_FT<"madd.d", FGR64Opnd, IIFmulDouble, fadd>,
MADDS_FM<4, 1>;
def MSUB_D64 : MADDS_FT<"msub.d", FGR64Opnd, IIFmulDouble, fsub>,
MADDS_FM<5, 1>;
}
let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStdEnc],
isCodeGenOnly=1 in {
def NMADD_D64 : NMADDS_FT<"nmadd.d", FGR64Opnd, IIFmulDouble, fadd>,
MADDS_FM<6, 1>;
def NMSUB_D64 : NMADDS_FT<"nmsub.d", FGR64Opnd, IIFmulDouble, fsub>,
MADDS_FM<7, 1>;
}
//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T : PatLeaf<(i32 1)>;
def BC1F : MMRel, BC1F_FT<"bc1f", brtarget, IIBranch, MIPS_BRANCH_F>,
BC1F_FM<0, 0>;
def BC1T : MMRel, BC1F_FT<"bc1t", brtarget, IIBranch, MIPS_BRANCH_T>,
BC1F_FM<0, 1>;
//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
//===----------------------------------------------------------------------===//
// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_FCOND_F : PatLeaf<(i32 0)>;
def MIPS_FCOND_UN : PatLeaf<(i32 1)>;
def MIPS_FCOND_OEQ : PatLeaf<(i32 2)>;
def MIPS_FCOND_UEQ : PatLeaf<(i32 3)>;
def MIPS_FCOND_OLT : PatLeaf<(i32 4)>;
def MIPS_FCOND_ULT : PatLeaf<(i32 5)>;
def MIPS_FCOND_OLE : PatLeaf<(i32 6)>;
def MIPS_FCOND_ULE : PatLeaf<(i32 7)>;
def MIPS_FCOND_SF : PatLeaf<(i32 8)>;
def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
def MIPS_FCOND_SEQ : PatLeaf<(i32 10)>;
def MIPS_FCOND_NGL : PatLeaf<(i32 11)>;
def MIPS_FCOND_LT : PatLeaf<(i32 12)>;
def MIPS_FCOND_NGE : PatLeaf<(i32 13)>;
def MIPS_FCOND_LE : PatLeaf<(i32 14)>;
def MIPS_FCOND_NGT : PatLeaf<(i32 15)>;
/// Floating Point Compare
def FCMP_S32 : MMRel, CEQS_FT<"s", FGR32, IIFcmp, MipsFPCmp>, CEQS_FM<16>;
def FCMP_D32 : MMRel, CEQS_FT<"d", AFGR64, IIFcmp, MipsFPCmp>, CEQS_FM<17>,
Requires<[NotFP64bit, HasStdEnc]>;
let DecoderNamespace = "Mips64" in
def FCMP_D64 : CEQS_FT<"d", FGR64, IIFcmp, MipsFPCmp>, CEQS_FM<17>,
Requires<[IsFP64bit, HasStdEnc]>;
//===----------------------------------------------------------------------===//
// Floating Point Pseudo-Instructions
//===----------------------------------------------------------------------===//
// This pseudo instr gets expanded into 2 mtc1 instrs after register
// allocation.
class BuildPairF64Base<RegisterOperand RO> :
PseudoSE<(outs RO:$dst), (ins GPR32Opnd:$lo, GPR32Opnd:$hi),
[(set RO:$dst, (MipsBuildPairF64 GPR32Opnd:$lo, GPR32Opnd:$hi))]>;
def BuildPairF64 : BuildPairF64Base<AFGR64Opnd>,
Requires<[NotFP64bit, HasStdEnc]>;
def BuildPairF64_64 : BuildPairF64Base<FGR64Opnd>,
Requires<[IsFP64bit, HasStdEnc]>;
// This pseudo instr gets expanded into 2 mfc1 instrs after register
// allocation.
// if n is 0, lower part of src is extracted.
// if n is 1, higher part of src is extracted.
class ExtractElementF64Base<RegisterOperand RO> :
PseudoSE<(outs GPR32Opnd:$dst), (ins RO:$src, i32imm:$n),
[(set GPR32Opnd:$dst, (MipsExtractElementF64 RO:$src, imm:$n))]>;
def ExtractElementF64 : ExtractElementF64Base<AFGR64Opnd>,
Requires<[NotFP64bit, HasStdEnc]>;
def ExtractElementF64_64 : ExtractElementF64Base<FGR64Opnd>,
Requires<[IsFP64bit, HasStdEnc]>;
//===----------------------------------------------------------------------===//
// InstAliases.
//===----------------------------------------------------------------------===//
def : InstAlias<"bc1t $offset", (BC1T FCC0, brtarget:$offset)>;
def : InstAlias<"bc1f $offset", (BC1F FCC0, brtarget:$offset)>;
//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
def : MipsPat<(f32 (sint_to_fp GPR32Opnd:$src)),
(PseudoCVT_S_W GPR32Opnd:$src)>;
def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src),
(TRUNC_W_S FGR32Opnd:$src)>;
let Predicates = [NotFP64bit, HasStdEnc] in {
def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)),
(PseudoCVT_D32_W GPR32Opnd:$src)>;
def : MipsPat<(MipsTruncIntFP AFGR64Opnd:$src),
(TRUNC_W_D32 AFGR64Opnd:$src)>;
def : MipsPat<(f32 (fround AFGR64Opnd:$src)),
(CVT_S_D32 AFGR64Opnd:$src)>;
def : MipsPat<(f64 (fextend FGR32Opnd:$src)),
(CVT_D32_S FGR32Opnd:$src)>;
}
let Predicates = [IsFP64bit, HasStdEnc] in {
def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>;
def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
def : MipsPat<(f64 (sint_to_fp GPR32Opnd:$src)),
(PseudoCVT_D64_W GPR32Opnd:$src)>;
def : MipsPat<(f32 (sint_to_fp GPR64Opnd:$src)),
(EXTRACT_SUBREG (PseudoCVT_S_L GPR64Opnd:$src), sub_lo)>;
def : MipsPat<(f64 (sint_to_fp GPR64Opnd:$src)),
(PseudoCVT_D64_L GPR64Opnd:$src)>;
def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src),
(TRUNC_W_D64 FGR64Opnd:$src)>;
def : MipsPat<(MipsTruncIntFP FGR32Opnd:$src),
(TRUNC_L_S FGR32Opnd:$src)>;
def : MipsPat<(MipsTruncIntFP FGR64Opnd:$src),
(TRUNC_L_D64 FGR64Opnd:$src)>;
def : MipsPat<(f32 (fround FGR64Opnd:$src)),
(CVT_S_D64 FGR64Opnd:$src)>;
def : MipsPat<(f64 (fextend FGR32Opnd:$src)),
(CVT_D64_S FGR32Opnd:$src)>;
}
// Patterns for loads/stores with a reg+imm operand.
let AddedComplexity = 40 in {
let Predicates = [HasStdEnc] in {
def : LoadRegImmPat<LWC1, f32, load>;
def : StoreRegImmPat<SWC1, f32>;
}
let Predicates = [IsFP64bit, HasStdEnc] in {
def : LoadRegImmPat<LDC164, f64, load>;
def : StoreRegImmPat<SDC164, f64>;
}
let Predicates = [NotFP64bit, HasStdEnc] in {
def : LoadRegImmPat<LDC1, f64, load>;
def : StoreRegImmPat<SDC1, f64>;
}
}