llvm-project/llvm/lib/Transforms/Scalar/LowerExpectIntrinsic.cpp

384 lines
12 KiB
C++
Raw Normal View History

//===- LowerExpectIntrinsic.cpp - Lower expect intrinsic ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers the 'expect' intrinsic to LLVM metadata.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
#define DEBUG_TYPE "lower-expect-intrinsic"
STATISTIC(ExpectIntrinsicsHandled,
"Number of 'expect' intrinsic instructions handled");
// These default values are chosen to represent an extremely skewed outcome for
// a condition, but they leave some room for interpretation by later passes.
//
// If the documentation for __builtin_expect() was made explicit that it should
// only be used in extreme cases, we could make this ratio higher. As it stands,
// programmers may be using __builtin_expect() / llvm.expect to annotate that a
// branch is likely or unlikely to be taken.
//
// There is a known dependency on this ratio in CodeGenPrepare when transforming
// 'select' instructions. It may be worthwhile to hoist these values to some
// shared space, so they can be used directly by other passes.
static cl::opt<uint32_t> LikelyBranchWeight(
"likely-branch-weight", cl::Hidden, cl::init(2000),
cl::desc("Weight of the branch likely to be taken (default = 2000)"));
static cl::opt<uint32_t> UnlikelyBranchWeight(
"unlikely-branch-weight", cl::Hidden, cl::init(1),
cl::desc("Weight of the branch unlikely to be taken (default = 1)"));
static bool handleSwitchExpect(SwitchInst &SI) {
CallInst *CI = dyn_cast<CallInst>(SI.getCondition());
if (!CI)
return false;
Function *Fn = CI->getCalledFunction();
if (!Fn || Fn->getIntrinsicID() != Intrinsic::expect)
return false;
Value *ArgValue = CI->getArgOperand(0);
ConstantInt *ExpectedValue = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (!ExpectedValue)
return false;
SwitchInst::CaseHandle Case = *SI.findCaseValue(ExpectedValue);
unsigned n = SI.getNumCases(); // +1 for default case.
SmallVector<uint32_t, 16> Weights(n + 1, UnlikelyBranchWeight);
if (Case == *SI.case_default())
Weights[0] = LikelyBranchWeight;
else
Weights[Case.getCaseIndex() + 1] = LikelyBranchWeight;
SI.setMetadata(LLVMContext::MD_prof,
MDBuilder(CI->getContext()).createBranchWeights(Weights));
SI.setCondition(ArgValue);
return true;
}
/// Handler for PHINodes that define the value argument to an
/// @llvm.expect call.
///
/// If the operand of the phi has a constant value and it 'contradicts'
/// with the expected value of phi def, then the corresponding incoming
/// edge of the phi is unlikely to be taken. Using that information,
/// the branch probability info for the originating branch can be inferred.
static void handlePhiDef(CallInst *Expect) {
Value &Arg = *Expect->getArgOperand(0);
ConstantInt *ExpectedValue = dyn_cast<ConstantInt>(Expect->getArgOperand(1));
if (!ExpectedValue)
return;
const APInt &ExpectedPhiValue = ExpectedValue->getValue();
// Walk up in backward a list of instructions that
// have 'copy' semantics by 'stripping' the copies
// until a PHI node or an instruction of unknown kind
// is reached. Negation via xor is also handled.
//
// C = PHI(...);
// B = C;
// A = B;
// D = __builtin_expect(A, 0);
//
Value *V = &Arg;
SmallVector<Instruction *, 4> Operations;
while (!isa<PHINode>(V)) {
if (ZExtInst *ZExt = dyn_cast<ZExtInst>(V)) {
V = ZExt->getOperand(0);
Operations.push_back(ZExt);
continue;
}
if (SExtInst *SExt = dyn_cast<SExtInst>(V)) {
V = SExt->getOperand(0);
Operations.push_back(SExt);
continue;
}
BinaryOperator *BinOp = dyn_cast<BinaryOperator>(V);
if (!BinOp || BinOp->getOpcode() != Instruction::Xor)
return;
ConstantInt *CInt = dyn_cast<ConstantInt>(BinOp->getOperand(1));
if (!CInt)
return;
V = BinOp->getOperand(0);
Operations.push_back(BinOp);
}
// Executes the recorded operations on input 'Value'.
auto ApplyOperations = [&](const APInt &Value) {
APInt Result = Value;
for (auto Op : llvm::reverse(Operations)) {
switch (Op->getOpcode()) {
case Instruction::Xor:
Result ^= cast<ConstantInt>(Op->getOperand(1))->getValue();
break;
case Instruction::ZExt:
Result = Result.zext(Op->getType()->getIntegerBitWidth());
break;
case Instruction::SExt:
Result = Result.sext(Op->getType()->getIntegerBitWidth());
break;
default:
llvm_unreachable("Unexpected operation");
}
}
return Result;
};
auto *PhiDef = dyn_cast<PHINode>(V);
// Get the first dominating conditional branch of the operand
// i's incoming block.
auto GetDomConditional = [&](unsigned i) -> BranchInst * {
BasicBlock *BB = PhiDef->getIncomingBlock(i);
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (BI && BI->isConditional())
return BI;
BB = BB->getSinglePredecessor();
if (!BB)
return nullptr;
BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI || BI->isUnconditional())
return nullptr;
return BI;
};
// Now walk through all Phi operands to find phi oprerands with values
// conflicting with the expected phi output value. Any such operand
// indicates the incoming edge to that operand is unlikely.
for (unsigned i = 0, e = PhiDef->getNumIncomingValues(); i != e; ++i) {
Value *PhiOpnd = PhiDef->getIncomingValue(i);
ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
if (!CI)
continue;
// Not an interesting case when IsUnlikely is false -- we can not infer
// anything useful when the operand value matches the expected phi
// output.
if (ExpectedPhiValue == ApplyOperations(CI->getValue()))
continue;
BranchInst *BI = GetDomConditional(i);
if (!BI)
continue;
MDBuilder MDB(PhiDef->getContext());
// There are two situations in which an operand of the PhiDef comes
// from a given successor of a branch instruction BI.
// 1) When the incoming block of the operand is the successor block;
// 2) When the incoming block is BI's enclosing block and the
// successor is the PhiDef's enclosing block.
//
// Returns true if the operand which comes from OpndIncomingBB
// comes from outgoing edge of BI that leads to Succ block.
auto *OpndIncomingBB = PhiDef->getIncomingBlock(i);
auto IsOpndComingFromSuccessor = [&](BasicBlock *Succ) {
if (OpndIncomingBB == Succ)
// If this successor is the incoming block for this
// Phi operand, then this successor does lead to the Phi.
return true;
if (OpndIncomingBB == BI->getParent() && Succ == PhiDef->getParent())
// Otherwise, if the edge is directly from the branch
// to the Phi, this successor is the one feeding this
// Phi operand.
return true;
return false;
};
if (IsOpndComingFromSuccessor(BI->getSuccessor(1)))
BI->setMetadata(
LLVMContext::MD_prof,
MDB.createBranchWeights(LikelyBranchWeight, UnlikelyBranchWeight));
else if (IsOpndComingFromSuccessor(BI->getSuccessor(0)))
BI->setMetadata(
LLVMContext::MD_prof,
MDB.createBranchWeights(UnlikelyBranchWeight, LikelyBranchWeight));
}
}
// Handle both BranchInst and SelectInst.
template <class BrSelInst> static bool handleBrSelExpect(BrSelInst &BSI) {
// Handle non-optimized IR code like:
// %expval = call i64 @llvm.expect.i64(i64 %conv1, i64 1)
// %tobool = icmp ne i64 %expval, 0
// br i1 %tobool, label %if.then, label %if.end
//
// Or the following simpler case:
// %expval = call i1 @llvm.expect.i1(i1 %cmp, i1 1)
// br i1 %expval, label %if.then, label %if.end
CallInst *CI;
ICmpInst *CmpI = dyn_cast<ICmpInst>(BSI.getCondition());
CmpInst::Predicate Predicate;
ConstantInt *CmpConstOperand = nullptr;
if (!CmpI) {
CI = dyn_cast<CallInst>(BSI.getCondition());
Predicate = CmpInst::ICMP_NE;
} else {
Predicate = CmpI->getPredicate();
if (Predicate != CmpInst::ICMP_NE && Predicate != CmpInst::ICMP_EQ)
return false;
CmpConstOperand = dyn_cast<ConstantInt>(CmpI->getOperand(1));
if (!CmpConstOperand)
return false;
CI = dyn_cast<CallInst>(CmpI->getOperand(0));
}
if (!CI)
return false;
uint64_t ValueComparedTo = 0;
if (CmpConstOperand) {
if (CmpConstOperand->getBitWidth() > 64)
return false;
ValueComparedTo = CmpConstOperand->getZExtValue();
}
Function *Fn = CI->getCalledFunction();
if (!Fn || Fn->getIntrinsicID() != Intrinsic::expect)
return false;
Value *ArgValue = CI->getArgOperand(0);
ConstantInt *ExpectedValue = dyn_cast<ConstantInt>(CI->getArgOperand(1));
if (!ExpectedValue)
return false;
MDBuilder MDB(CI->getContext());
MDNode *Node;
if ((ExpectedValue->getZExtValue() == ValueComparedTo) ==
(Predicate == CmpInst::ICMP_EQ))
Node = MDB.createBranchWeights(LikelyBranchWeight, UnlikelyBranchWeight);
else
Node = MDB.createBranchWeights(UnlikelyBranchWeight, LikelyBranchWeight);
BSI.setMetadata(LLVMContext::MD_prof, Node);
if (CmpI)
CmpI->setOperand(0, ArgValue);
else
BSI.setCondition(ArgValue);
return true;
}
static bool handleBranchExpect(BranchInst &BI) {
if (BI.isUnconditional())
return false;
return handleBrSelExpect<BranchInst>(BI);
}
static bool lowerExpectIntrinsic(Function &F) {
bool Changed = false;
for (BasicBlock &BB : F) {
// Create "block_weights" metadata.
if (BranchInst *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
if (handleBranchExpect(*BI))
ExpectIntrinsicsHandled++;
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
if (handleSwitchExpect(*SI))
ExpectIntrinsicsHandled++;
}
// Remove llvm.expect intrinsics. Iterate backwards in order
// to process select instructions before the intrinsic gets
// removed.
for (auto BI = BB.rbegin(), BE = BB.rend(); BI != BE;) {
Instruction *Inst = &*BI++;
CallInst *CI = dyn_cast<CallInst>(Inst);
if (!CI) {
if (SelectInst *SI = dyn_cast<SelectInst>(Inst)) {
if (handleBrSelExpect(*SI))
ExpectIntrinsicsHandled++;
}
continue;
}
Function *Fn = CI->getCalledFunction();
if (Fn && Fn->getIntrinsicID() == Intrinsic::expect) {
// Before erasing the llvm.expect, walk backward to find
// phi that define llvm.expect's first arg, and
// infer branch probability:
handlePhiDef(CI);
Value *Exp = CI->getArgOperand(0);
CI->replaceAllUsesWith(Exp);
CI->eraseFromParent();
Changed = true;
}
}
}
return Changed;
}
PreservedAnalyses LowerExpectIntrinsicPass::run(Function &F,
FunctionAnalysisManager &) {
if (lowerExpectIntrinsic(F))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
namespace {
/// \brief Legacy pass for lowering expect intrinsics out of the IR.
///
/// When this pass is run over a function it uses expect intrinsics which feed
/// branches and switches to provide branch weight metadata for those
/// terminators. It then removes the expect intrinsics from the IR so the rest
/// of the optimizer can ignore them.
class LowerExpectIntrinsic : public FunctionPass {
public:
static char ID;
LowerExpectIntrinsic() : FunctionPass(ID) {
initializeLowerExpectIntrinsicPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override { return lowerExpectIntrinsic(F); }
};
}
char LowerExpectIntrinsic::ID = 0;
INITIALIZE_PASS(LowerExpectIntrinsic, "lower-expect",
"Lower 'expect' Intrinsics", false, false)
FunctionPass *llvm::createLowerExpectIntrinsicPass() {
return new LowerExpectIntrinsic();
}