llvm-project/llvm/test/CodeGen/AMDGPU/setcc-opt.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

296 lines
10 KiB
LLVM
Raw Normal View History

; RUN: llc -march=amdgcn -verify-machineinstrs < %s | FileCheck -check-prefix=SI -check-prefix=GCN -check-prefix=FUNC %s
; RUN: llc -march=amdgcn -mcpu=tonga -mattr=-flat-for-global -verify-machineinstrs < %s | FileCheck -check-prefix=VI -check-prefix=GCN -check-prefix=FUNC %s
; RUN: llc -march=r600 -mcpu=cypress -verify-machineinstrs < %s | FileCheck -check-prefix=EG -check-prefix=FUNC %s
; FUNC-LABEL: {{^}}sext_bool_icmp_eq_0:
; GCN-NOT: v_cmp
; GCN: s_cmp_lg_u32 s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; GCN-NEXT:buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
; EG: SETNE_INT * [[CMP:T[0-9]+]].[[CMPCHAN:[XYZW]]], KC0[2].Z, KC0[2].W
; EG: AND_INT T{{[0-9]+.[XYZW]}}, PS, 1
define amdgpu_kernel void @sext_bool_icmp_eq_0(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp eq i32 %a, %b
%ext = sext i1 %icmp0 to i32
%icmp1 = icmp eq i32 %ext, 0
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}sext_bool_icmp_ne_0:
; GCN-NOT: v_cmp
; GCN: s_cmp_lg_u32 s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; GCN-NEXT: buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
; EG: SETNE_INT * [[CMP:T[0-9]+]].[[CMPCHAN:[XYZW]]], KC0[2].Z, KC0[2].W
; EG: AND_INT T{{[0-9]+.[XYZW]}}, PS, 1
define amdgpu_kernel void @sext_bool_icmp_ne_0(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = sext i1 %icmp0 to i32
%icmp1 = icmp ne i32 %ext, 0
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}sext_bool_icmp_eq_neg1:
; GCN-NOT: v_cmp
; GCN: s_cmp_eq_u32 s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; GCN-NEXT: buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @sext_bool_icmp_eq_neg1(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp eq i32 %a, %b
%ext = sext i1 %icmp0 to i32
%icmp1 = icmp eq i32 %ext, -1
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}sext_bool_icmp_ne_neg1:
; GCN-NOT: v_cmp
; GCN: s_cmp_eq_u32 s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; GCN-NEXT: buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @sext_bool_icmp_ne_neg1(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = sext i1 %icmp0 to i32
%icmp1 = icmp ne i32 %ext, -1
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}zext_bool_icmp_eq_0:
; GCN-NOT: v_cmp
; GCN: s_cmp_lg_u32 s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; GCN-NEXT: buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @zext_bool_icmp_eq_0(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp eq i32 %a, %b
%ext = zext i1 %icmp0 to i32
%icmp1 = icmp eq i32 %ext, 0
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}zext_bool_icmp_ne_0:
; GCN-NOT: v_cmp
; GCN: s_cmp_lg_u32 s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; GCN-NEXT: buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @zext_bool_icmp_ne_0(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = zext i1 %icmp0 to i32
%icmp1 = icmp ne i32 %ext, 0
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}zext_bool_icmp_eq_1:
; GCN-NOT: v_cmp
; GCN: s_cmp_eq_u32 s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; GCN-NEXT: buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @zext_bool_icmp_eq_1(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp eq i32 %a, %b
%ext = zext i1 %icmp0 to i32
%icmp1 = icmp eq i32 %ext, 1
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}zext_bool_icmp_ne_1:
; GCN-NOT: v_cmp
; GCN: s_cmp_eq_u32 s{{[0-9]+}}, s{{[0-9]+}}
; GCN: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; GCN-NEXT: buffer_store_byte [[RESULT]]
define amdgpu_kernel void @zext_bool_icmp_ne_1(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = zext i1 %icmp0 to i32
%icmp1 = icmp ne i32 %ext, 1
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; Reduces to false:
; FUNC-LABEL: {{^}}zext_bool_icmp_eq_neg1:
; GCN: v_mov_b32_e32 [[TMP:v[0-9]+]], 0{{$}}
; GCN: buffer_store_byte [[TMP]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @zext_bool_icmp_eq_neg1(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp eq i32 %a, %b
%ext = zext i1 %icmp0 to i32
%icmp1 = icmp eq i32 %ext, -1
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; Reduces to true:
; FUNC-LABEL: {{^}}zext_bool_icmp_ne_neg1:
; GCN: v_mov_b32_e32 [[TMP:v[0-9]+]], 1{{$}}
; GCN: buffer_store_byte [[TMP]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @zext_bool_icmp_ne_neg1(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = zext i1 %icmp0 to i32
%icmp1 = icmp ne i32 %ext, -1
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}cmp_zext_k_i8max:
; SI: s_load_dword [[VALUE:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0xb
; VI: s_load_dword [[VALUE:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0x2c
; GCN: s_movk_i32 [[K255:s[0-9]+]], 0xff
; SI-DAG: s_and_b32 [[B:s[0-9]+]], [[VALUE]], [[K255]]
; SI: s_cmp_lg_u32 [[B]], [[K255]]
; SI: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; VI: v_mov_b32_e32 [[VK255:v[0-9]+]], [[K255]]
; VI-DAG: v_and_b32_e32 [[B:v[0-9]+]], [[VALUE]], [[VK255]]
; VI: v_cmp_ne_u16_e32 vcc, [[K255]], [[B]]
; SI: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
; VI: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, vcc
AMDGPU/SI: Better handle s_wait insertion We can wait on either VM, EXP or LGKM. The waits are independent. Without this patch, a wait inserted because of one of them would also wait for all the previous others. This patch makes s_wait only wait for the ones we need for the next instruction. Here's an example of subtle perf reduction this patch solves: This is without the patch: buffer_load_format_xyzw v[8:11], v0, s[44:47], 0 idxen buffer_load_format_xyzw v[12:15], v0, s[48:51], 0 idxen s_load_dwordx4 s[44:47], s[8:9], 0xc s_waitcnt lgkmcnt(0) buffer_load_format_xyzw v[16:19], v0, s[52:55], 0 idxen s_load_dwordx4 s[48:51], s[8:9], 0x10 s_waitcnt vmcnt(1) buffer_load_format_xyzw v[20:23], v0, s[44:47], 0 idxen The s_waitcnt vmcnt(1) is useless. The reason it is added is because the last buffer_load_format_xyzw needs s[44:47], which was issued by the first s_load_dwordx4. It waits for all VM before that call to have finished. Internally after every instruction, 3 counters (for VM, EXP and LGTM) are updated after every instruction. For example buffer_load_format_xyzw will increase the VM counter, and s_load_dwordx4 the LGKM one. Without the patch, for every defined register, the current 3 counters are stored, and are used to know how long to wait when an instruction needs the register. Because of that, the s[44:47] counter includes that to use the register you need to wait for the previous buffer_load_format_xyzw. Instead this patch stores only the counters that matter for the register, and puts zero for the other ones, since we don't need any wait for them. Patch by: Axel Davy Differential Revision: http://reviews.llvm.org/D11883 llvm-svn: 245755
2015-08-22 06:47:27 +08:00
; GCN: buffer_store_byte [[RESULT]]
; GCN: s_endpgm
define amdgpu_kernel void @cmp_zext_k_i8max(i1 addrspace(1)* %out, i8 %b) nounwind {
%b.ext = zext i8 %b to i32
%icmp0 = icmp ne i32 %b.ext, 255
store i1 %icmp0, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}cmp_sext_k_neg1:
; GCN: buffer_load_sbyte [[B:v[0-9]+]]
; GCN: v_cmp_ne_u32_e32 vcc, -1, [[B]]{{$}}
; GCN-NEXT: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, vcc
; GCN: buffer_store_byte [[RESULT]]
; GCN: s_endpgm
define amdgpu_kernel void @cmp_sext_k_neg1(i1 addrspace(1)* %out, i8 addrspace(1)* %b.ptr) nounwind {
%b = load i8, i8 addrspace(1)* %b.ptr
%b.ext = sext i8 %b to i32
%icmp0 = icmp ne i32 %b.ext, -1
store i1 %icmp0, i1 addrspace(1)* %out
ret void
}
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; FUNC-LABEL: {{^}}v_cmp_sext_k_neg1_i8_sext_arg:
; GCN: v_cmp_ne_u32_e32 vcc, -1, v0
; GCN: v_cndmask_b32_e64 [[SELECT:v[0-9]+]], 0, 1, vcc
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
; GCN: buffer_store_byte [[SELECT]]
define void @v_cmp_sext_k_neg1_i8_sext_arg(i8 signext %b) nounwind {
%b.ext = sext i8 %b to i32
%icmp0 = icmp ne i32 %b.ext, -1
AMDGPU: Add pass to lower kernel arguments to loads This replaces most argument uses with loads, but for now not all. The code in SelectionDAG for calling convention lowering is actively harmful for amdgpu_kernel. It attempts to split the argument types into register legal types, which results in low quality code for arbitary types. Since all kernel arguments are passed in memory, we just want the raw types. I've tried a couple of methods of mitigating this in SelectionDAG, but it's easier to just bypass this problem alltogether. It's possible to hack around the problem in the initial lowering, but the real problem is the DAG then expects to be able to use CopyToReg/CopyFromReg for uses of the arguments outside the block. Exposing the argument loads in the IR also has the advantage that the LoadStoreVectorizer can merge them. I'm not sure the best approach to dealing with the IR argument list is. The patch as-is just leaves the IR arguments in place, so all the existing code will still compute the same kernarg size and pointlessly lowers the arguments. Arguably the frontend should emit kernels with an empty argument list in the first place. Alternatively a dummy array could be inserted as a single argument just to reserve space. This does have some disadvantages. Local pointer kernel arguments can no longer have AssertZext placed on them as the equivalent !range metadata is not valid on pointer typed loads. This is mostly bad for SI which needs to know about the known bits in order to use the DS instruction offset, so in this case this is not done. More importantly, this skips noalias arguments since this pass does not yet convert this to the equivalent !alias.scope and !noalias metadata. Producing this metadata correctly seems to be tricky, although this logically is the same as inlining into a function which doesn't exist. Additionally, exposing these loads to the vectorizer may result in degraded aliasing information if a pointer load is merged with another argument load. I'm also not entirely sure this is preserving the current clover ABI, although I would greatly prefer if it would stop widening arguments and match the HSA ABI. As-is I think it is extending < 4-byte arguments to 4-bytes but doesn't align them to 4-bytes. llvm-svn: 335650
2018-06-27 03:10:00 +08:00
store i1 %icmp0, i1 addrspace(1)* undef
ret void
}
; FIXME: This ends up doing a buffer_load_ubyte, and and compare to
; 255. Seems to be because of ordering problems when not allowing load widths to be reduced.
; Should do a buffer_load_sbyte and compare with -1
; FUNC-LABEL: {{^}}cmp_sext_k_neg1_i8_arg:
; SI: s_load_dword [[VAL:s[0-9]+]], s[{{[0-9]+:[0-9]+}}], 0xb
; VI: s_load_dword [[VAL:s[0-9]+]], s{{\[[0-9]+:[0-9]+\]}}, 0x2c
; GCN: s_movk_i32 [[K:s[0-9]+]], 0xff
; GCN-DAG: s_and_b32 [[B:s[0-9]+]], [[VAL]], [[K]]
; GCN: s_cmp_lg_u32 [[B]], [[K]]{{$}}
; SI: s_cselect_b64 [[MASK:s\[[0-9]+:[0-9]+\]]], 1, 0
; GCN: v_cndmask_b32_e64 [[RESULT:v[0-9]+]], 0, 1, [[MASK]]
AMDGPU/SI: Better handle s_wait insertion We can wait on either VM, EXP or LGKM. The waits are independent. Without this patch, a wait inserted because of one of them would also wait for all the previous others. This patch makes s_wait only wait for the ones we need for the next instruction. Here's an example of subtle perf reduction this patch solves: This is without the patch: buffer_load_format_xyzw v[8:11], v0, s[44:47], 0 idxen buffer_load_format_xyzw v[12:15], v0, s[48:51], 0 idxen s_load_dwordx4 s[44:47], s[8:9], 0xc s_waitcnt lgkmcnt(0) buffer_load_format_xyzw v[16:19], v0, s[52:55], 0 idxen s_load_dwordx4 s[48:51], s[8:9], 0x10 s_waitcnt vmcnt(1) buffer_load_format_xyzw v[20:23], v0, s[44:47], 0 idxen The s_waitcnt vmcnt(1) is useless. The reason it is added is because the last buffer_load_format_xyzw needs s[44:47], which was issued by the first s_load_dwordx4. It waits for all VM before that call to have finished. Internally after every instruction, 3 counters (for VM, EXP and LGTM) are updated after every instruction. For example buffer_load_format_xyzw will increase the VM counter, and s_load_dwordx4 the LGKM one. Without the patch, for every defined register, the current 3 counters are stored, and are used to know how long to wait when an instruction needs the register. Because of that, the s[44:47] counter includes that to use the register you need to wait for the previous buffer_load_format_xyzw. Instead this patch stores only the counters that matter for the register, and puts zero for the other ones, since we don't need any wait for them. Patch by: Axel Davy Differential Revision: http://reviews.llvm.org/D11883 llvm-svn: 245755
2015-08-22 06:47:27 +08:00
; GCN: buffer_store_byte [[RESULT]]
; GCN: s_endpgm
define amdgpu_kernel void @cmp_sext_k_neg1_i8_arg(i1 addrspace(1)* %out, i8 %b) nounwind {
%b.ext = sext i8 %b to i32
%icmp0 = icmp ne i32 %b.ext, -1
store i1 %icmp0, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}cmp_zext_k_neg1:
; GCN: v_mov_b32_e32 [[RESULT:v[0-9]+]], 1{{$}}
; GCN: buffer_store_byte [[RESULT]]
; GCN: s_endpgm
define amdgpu_kernel void @cmp_zext_k_neg1(i1 addrspace(1)* %out, i8 %b) nounwind {
%b.ext = zext i8 %b to i32
%icmp0 = icmp ne i32 %b.ext, -1
store i1 %icmp0, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}zext_bool_icmp_ne_k:
; GCN: v_mov_b32_e32 [[RESULT:v[0-9]+]], 1{{$}}
; GCN: buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @zext_bool_icmp_ne_k(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = zext i1 %icmp0 to i32
%icmp1 = icmp ne i32 %ext, 2
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}zext_bool_icmp_eq_k:
; GCN: v_mov_b32_e32 [[RESULT:v[0-9]+]], 0{{$}}
; GCN: buffer_store_byte [[RESULT]]
; GCN-NEXT: s_endpgm
define amdgpu_kernel void @zext_bool_icmp_eq_k(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = zext i1 %icmp0 to i32
%icmp1 = icmp eq i32 %ext, 2
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FIXME: These cases should really be able fold to true/false in
; DAGCombiner
; This really folds away to false
; FUNC-LABEL: {{^}}sext_bool_icmp_eq_1:
; GCN: v_mov_b32_e32 [[K:v[0-9]+]], 0{{$}}
; GCN: buffer_store_byte [[K]]
define amdgpu_kernel void @sext_bool_icmp_eq_1(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp eq i32 %a, %b
%ext = sext i1 %icmp0 to i32
%icmp1 = icmp eq i32 %ext, 1
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}sext_bool_icmp_ne_1:
; GCN: v_mov_b32_e32 [[K:v[0-9]+]], 1{{$}}
; GCN: buffer_store_byte [[K]]
define amdgpu_kernel void @sext_bool_icmp_ne_1(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = sext i1 %icmp0 to i32
%icmp1 = icmp ne i32 %ext, 1
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}
; FUNC-LABEL: {{^}}sext_bool_icmp_ne_k:
; GCN: v_mov_b32_e32 [[K:v[0-9]+]], 1{{$}}
; GCN: buffer_store_byte [[K]]
define amdgpu_kernel void @sext_bool_icmp_ne_k(i1 addrspace(1)* %out, i32 %a, i32 %b) nounwind {
%icmp0 = icmp ne i32 %a, %b
%ext = sext i1 %icmp0 to i32
%icmp1 = icmp ne i32 %ext, 2
store i1 %icmp1, i1 addrspace(1)* %out
ret void
}