llvm-project/llvm/lib/Transforms/Scalar/Scalarizer.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

975 lines
33 KiB
C++
Raw Normal View History

//===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass converts vector operations into scalar operations, in order
// to expose optimization opportunities on the individual scalar operations.
// It is mainly intended for targets that do not have vector units, but it
// may also be useful for revectorizing code to different vector widths.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/Scalarizer.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "scalarizer"
static cl::opt<bool> ScalarizeVariableInsertExtract(
"scalarize-variable-insert-extract", cl::init(true), cl::Hidden,
cl::desc("Allow the scalarizer pass to scalarize "
"insertelement/extractelement with variable index"));
// This is disabled by default because having separate loads and stores
// makes it more likely that the -combiner-alias-analysis limits will be
// reached.
static cl::opt<bool>
ScalarizeLoadStore("scalarize-load-store", cl::init(false), cl::Hidden,
cl::desc("Allow the scalarizer pass to scalarize loads and store"));
namespace {
// Used to store the scattered form of a vector.
using ValueVector = SmallVector<Value *, 8>;
// Used to map a vector Value to its scattered form. We use std::map
// because we want iterators to persist across insertion and because the
// values are relatively large.
using ScatterMap = std::map<Value *, ValueVector>;
// Lists Instructions that have been replaced with scalar implementations,
// along with a pointer to their scattered forms.
using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
// Provides a very limited vector-like interface for lazily accessing one
// component of a scattered vector or vector pointer.
class Scatterer {
public:
Scatterer() = default;
// Scatter V into Size components. If new instructions are needed,
// insert them before BBI in BB. If Cache is nonnull, use it to cache
// the results.
Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
ValueVector *cachePtr = nullptr);
// Return component I, creating a new Value for it if necessary.
Value *operator[](unsigned I);
// Return the number of components.
unsigned size() const { return Size; }
private:
BasicBlock *BB;
BasicBlock::iterator BBI;
Value *V;
ValueVector *CachePtr;
PointerType *PtrTy;
ValueVector Tmp;
unsigned Size;
};
// FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
// called Name that compares X and Y in the same way as FCI.
struct FCmpSplitter {
FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
}
FCmpInst &FCI;
};
// ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
// called Name that compares X and Y in the same way as ICI.
struct ICmpSplitter {
ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
}
ICmpInst &ICI;
};
// UnarySpliiter(UO)(Builder, X, Name) uses Builder to create
// a unary operator like UO called Name with operand X.
struct UnarySplitter {
UnarySplitter(UnaryOperator &uo) : UO(uo) {}
Value *operator()(IRBuilder<> &Builder, Value *Op, const Twine &Name) const {
return Builder.CreateUnOp(UO.getOpcode(), Op, Name);
}
UnaryOperator &UO;
};
// BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
// a binary operator like BO called Name with operands X and Y.
struct BinarySplitter {
BinarySplitter(BinaryOperator &bo) : BO(bo) {}
Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
const Twine &Name) const {
return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
}
BinaryOperator &BO;
};
// Information about a load or store that we're scalarizing.
struct VectorLayout {
VectorLayout() = default;
// Return the alignment of element I.
Align getElemAlign(unsigned I) {
return commonAlignment(VecAlign, I * ElemSize);
}
// The type of the vector.
VectorType *VecTy = nullptr;
// The type of each element.
Type *ElemTy = nullptr;
// The alignment of the vector.
Align VecAlign;
// The size of each element.
uint64_t ElemSize = 0;
};
class ScalarizerVisitor : public InstVisitor<ScalarizerVisitor, bool> {
public:
ScalarizerVisitor(unsigned ParallelLoopAccessMDKind, DominatorTree *DT)
: ParallelLoopAccessMDKind(ParallelLoopAccessMDKind), DT(DT) {
}
bool visit(Function &F);
// InstVisitor methods. They return true if the instruction was scalarized,
// false if nothing changed.
bool visitInstruction(Instruction &I) { return false; }
bool visitSelectInst(SelectInst &SI);
bool visitICmpInst(ICmpInst &ICI);
bool visitFCmpInst(FCmpInst &FCI);
bool visitUnaryOperator(UnaryOperator &UO);
bool visitBinaryOperator(BinaryOperator &BO);
bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
bool visitCastInst(CastInst &CI);
bool visitBitCastInst(BitCastInst &BCI);
bool visitInsertElementInst(InsertElementInst &IEI);
bool visitExtractElementInst(ExtractElementInst &EEI);
bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
bool visitPHINode(PHINode &PHI);
bool visitLoadInst(LoadInst &LI);
bool visitStoreInst(StoreInst &SI);
bool visitCallInst(CallInst &ICI);
private:
Scatterer scatter(Instruction *Point, Value *V);
void gather(Instruction *Op, const ValueVector &CV);
bool canTransferMetadata(unsigned Kind);
void transferMetadataAndIRFlags(Instruction *Op, const ValueVector &CV);
Optional<VectorLayout> getVectorLayout(Type *Ty, Align Alignment,
const DataLayout &DL);
bool finish();
template<typename T> bool splitUnary(Instruction &, const T &);
template<typename T> bool splitBinary(Instruction &, const T &);
bool splitCall(CallInst &CI);
ScatterMap Scattered;
GatherList Gathered;
SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
unsigned ParallelLoopAccessMDKind;
DominatorTree *DT;
};
class ScalarizerLegacyPass : public FunctionPass {
public:
static char ID;
ScalarizerLegacyPass() : FunctionPass(ID) {
initializeScalarizerLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage& AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
};
} // end anonymous namespace
char ScalarizerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(ScalarizerLegacyPass, "scalarizer",
"Scalarize vector operations", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(ScalarizerLegacyPass, "scalarizer",
"Scalarize vector operations", false, false)
Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
ValueVector *cachePtr)
: BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
Type *Ty = V->getType();
PtrTy = dyn_cast<PointerType>(Ty);
if (PtrTy)
Ty = PtrTy->getElementType();
Size = cast<FixedVectorType>(Ty)->getNumElements();
if (!CachePtr)
Tmp.resize(Size, nullptr);
else if (CachePtr->empty())
CachePtr->resize(Size, nullptr);
else
assert(Size == CachePtr->size() && "Inconsistent vector sizes");
}
// Return component I, creating a new Value for it if necessary.
Value *Scatterer::operator[](unsigned I) {
ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
// Try to reuse a previous value.
if (CV[I])
return CV[I];
IRBuilder<> Builder(BB, BBI);
if (PtrTy) {
Type *ElTy = cast<VectorType>(PtrTy->getElementType())->getElementType();
if (!CV[0]) {
Type *NewPtrTy = PointerType::get(ElTy, PtrTy->getAddressSpace());
CV[0] = Builder.CreateBitCast(V, NewPtrTy, V->getName() + ".i0");
}
if (I != 0)
CV[I] = Builder.CreateConstGEP1_32(ElTy, CV[0], I,
V->getName() + ".i" + Twine(I));
} else {
// Search through a chain of InsertElementInsts looking for element I.
// Record other elements in the cache. The new V is still suitable
// for all uncached indices.
while (true) {
InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
if (!Insert)
break;
ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
if (!Idx)
break;
unsigned J = Idx->getZExtValue();
V = Insert->getOperand(0);
if (I == J) {
CV[J] = Insert->getOperand(1);
return CV[J];
} else if (!CV[J]) {
// Only cache the first entry we find for each index we're not actively
// searching for. This prevents us from going too far up the chain and
// caching incorrect entries.
CV[J] = Insert->getOperand(1);
}
}
CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
V->getName() + ".i" + Twine(I));
}
return CV[I];
}
bool ScalarizerLegacyPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
Module &M = *F.getParent();
unsigned ParallelLoopAccessMDKind =
M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
return Impl.visit(F);
}
FunctionPass *llvm::createScalarizerPass() {
return new ScalarizerLegacyPass();
}
bool ScalarizerVisitor::visit(Function &F) {
assert(Gathered.empty() && Scattered.empty());
// To ensure we replace gathered components correctly we need to do an ordered
// traversal of the basic blocks in the function.
ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
for (BasicBlock *BB : RPOT) {
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
Instruction *I = &*II;
bool Done = InstVisitor::visit(I);
++II;
if (Done && I->getType()->isVoidTy())
I->eraseFromParent();
}
}
return finish();
}
// Return a scattered form of V that can be accessed by Point. V must be a
// vector or a pointer to a vector.
Scatterer ScalarizerVisitor::scatter(Instruction *Point, Value *V) {
if (Argument *VArg = dyn_cast<Argument>(V)) {
// Put the scattered form of arguments in the entry block,
// so that it can be used everywhere.
Function *F = VArg->getParent();
BasicBlock *BB = &F->getEntryBlock();
return Scatterer(BB, BB->begin(), V, &Scattered[V]);
}
if (Instruction *VOp = dyn_cast<Instruction>(V)) {
// When scalarizing PHI nodes we might try to examine/rewrite InsertElement
// nodes in predecessors. If those predecessors are unreachable from entry,
// then the IR in those blocks could have unexpected properties resulting in
// infinite loops in Scatterer::operator[]. By simply treating values
// originating from instructions in unreachable blocks as undef we do not
// need to analyse them further.
if (!DT->isReachableFromEntry(VOp->getParent()))
return Scatterer(Point->getParent(), Point->getIterator(),
UndefValue::get(V->getType()));
// Put the scattered form of an instruction directly after the
// instruction.
BasicBlock *BB = VOp->getParent();
return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
V, &Scattered[V]);
}
// In the fallback case, just put the scattered before Point and
// keep the result local to Point.
return Scatterer(Point->getParent(), Point->getIterator(), V);
}
// Replace Op with the gathered form of the components in CV. Defer the
// deletion of Op and creation of the gathered form to the end of the pass,
// so that we can avoid creating the gathered form if all uses of Op are
// replaced with uses of CV.
void ScalarizerVisitor::gather(Instruction *Op, const ValueVector &CV) {
transferMetadataAndIRFlags(Op, CV);
// If we already have a scattered form of Op (created from ExtractElements
// of Op itself), replace them with the new form.
ValueVector &SV = Scattered[Op];
if (!SV.empty()) {
for (unsigned I = 0, E = SV.size(); I != E; ++I) {
Value *V = SV[I];
if (V == nullptr || SV[I] == CV[I])
continue;
Instruction *Old = cast<Instruction>(V);
if (isa<Instruction>(CV[I]))
CV[I]->takeName(Old);
Old->replaceAllUsesWith(CV[I]);
PotentiallyDeadInstrs.emplace_back(Old);
}
}
SV = CV;
Gathered.push_back(GatherList::value_type(Op, &SV));
}
// Return true if it is safe to transfer the given metadata tag from
// vector to scalar instructions.
bool ScalarizerVisitor::canTransferMetadata(unsigned Tag) {
return (Tag == LLVMContext::MD_tbaa
|| Tag == LLVMContext::MD_fpmath
|| Tag == LLVMContext::MD_tbaa_struct
|| Tag == LLVMContext::MD_invariant_load
Add scoped-noalias metadata This commit adds scoped noalias metadata. The primary motivations for this feature are: 1. To preserve noalias function attribute information when inlining 2. To provide the ability to model block-scope C99 restrict pointers Neither of these two abilities are added here, only the necessary infrastructure. In fact, there should be no change to existing functionality, only the addition of new features. The logic that converts noalias function parameters into this metadata during inlining will come in a follow-up commit. What is added here is the ability to generally specify noalias memory-access sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA nodes: !scope0 = metadata !{ metadata !"scope of foo()" } !scope1 = metadata !{ metadata !"scope 1", metadata !scope0 } !scope2 = metadata !{ metadata !"scope 2", metadata !scope0 } !scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 } !scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 } Loads and stores can be tagged with an alias-analysis scope, and also, with a noalias tag for a specific scope: ... = load %ptr1, !alias.scope !{ !scope1 } ... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 } When evaluating an aliasing query, if one of the instructions is associated with an alias.scope id that is identical to the noalias scope associated with the other instruction, or is a descendant (in the scope hierarchy) of the noalias scope associated with the other instruction, then the two memory accesses are assumed not to alias. Note that is the first element of the scope metadata is a string, then it can be combined accross functions and translation units. The string can be replaced by a self-reference to create globally unqiue scope identifiers. [Note: This overview is slightly stylized, since the metadata nodes really need to just be numbers (!0 instead of !scope0), and the scope lists are also global unnamed metadata.] Existing noalias metadata in a callee is "cloned" for use by the inlined code. This is necessary because the aliasing scopes are unique to each call site (because of possible control dependencies on the aliasing properties). For example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } -- now just because we know that a1 does not alias with b1 at the first call site, and a2 does not alias with b2 at the second call site, we cannot let inlining these functons have the metadata imply that a1 does not alias with b2. llvm-svn: 213864
2014-07-24 22:25:39 +08:00
|| Tag == LLVMContext::MD_alias_scope
|| Tag == LLVMContext::MD_noalias
Introduce llvm.loop.parallel_accesses and llvm.access.group metadata. The current llvm.mem.parallel_loop_access metadata has a problem in that it uses LoopIDs. LoopID unfortunately is not loop identifier. It is neither unique (there's even a regression test assigning the some LoopID to multiple loops; can otherwise happen if passes such as LoopVersioning make copies of entire loops) nor persistent (every time a property is removed/added from a LoopID's MDNode, it will also receive a new LoopID; this happens e.g. when calling Loop::setLoopAlreadyUnrolled()). Since most loop transformation passes change the loop attributes (even if it just to mark that a loop should not be processed again as llvm.loop.isvectorized does, for the versioned and unversioned loop), the parallel access information is lost for any subsequent pass. This patch unlinks LoopIDs and parallel accesses. llvm.mem.parallel_loop_access metadata on instruction is replaced by llvm.access.group metadata. llvm.access.group points to a distinct MDNode with no operands (avoiding the problem to ever need to add/remove operands), called "access group". Alternatively, it can point to a list of access groups. The LoopID then has an attribute llvm.loop.parallel_accesses with all the access groups that are parallel (no dependencies carries by this loop). This intentionally avoid any kind of "ID". Loops that are clones/have their attributes modifies retain the llvm.loop.parallel_accesses attribute. Access instructions that a cloned point to the same access group. It is not necessary for each access to have it's own "ID" MDNode, but those memory access instructions with the same behavior can be grouped together. The behavior of llvm.mem.parallel_loop_access is not changed by this patch, but should be considered deprecated. Differential Revision: https://reviews.llvm.org/D52116 llvm-svn: 349725
2018-12-20 12:58:07 +08:00
|| Tag == ParallelLoopAccessMDKind
|| Tag == LLVMContext::MD_access_group);
}
// Transfer metadata from Op to the instructions in CV if it is known
// to be safe to do so.
void ScalarizerVisitor::transferMetadataAndIRFlags(Instruction *Op,
const ValueVector &CV) {
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
Op->getAllMetadataOtherThanDebugLoc(MDs);
for (unsigned I = 0, E = CV.size(); I != E; ++I) {
if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
for (const auto &MD : MDs)
if (canTransferMetadata(MD.first))
New->setMetadata(MD.first, MD.second);
New->copyIRFlags(Op);
if (Op->getDebugLoc() && !New->getDebugLoc())
New->setDebugLoc(Op->getDebugLoc());
}
}
}
// Try to fill in Layout from Ty, returning true on success. Alignment is
// the alignment of the vector, or None if the ABI default should be used.
Optional<VectorLayout>
ScalarizerVisitor::getVectorLayout(Type *Ty, Align Alignment,
const DataLayout &DL) {
VectorLayout Layout;
// Make sure we're dealing with a vector.
Layout.VecTy = dyn_cast<VectorType>(Ty);
if (!Layout.VecTy)
return None;
// Check that we're dealing with full-byte elements.
Layout.ElemTy = Layout.VecTy->getElementType();
if (!DL.typeSizeEqualsStoreSize(Layout.ElemTy))
return None;
Layout.VecAlign = Alignment;
Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
return Layout;
}
// Scalarize one-operand instruction I, using Split(Builder, X, Name)
// to create an instruction like I with operand X and name Name.
template<typename Splitter>
bool ScalarizerVisitor::splitUnary(Instruction &I, const Splitter &Split) {
VectorType *VT = dyn_cast<VectorType>(I.getType());
if (!VT)
return false;
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
IRBuilder<> Builder(&I);
Scatterer Op = scatter(&I, I.getOperand(0));
assert(Op.size() == NumElems && "Mismatched unary operation");
ValueVector Res;
Res.resize(NumElems);
for (unsigned Elem = 0; Elem < NumElems; ++Elem)
Res[Elem] = Split(Builder, Op[Elem], I.getName() + ".i" + Twine(Elem));
gather(&I, Res);
return true;
}
// Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
// to create an instruction like I with operands X and Y and name Name.
template<typename Splitter>
bool ScalarizerVisitor::splitBinary(Instruction &I, const Splitter &Split) {
VectorType *VT = dyn_cast<VectorType>(I.getType());
if (!VT)
return false;
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
IRBuilder<> Builder(&I);
Scatterer VOp0 = scatter(&I, I.getOperand(0));
Scatterer VOp1 = scatter(&I, I.getOperand(1));
assert(VOp0.size() == NumElems && "Mismatched binary operation");
assert(VOp1.size() == NumElems && "Mismatched binary operation");
ValueVector Res;
Res.resize(NumElems);
for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
Value *Op0 = VOp0[Elem];
Value *Op1 = VOp1[Elem];
Res[Elem] = Split(Builder, Op0, Op1, I.getName() + ".i" + Twine(Elem));
}
gather(&I, Res);
return true;
}
static bool isTriviallyScalariable(Intrinsic::ID ID) {
return isTriviallyVectorizable(ID);
}
// All of the current scalarizable intrinsics only have one mangled type.
static Function *getScalarIntrinsicDeclaration(Module *M,
Intrinsic::ID ID,
VectorType *Ty) {
return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
}
/// If a call to a vector typed intrinsic function, split into a scalar call per
/// element if possible for the intrinsic.
bool ScalarizerVisitor::splitCall(CallInst &CI) {
VectorType *VT = dyn_cast<VectorType>(CI.getType());
if (!VT)
return false;
Function *F = CI.getCalledFunction();
if (!F)
return false;
Intrinsic::ID ID = F->getIntrinsicID();
if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
return false;
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
unsigned NumArgs = CI.getNumArgOperands();
ValueVector ScalarOperands(NumArgs);
SmallVector<Scatterer, 8> Scattered(NumArgs);
Scattered.resize(NumArgs);
// Assumes that any vector type has the same number of elements as the return
// vector type, which is true for all current intrinsics.
for (unsigned I = 0; I != NumArgs; ++I) {
Value *OpI = CI.getOperand(I);
if (OpI->getType()->isVectorTy()) {
Scattered[I] = scatter(&CI, OpI);
assert(Scattered[I].size() == NumElems && "mismatched call operands");
} else {
ScalarOperands[I] = OpI;
}
}
ValueVector Res(NumElems);
ValueVector ScalarCallOps(NumArgs);
Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
IRBuilder<> Builder(&CI);
// Perform actual scalarization, taking care to preserve any scalar operands.
for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
ScalarCallOps.clear();
for (unsigned J = 0; J != NumArgs; ++J) {
if (hasVectorInstrinsicScalarOpd(ID, J))
ScalarCallOps.push_back(ScalarOperands[J]);
else
ScalarCallOps.push_back(Scattered[J][Elem]);
}
Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
CI.getName() + ".i" + Twine(Elem));
}
gather(&CI, Res);
return true;
}
bool ScalarizerVisitor::visitSelectInst(SelectInst &SI) {
VectorType *VT = dyn_cast<VectorType>(SI.getType());
if (!VT)
return false;
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
IRBuilder<> Builder(&SI);
Scatterer VOp1 = scatter(&SI, SI.getOperand(1));
Scatterer VOp2 = scatter(&SI, SI.getOperand(2));
assert(VOp1.size() == NumElems && "Mismatched select");
assert(VOp2.size() == NumElems && "Mismatched select");
ValueVector Res;
Res.resize(NumElems);
if (SI.getOperand(0)->getType()->isVectorTy()) {
Scatterer VOp0 = scatter(&SI, SI.getOperand(0));
assert(VOp0.size() == NumElems && "Mismatched select");
for (unsigned I = 0; I < NumElems; ++I) {
Value *Op0 = VOp0[I];
Value *Op1 = VOp1[I];
Value *Op2 = VOp2[I];
Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
SI.getName() + ".i" + Twine(I));
}
} else {
Value *Op0 = SI.getOperand(0);
for (unsigned I = 0; I < NumElems; ++I) {
Value *Op1 = VOp1[I];
Value *Op2 = VOp2[I];
Res[I] = Builder.CreateSelect(Op0, Op1, Op2,
SI.getName() + ".i" + Twine(I));
}
}
gather(&SI, Res);
return true;
}
bool ScalarizerVisitor::visitICmpInst(ICmpInst &ICI) {
return splitBinary(ICI, ICmpSplitter(ICI));
}
bool ScalarizerVisitor::visitFCmpInst(FCmpInst &FCI) {
return splitBinary(FCI, FCmpSplitter(FCI));
}
bool ScalarizerVisitor::visitUnaryOperator(UnaryOperator &UO) {
return splitUnary(UO, UnarySplitter(UO));
}
bool ScalarizerVisitor::visitBinaryOperator(BinaryOperator &BO) {
return splitBinary(BO, BinarySplitter(BO));
}
bool ScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
if (!VT)
return false;
IRBuilder<> Builder(&GEPI);
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
unsigned NumIndices = GEPI.getNumIndices();
// The base pointer might be scalar even if it's a vector GEP. In those cases,
// splat the pointer into a vector value, and scatter that vector.
Value *Op0 = GEPI.getOperand(0);
if (!Op0->getType()->isVectorTy())
Op0 = Builder.CreateVectorSplat(NumElems, Op0);
Scatterer Base = scatter(&GEPI, Op0);
SmallVector<Scatterer, 8> Ops;
Ops.resize(NumIndices);
for (unsigned I = 0; I < NumIndices; ++I) {
Value *Op = GEPI.getOperand(I + 1);
// The indices might be scalars even if it's a vector GEP. In those cases,
// splat the scalar into a vector value, and scatter that vector.
if (!Op->getType()->isVectorTy())
Op = Builder.CreateVectorSplat(NumElems, Op);
Ops[I] = scatter(&GEPI, Op);
}
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
SmallVector<Value *, 8> Indices;
Indices.resize(NumIndices);
for (unsigned J = 0; J < NumIndices; ++J)
Indices[J] = Ops[J][I];
Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
GEPI.getName() + ".i" + Twine(I));
if (GEPI.isInBounds())
if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
NewGEPI->setIsInBounds();
}
gather(&GEPI, Res);
return true;
}
bool ScalarizerVisitor::visitCastInst(CastInst &CI) {
VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
if (!VT)
return false;
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
IRBuilder<> Builder(&CI);
Scatterer Op0 = scatter(&CI, CI.getOperand(0));
assert(Op0.size() == NumElems && "Mismatched cast");
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
CI.getName() + ".i" + Twine(I));
gather(&CI, Res);
return true;
}
bool ScalarizerVisitor::visitBitCastInst(BitCastInst &BCI) {
VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
if (!DstVT || !SrcVT)
return false;
unsigned DstNumElems = cast<FixedVectorType>(DstVT)->getNumElements();
unsigned SrcNumElems = cast<FixedVectorType>(SrcVT)->getNumElements();
IRBuilder<> Builder(&BCI);
Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
ValueVector Res;
Res.resize(DstNumElems);
if (DstNumElems == SrcNumElems) {
for (unsigned I = 0; I < DstNumElems; ++I)
Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
BCI.getName() + ".i" + Twine(I));
} else if (DstNumElems > SrcNumElems) {
// <M x t1> -> <N*M x t2>. Convert each t1 to <N x t2> and copy the
// individual elements to the destination.
unsigned FanOut = DstNumElems / SrcNumElems;
auto *MidTy = FixedVectorType::get(DstVT->getElementType(), FanOut);
unsigned ResI = 0;
for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
Value *V = Op0[Op0I];
Instruction *VI;
// Look through any existing bitcasts before converting to <N x t2>.
// In the best case, the resulting conversion might be a no-op.
while ((VI = dyn_cast<Instruction>(V)) &&
VI->getOpcode() == Instruction::BitCast)
V = VI->getOperand(0);
V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
Scatterer Mid = scatter(&BCI, V);
for (unsigned MidI = 0; MidI < FanOut; ++MidI)
Res[ResI++] = Mid[MidI];
}
} else {
// <N*M x t1> -> <M x t2>. Convert each group of <N x t1> into a t2.
unsigned FanIn = SrcNumElems / DstNumElems;
auto *MidTy = FixedVectorType::get(SrcVT->getElementType(), FanIn);
unsigned Op0I = 0;
for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
Value *V = UndefValue::get(MidTy);
for (unsigned MidI = 0; MidI < FanIn; ++MidI)
V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
BCI.getName() + ".i" + Twine(ResI)
+ ".upto" + Twine(MidI));
Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
BCI.getName() + ".i" + Twine(ResI));
}
}
gather(&BCI, Res);
return true;
}
bool ScalarizerVisitor::visitInsertElementInst(InsertElementInst &IEI) {
VectorType *VT = dyn_cast<VectorType>(IEI.getType());
if (!VT)
return false;
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
IRBuilder<> Builder(&IEI);
Scatterer Op0 = scatter(&IEI, IEI.getOperand(0));
Value *NewElt = IEI.getOperand(1);
Value *InsIdx = IEI.getOperand(2);
ValueVector Res;
Res.resize(NumElems);
if (auto *CI = dyn_cast<ConstantInt>(InsIdx)) {
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = CI->getValue().getZExtValue() == I ? NewElt : Op0[I];
} else {
if (!ScalarizeVariableInsertExtract)
return false;
for (unsigned I = 0; I < NumElems; ++I) {
Value *ShouldReplace =
Builder.CreateICmpEQ(InsIdx, ConstantInt::get(InsIdx->getType(), I),
InsIdx->getName() + ".is." + Twine(I));
Value *OldElt = Op0[I];
Res[I] = Builder.CreateSelect(ShouldReplace, NewElt, OldElt,
IEI.getName() + ".i" + Twine(I));
}
}
gather(&IEI, Res);
return true;
}
bool ScalarizerVisitor::visitExtractElementInst(ExtractElementInst &EEI) {
VectorType *VT = dyn_cast<VectorType>(EEI.getOperand(0)->getType());
if (!VT)
return false;
unsigned NumSrcElems = cast<FixedVectorType>(VT)->getNumElements();
IRBuilder<> Builder(&EEI);
Scatterer Op0 = scatter(&EEI, EEI.getOperand(0));
Value *ExtIdx = EEI.getOperand(1);
if (auto *CI = dyn_cast<ConstantInt>(ExtIdx)) {
Value *Res = Op0[CI->getValue().getZExtValue()];
gather(&EEI, {Res});
return true;
}
if (!ScalarizeVariableInsertExtract)
return false;
Value *Res = UndefValue::get(VT->getElementType());
for (unsigned I = 0; I < NumSrcElems; ++I) {
Value *ShouldExtract =
Builder.CreateICmpEQ(ExtIdx, ConstantInt::get(ExtIdx->getType(), I),
ExtIdx->getName() + ".is." + Twine(I));
Value *Elt = Op0[I];
Res = Builder.CreateSelect(ShouldExtract, Elt, Res,
EEI.getName() + ".upto" + Twine(I));
}
gather(&EEI, {Res});
return true;
}
bool ScalarizerVisitor::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
VectorType *VT = dyn_cast<VectorType>(SVI.getType());
if (!VT)
return false;
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
int Selector = SVI.getMaskValue(I);
if (Selector < 0)
Res[I] = UndefValue::get(VT->getElementType());
else if (unsigned(Selector) < Op0.size())
Res[I] = Op0[Selector];
else
Res[I] = Op1[Selector - Op0.size()];
}
gather(&SVI, Res);
return true;
}
bool ScalarizerVisitor::visitPHINode(PHINode &PHI) {
VectorType *VT = dyn_cast<VectorType>(PHI.getType());
if (!VT)
return false;
unsigned NumElems = cast<FixedVectorType>(VT)->getNumElements();
IRBuilder<> Builder(&PHI);
ValueVector Res;
Res.resize(NumElems);
unsigned NumOps = PHI.getNumOperands();
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
PHI.getName() + ".i" + Twine(I));
for (unsigned I = 0; I < NumOps; ++I) {
Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
for (unsigned J = 0; J < NumElems; ++J)
cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
}
gather(&PHI, Res);
return true;
}
bool ScalarizerVisitor::visitLoadInst(LoadInst &LI) {
if (!ScalarizeLoadStore)
return false;
if (!LI.isSimple())
return false;
Optional<VectorLayout> Layout = getVectorLayout(
LI.getType(), LI.getAlign(), LI.getModule()->getDataLayout());
if (!Layout)
return false;
unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
IRBuilder<> Builder(&LI);
Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
ValueVector Res;
Res.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I)
Res[I] = Builder.CreateAlignedLoad(Layout->VecTy->getElementType(), Ptr[I],
Align(Layout->getElemAlign(I)),
LI.getName() + ".i" + Twine(I));
gather(&LI, Res);
return true;
}
bool ScalarizerVisitor::visitStoreInst(StoreInst &SI) {
if (!ScalarizeLoadStore)
return false;
if (!SI.isSimple())
return false;
Value *FullValue = SI.getValueOperand();
Optional<VectorLayout> Layout = getVectorLayout(
FullValue->getType(), SI.getAlign(), SI.getModule()->getDataLayout());
if (!Layout)
return false;
unsigned NumElems = cast<FixedVectorType>(Layout->VecTy)->getNumElements();
IRBuilder<> Builder(&SI);
Scatterer VPtr = scatter(&SI, SI.getPointerOperand());
Scatterer VVal = scatter(&SI, FullValue);
ValueVector Stores;
Stores.resize(NumElems);
for (unsigned I = 0; I < NumElems; ++I) {
Value *Val = VVal[I];
Value *Ptr = VPtr[I];
Stores[I] = Builder.CreateAlignedStore(Val, Ptr, Layout->getElemAlign(I));
}
transferMetadataAndIRFlags(&SI, Stores);
return true;
}
bool ScalarizerVisitor::visitCallInst(CallInst &CI) {
return splitCall(CI);
}
// Delete the instructions that we scalarized. If a full vector result
// is still needed, recreate it using InsertElements.
bool ScalarizerVisitor::finish() {
// The presence of data in Gathered or Scattered indicates changes
// made to the Function.
if (Gathered.empty() && Scattered.empty())
return false;
for (const auto &GMI : Gathered) {
Instruction *Op = GMI.first;
ValueVector &CV = *GMI.second;
if (!Op->use_empty()) {
// The value is still needed, so recreate it using a series of
// InsertElements.
Value *Res = UndefValue::get(Op->getType());
if (auto *Ty = dyn_cast<VectorType>(Op->getType())) {
BasicBlock *BB = Op->getParent();
unsigned Count = cast<FixedVectorType>(Ty)->getNumElements();
IRBuilder<> Builder(Op);
if (isa<PHINode>(Op))
Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
for (unsigned I = 0; I < Count; ++I)
Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
Op->getName() + ".upto" + Twine(I));
Res->takeName(Op);
} else {
assert(CV.size() == 1 && Op->getType() == CV[0]->getType());
Res = CV[0];
if (Op == Res)
continue;
}
Op->replaceAllUsesWith(Res);
}
PotentiallyDeadInstrs.emplace_back(Op);
}
Gathered.clear();
Scattered.clear();
RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
return true;
}
PreservedAnalyses ScalarizerPass::run(Function &F, FunctionAnalysisManager &AM) {
Module &M = *F.getParent();
unsigned ParallelLoopAccessMDKind =
M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
ScalarizerVisitor Impl(ParallelLoopAccessMDKind, DT);
bool Changed = Impl.visit(F);
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return Changed ? PA : PreservedAnalyses::all();
}