llvm-project/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCExpr.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

94 lines
2.5 KiB
C
Raw Normal View History

[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
//===-- PPCMCExpr.h - PPC specific MC expression classes --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCEXPR_H
#define LLVM_LIB_TARGET_POWERPC_MCTARGETDESC_PPCMCEXPR_H
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
#include "llvm/MC/MCAsmLayout.h"
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCValue.h"
namespace llvm {
class PPCMCExpr : public MCTargetExpr {
public:
enum VariantKind {
VK_PPC_None,
VK_PPC_LO,
VK_PPC_HI,
VK_PPC_HA,
VK_PPC_HIGH,
VK_PPC_HIGHA,
VK_PPC_HIGHER,
VK_PPC_HIGHERA,
VK_PPC_HIGHEST,
VK_PPC_HIGHESTA
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
};
private:
const VariantKind Kind;
const MCExpr *Expr;
int64_t evaluateAsInt64(int64_t Value) const;
explicit PPCMCExpr(VariantKind Kind, const MCExpr *Expr)
: Kind(Kind), Expr(Expr) {}
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
public:
/// @name Construction
/// @{
static const PPCMCExpr *create(VariantKind Kind, const MCExpr *Expr,
MCContext &Ctx);
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
static const PPCMCExpr *createLo(const MCExpr *Expr, MCContext &Ctx) {
return create(VK_PPC_LO, Expr, Ctx);
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
}
static const PPCMCExpr *createHi(const MCExpr *Expr, MCContext &Ctx) {
return create(VK_PPC_HI, Expr, Ctx);
}
static const PPCMCExpr *createHa(const MCExpr *Expr, MCContext &Ctx) {
return create(VK_PPC_HA, Expr, Ctx);
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
}
/// @}
/// @name Accessors
/// @{
/// getOpcode - Get the kind of this expression.
VariantKind getKind() const { return Kind; }
/// getSubExpr - Get the child of this expression.
const MCExpr *getSubExpr() const { return Expr; }
/// @}
void printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const override;
bool evaluateAsRelocatableImpl(MCValue &Res,
const MCAsmLayout *Layout,
const MCFixup *Fixup) const override;
void visitUsedExpr(MCStreamer &Streamer) const override;
MCFragment *findAssociatedFragment() const override {
return getSubExpr()->findAssociatedFragment();
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
}
// There are no TLS PPCMCExprs at the moment.
void fixELFSymbolsInTLSFixups(MCAssembler &Asm) const override {}
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
bool evaluateAsConstant(int64_t &Res) const;
[PowerPC] Clean up generation of ha16() / lo16() markers When targeting the Darwin assembler, we need to generate markers ha16() and lo16() to designate the high and low parts of a (symbolic) immediate. This is necessary not just for plain symbols, but also for certain symbolic expression, typically along the lines of ha16(A - B). The latter doesn't work when simply using VariantKind flags on the symbol reference. This is why the current back-end uses hacks (explicitly called out as such via multiple FIXMEs) in the symbolLo/symbolHi print methods. This patch uses target-defined MCExpr codes to represent the Darwin ha16/lo16 constructs, following along the lines of the equivalent solution used by the ARM back end to handle their :upper16: / :lower16: markers. This allows us to get rid of special handling both in the symbolLo/symbolHi print method and in the common code MCExpr::print routine. Instead, the ha16 / lo16 markers are printed simply in a custom print routine for the target MCExpr types. (As a result, the symbolLo/symbolHi print methods can now replaced by a single printS16ImmOperand routine that also handles symbolic operands.) The patch also provides a EvaluateAsRelocatableImpl routine to handle ha16/lo16 constructs. This is not actually used at the moment by any in-tree code, but is provided as it makes merging into David Fang's out-of-tree Mach-O object writer simpler. Since there is no longer any need to treat VK_PPC_GAS_HA16 and VK_PPC_DARWIN_HA16 differently, they are merged into a single VK_PPC_ADDR16_HA (and likewise for the _LO16 types). llvm-svn: 182616
2013-05-24 06:26:41 +08:00
static bool classof(const MCExpr *E) {
return E->getKind() == MCExpr::Target;
}
};
} // end namespace llvm
#endif