llvm-project/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp

1595 lines
62 KiB
C++
Raw Normal View History

//===- llvm/CodeGen/DwarfCompileUnit.cpp - Dwarf Compile Units ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for constructing a dwarf compile unit.
//
//===----------------------------------------------------------------------===//
#include "DwarfCompileUnit.h"
#include "AddressPool.h"
#include "DwarfExpression.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolWasm.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <iterator>
#include <string>
#include <utility>
using namespace llvm;
static dwarf::Tag GetCompileUnitType(UnitKind Kind, DwarfDebug *DW) {
// According to DWARF Debugging Information Format Version 5,
// 3.1.2 Skeleton Compilation Unit Entries:
// "When generating a split DWARF object file (see Section 7.3.2
// on page 187), the compilation unit in the .debug_info section
// is a "skeleton" compilation unit with the tag DW_TAG_skeleton_unit"
if (DW->getDwarfVersion() >= 5 && Kind == UnitKind::Skeleton)
return dwarf::DW_TAG_skeleton_unit;
return dwarf::DW_TAG_compile_unit;
}
DwarfCompileUnit::DwarfCompileUnit(unsigned UID, const DICompileUnit *Node,
AsmPrinter *A, DwarfDebug *DW,
DwarfFile *DWU, UnitKind Kind)
: DwarfUnit(GetCompileUnitType(Kind, DW), Node, A, DW, DWU), UniqueID(UID) {
insertDIE(Node, &getUnitDie());
MacroLabelBegin = Asm->createTempSymbol("cu_macro_begin");
}
/// addLabelAddress - Add a dwarf label attribute data and value using
/// DW_FORM_addr or DW_FORM_GNU_addr_index.
void DwarfCompileUnit::addLabelAddress(DIE &Die, dwarf::Attribute Attribute,
const MCSymbol *Label) {
// Don't use the address pool in non-fission or in the skeleton unit itself.
if ((!DD->useSplitDwarf() || !Skeleton) && DD->getDwarfVersion() < 5)
return addLocalLabelAddress(Die, Attribute, Label);
if (Label)
DD->addArangeLabel(SymbolCU(this, Label));
bool UseAddrOffsetFormOrExpressions =
DD->useAddrOffsetForm() || DD->useAddrOffsetExpressions();
const MCSymbol *Base = nullptr;
if (Label->isInSection() && UseAddrOffsetFormOrExpressions)
Base = DD->getSectionLabel(&Label->getSection());
if (!Base || Base == Label) {
unsigned idx = DD->getAddressPool().getIndex(Label);
addAttribute(Die, Attribute,
DD->getDwarfVersion() >= 5 ? dwarf::DW_FORM_addrx
: dwarf::DW_FORM_GNU_addr_index,
DIEInteger(idx));
return;
}
// Could be extended to work with DWARFv4 Split DWARF if that's important for
// someone. In that case DW_FORM_data would be used.
assert(DD->getDwarfVersion() >= 5 &&
"Addr+offset expressions are only valuable when using debug_addr (to "
"reduce relocations) available in DWARFv5 or higher");
if (DD->useAddrOffsetExpressions()) {
auto *Loc = new (DIEValueAllocator) DIEBlock();
addPoolOpAddress(*Loc, Label);
addBlock(Die, Attribute, dwarf::DW_FORM_exprloc, Loc);
} else
addAttribute(Die, Attribute, dwarf::DW_FORM_LLVM_addrx_offset,
new (DIEValueAllocator) DIEAddrOffset(
DD->getAddressPool().getIndex(Base), Label, Base));
}
void DwarfCompileUnit::addLocalLabelAddress(DIE &Die,
dwarf::Attribute Attribute,
const MCSymbol *Label) {
if (Label)
DD->addArangeLabel(SymbolCU(this, Label));
if (Label)
addAttribute(Die, Attribute, dwarf::DW_FORM_addr, DIELabel(Label));
else
addAttribute(Die, Attribute, dwarf::DW_FORM_addr, DIEInteger(0));
}
unsigned DwarfCompileUnit::getOrCreateSourceID(const DIFile *File) {
// If we print assembly, we can't separate .file entries according to
// compile units. Thus all files will belong to the default compile unit.
// FIXME: add a better feature test than hasRawTextSupport. Even better,
// extend .file to support this.
unsigned CUID = Asm->OutStreamer->hasRawTextSupport() ? 0 : getUniqueID();
if (!File)
return Asm->OutStreamer->emitDwarfFileDirective(0, "", "", None, None,
CUID);
if (LastFile != File) {
LastFile = File;
LastFileID = Asm->OutStreamer->emitDwarfFileDirective(
0, File->getDirectory(), File->getFilename(), DD->getMD5AsBytes(File),
File->getSource(), CUID);
}
return LastFileID;
}
DIE *DwarfCompileUnit::getOrCreateGlobalVariableDIE(
const DIGlobalVariable *GV, ArrayRef<GlobalExpr> GlobalExprs) {
// Check for pre-existence.
if (DIE *Die = getDIE(GV))
return Die;
assert(GV);
auto *GVContext = GV->getScope();
const DIType *GTy = GV->getType();
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
auto *CB = GVContext ? dyn_cast<DICommonBlock>(GVContext) : nullptr;
DIE *ContextDIE = CB ? getOrCreateCommonBlock(CB, GlobalExprs)
: getOrCreateContextDIE(GVContext);
// Add to map.
DIE *VariableDIE = &createAndAddDIE(GV->getTag(), *ContextDIE, GV);
DIScope *DeclContext;
if (auto *SDMDecl = GV->getStaticDataMemberDeclaration()) {
DeclContext = SDMDecl->getScope();
assert(SDMDecl->isStaticMember() && "Expected static member decl");
assert(GV->isDefinition());
// We need the declaration DIE that is in the static member's class.
DIE *VariableSpecDIE = getOrCreateStaticMemberDIE(SDMDecl);
addDIEEntry(*VariableDIE, dwarf::DW_AT_specification, *VariableSpecDIE);
// If the global variable's type is different from the one in the class
// member type, assume that it's more specific and also emit it.
if (GTy != SDMDecl->getBaseType())
addType(*VariableDIE, GTy);
} else {
DeclContext = GV->getScope();
// Add name and type.
addString(*VariableDIE, dwarf::DW_AT_name, GV->getDisplayName());
[DebugInfo] Fix assertion for extern void type Commit d77ae1552fc2 ("[DebugInfo] Support to emit debugInfo for extern variables") added support to emit debuginfo for extern variables. Currently, only BPF target enables to emit debuginfo for extern variables. But if the extern variable has "void" type, the compilation will fail. -bash-4.4$ cat t.c extern void bla; void *test() { void *x = &bla; return x; } -bash-4.4$ clang -target bpf -g -O2 -S t.c missing global variable type !1 = distinct !DIGlobalVariable(name: "bla", scope: !2, file: !3, line: 1, isLocal: false, isDefinition: false) ... fatal error: error in backend: Broken module found, compilation aborted! PLEASE submit a bug report to https://bugs.llvm.org/ and include the crash backtrace, preprocessed source, and associated run script. Stack dump: ... The IR requires a DIGlobalVariable must have a valid type and the "void" type does not generate any type, hence the above fatal error. Note that if the extern variable is defined as "const void", the compilation will succeed. -bash-4.4$ cat t.c extern const void bla; const void *test() { const void *x = &bla; return x; } -bash-4.4$ clang -target bpf -g -O2 -S t.c -bash-4.4$ cat t.ll ... !1 = distinct !DIGlobalVariable(name: "bla", scope: !2, file: !3, line: 1, type: !6, isLocal: false, isDefinition: false) !6 = !DIDerivedType(tag: DW_TAG_const_type, baseType: null) ... Since currently, "const void extern_var" is supported by the debug info, it is natural that "void extern_var" should also be supported. This patch disabled assertion of "void extern_var" in IR verifier and add proper guarding when emiting potential null debug info type to dwarf types. Differential Revision: https://reviews.llvm.org/D81131
2020-06-06 09:37:38 +08:00
if (GTy)
addType(*VariableDIE, GTy);
// Add scoping info.
if (!GV->isLocalToUnit())
addFlag(*VariableDIE, dwarf::DW_AT_external);
// Add line number info.
addSourceLine(*VariableDIE, GV);
}
if (!GV->isDefinition())
addFlag(*VariableDIE, dwarf::DW_AT_declaration);
else
addGlobalName(GV->getName(), *VariableDIE, DeclContext);
addAnnotation(*VariableDIE, GV->getAnnotations());
if (uint32_t AlignInBytes = GV->getAlignInBytes())
addUInt(*VariableDIE, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
AlignInBytes);
if (MDTuple *TP = GV->getTemplateParams())
addTemplateParams(*VariableDIE, DINodeArray(TP));
// Add location.
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
addLocationAttribute(VariableDIE, GV, GlobalExprs);
return VariableDIE;
}
void DwarfCompileUnit::addLocationAttribute(
DIE *VariableDIE, const DIGlobalVariable *GV, ArrayRef<GlobalExpr> GlobalExprs) {
bool addToAccelTable = false;
DIELoc *Loc = nullptr;
Optional<unsigned> NVPTXAddressSpace;
std::unique_ptr<DIEDwarfExpression> DwarfExpr;
for (const auto &GE : GlobalExprs) {
const GlobalVariable *Global = GE.Var;
const DIExpression *Expr = GE.Expr;
// For compatibility with DWARF 3 and earlier,
// DW_AT_location(DW_OP_constu, X, DW_OP_stack_value) or
// DW_AT_location(DW_OP_consts, X, DW_OP_stack_value) becomes
// DW_AT_const_value(X).
if (GlobalExprs.size() == 1 && Expr && Expr->isConstant()) {
addToAccelTable = true;
addConstantValue(
*VariableDIE,
DIExpression::SignedOrUnsignedConstant::UnsignedConstant ==
*Expr->isConstant(),
Expr->getElement(1));
break;
}
// We cannot describe the location of dllimport'd variables: the
// computation of their address requires loads from the IAT.
if (Global && Global->hasDLLImportStorageClass())
continue;
// Nothing to describe without address or constant.
if (!Global && (!Expr || !Expr->isConstant()))
continue;
if (Global && Global->isThreadLocal() &&
!Asm->getObjFileLowering().supportDebugThreadLocalLocation())
continue;
if (!Loc) {
addToAccelTable = true;
Loc = new (DIEValueAllocator) DIELoc;
DwarfExpr = std::make_unique<DIEDwarfExpression>(*Asm, *this, *Loc);
}
if (Expr) {
// According to
// https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf
// cuda-gdb requires DW_AT_address_class for all variables to be able to
// correctly interpret address space of the variable address.
// Decode DW_OP_constu <DWARF Address Space> DW_OP_swap DW_OP_xderef
// sequence for the NVPTX + gdb target.
unsigned LocalNVPTXAddressSpace;
if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) {
const DIExpression *NewExpr =
DIExpression::extractAddressClass(Expr, LocalNVPTXAddressSpace);
if (NewExpr != Expr) {
Expr = NewExpr;
NVPTXAddressSpace = LocalNVPTXAddressSpace;
}
}
DwarfExpr->addFragmentOffset(Expr);
}
if (Global) {
const MCSymbol *Sym = Asm->getSymbol(Global);
// 16-bit platforms like MSP430 and AVR take this path, so sink this
// assert to platforms that use it.
auto GetPointerSizedFormAndOp = [this]() {
unsigned PointerSize = Asm->getDataLayout().getPointerSize();
assert((PointerSize == 4 || PointerSize == 8) &&
"Add support for other sizes if necessary");
struct FormAndOp {
dwarf::Form Form;
dwarf::LocationAtom Op;
};
return PointerSize == 4
? FormAndOp{dwarf::DW_FORM_data4, dwarf::DW_OP_const4u}
: FormAndOp{dwarf::DW_FORM_data8, dwarf::DW_OP_const8u};
};
if (Global->isThreadLocal()) {
if (Asm->TM.useEmulatedTLS()) {
// TODO: add debug info for emulated thread local mode.
} else {
// FIXME: Make this work with -gsplit-dwarf.
// Based on GCC's support for TLS:
if (!DD->useSplitDwarf()) {
auto FormAndOp = GetPointerSizedFormAndOp();
// 1) Start with a constNu of the appropriate pointer size
addUInt(*Loc, dwarf::DW_FORM_data1, FormAndOp.Op);
// 2) containing the (relocated) offset of the TLS variable
// within the module's TLS block.
addExpr(*Loc, FormAndOp.Form,
Asm->getObjFileLowering().getDebugThreadLocalSymbol(Sym));
} else {
addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_GNU_const_index);
addUInt(*Loc, dwarf::DW_FORM_udata,
DD->getAddressPool().getIndex(Sym, /* TLS */ true));
}
// 3) followed by an OP to make the debugger do a TLS lookup.
addUInt(*Loc, dwarf::DW_FORM_data1,
DD->useGNUTLSOpcode() ? dwarf::DW_OP_GNU_push_tls_address
: dwarf::DW_OP_form_tls_address);
}
} else if (Asm->TM.getRelocationModel() == Reloc::RWPI ||
Asm->TM.getRelocationModel() == Reloc::ROPI_RWPI) {
auto FormAndOp = GetPointerSizedFormAndOp();
// Constant
addUInt(*Loc, dwarf::DW_FORM_data1, FormAndOp.Op);
// Relocation offset
addExpr(*Loc, FormAndOp.Form,
Asm->getObjFileLowering().getIndirectSymViaRWPI(Sym));
// Base register
Register BaseReg = Asm->getObjFileLowering().getStaticBase();
BaseReg = Asm->TM.getMCRegisterInfo()->getDwarfRegNum(BaseReg, false);
addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_breg0 + BaseReg);
// Offset from base register
addSInt(*Loc, dwarf::DW_FORM_sdata, 0);
// Operation
addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_plus);
} else {
DD->addArangeLabel(SymbolCU(this, Sym));
addOpAddress(*Loc, Sym);
}
}
// Global variables attached to symbols are memory locations.
// It would be better if this were unconditional, but malformed input that
// mixes non-fragments and fragments for the same variable is too expensive
// to detect in the verifier.
if (DwarfExpr->isUnknownLocation())
DwarfExpr->setMemoryLocationKind();
DwarfExpr->addExpression(Expr);
}
if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) {
// According to
// https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf
// cuda-gdb requires DW_AT_address_class for all variables to be able to
// correctly interpret address space of the variable address.
const unsigned NVPTX_ADDR_global_space = 5;
addUInt(*VariableDIE, dwarf::DW_AT_address_class, dwarf::DW_FORM_data1,
NVPTXAddressSpace ? *NVPTXAddressSpace : NVPTX_ADDR_global_space);
}
if (Loc)
addBlock(*VariableDIE, dwarf::DW_AT_location, DwarfExpr->finalize());
if (DD->useAllLinkageNames())
addLinkageName(*VariableDIE, GV->getLinkageName());
if (addToAccelTable) {
DD->addAccelName(*CUNode, GV->getName(), *VariableDIE);
// If the linkage name is different than the name, go ahead and output
// that as well into the name table.
if (GV->getLinkageName() != "" && GV->getName() != GV->getLinkageName() &&
DD->useAllLinkageNames())
DD->addAccelName(*CUNode, GV->getLinkageName(), *VariableDIE);
}
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
}
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
DIE *DwarfCompileUnit::getOrCreateCommonBlock(
const DICommonBlock *CB, ArrayRef<GlobalExpr> GlobalExprs) {
// Check for pre-existence.
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
if (DIE *NDie = getDIE(CB))
return NDie;
DIE *ContextDIE = getOrCreateContextDIE(CB->getScope());
Add LLVM IR debug info support for Fortran COMMON blocks COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example. COMMON /ALPHA/ I, J For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block. @alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33 !14 = distinct !DISubprogram(…) !20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha") !25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24) !27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression()) !29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28) !30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression()) !31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28) !32 = !DIExpression(DW_OP_plus_uconst, 4) !33 = !DIGlobalVariableExpression(var: !31, expr: !32) The DWARF generated for this is as follows. DW_TAG_common_block: DW_AT_name: alpha DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: common alpha DW_AT_type: array of 8 bytes DW_AT_location: @alpha_+0 DW_TAG_variable: DW_AT_name: i DW_AT_type: integer*4 DW_AT_location: @Alpha+0 DW_TAG_variable: DW_AT_name: j DW_AT_type: integer*4 DW_AT_location: @Alpha+4 Patch by Eric Schweitz! Differential Revision: https://reviews.llvm.org/D54327 llvm-svn: 357934
2019-04-09 03:13:55 +08:00
DIE &NDie = createAndAddDIE(dwarf::DW_TAG_common_block, *ContextDIE, CB);
StringRef Name = CB->getName().empty() ? "_BLNK_" : CB->getName();
addString(NDie, dwarf::DW_AT_name, Name);
addGlobalName(Name, NDie, CB->getScope());
if (CB->getFile())
addSourceLine(NDie, CB->getLineNo(), CB->getFile());
if (DIGlobalVariable *V = CB->getDecl())
getCU().addLocationAttribute(&NDie, V, GlobalExprs);
return &NDie;
}
void DwarfCompileUnit::addRange(RangeSpan Range) {
DD->insertSectionLabel(Range.Begin);
auto *PrevCU = DD->getPrevCU();
bool SameAsPrevCU = this == PrevCU;
DD->setPrevCU(this);
// If we have no current ranges just add the range and return, otherwise,
// check the current section and CU against the previous section and CU we
// emitted into and the subprogram was contained within. If these are the
// same then extend our current range, otherwise add this as a new range.
if (CURanges.empty() || !SameAsPrevCU ||
(&CURanges.back().End->getSection() !=
&Range.End->getSection())) {
// Before a new range is added, always terminate the prior line table.
if (PrevCU)
DD->terminateLineTable(PrevCU);
CURanges.push_back(Range);
return;
}
CURanges.back().End = Range.End;
}
void DwarfCompileUnit::initStmtList() {
if (CUNode->isDebugDirectivesOnly())
return;
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
if (DD->useSectionsAsReferences()) {
LineTableStartSym = TLOF.getDwarfLineSection()->getBeginSymbol();
} else {
LineTableStartSym =
Asm->OutStreamer->getDwarfLineTableSymbol(getUniqueID());
}
// DW_AT_stmt_list is a offset of line number information for this
// compile unit in debug_line section. For split dwarf this is
// left in the skeleton CU and so not included.
// The line table entries are not always emitted in assembly, so it
// is not okay to use line_table_start here.
This change removes the dependency on DwarfDebug that was used for DW_FORM_ref_addr by making a new DIEUnit class in DIE.cpp. The DIEUnit class represents a compile or type unit and it owns the unit DIE as an instance variable. This allows anyone with a DIE, to get the unit DIE, and then get back to its DIEUnit without adding any new ivars to the DIE class. Why was this needed? The DIE class has an Offset that is always the CU relative DIE offset, not the "offset in debug info section" as was commented in the header file (the comment has been corrected). This is great for performance because most DIE references are compile unit relative and this means most code that accessed the DIE's offset didn't need to make it into a compile unit relative offset because it already was. When we needed to emit a DW_FORM_ref_addr though, we needed to find the absolute offset of the DIE by finding the DIE's compile/type unit. This class did have the absolute debug info/type offset and could be added to the CU relative offset to compute the absolute offset. With this change we can easily get back to a DIE's DIEUnit which will have this needed offset. Prior to this is required having a DwarfDebug and required calling: DwarfCompileUnit *DwarfDebug::lookupUnit(const DIE *CU) const; Now we can use the DIEUnit class to do so without needing DwarfDebug. All clients now use DIEUnit objects (the DwarfDebug stack and the DwarfLinker). A follow on patch for the DWARF generator will also take advantage of this. Differential Revision: https://reviews.llvm.org/D27170 llvm-svn: 288399
2016-12-02 02:56:29 +08:00
addSectionLabel(getUnitDie(), dwarf::DW_AT_stmt_list, LineTableStartSym,
TLOF.getDwarfLineSection()->getBeginSymbol());
}
void DwarfCompileUnit::applyStmtList(DIE &D) {
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
addSectionLabel(D, dwarf::DW_AT_stmt_list, LineTableStartSym,
TLOF.getDwarfLineSection()->getBeginSymbol());
}
void DwarfCompileUnit::attachLowHighPC(DIE &D, const MCSymbol *Begin,
const MCSymbol *End) {
assert(Begin && "Begin label should not be null!");
assert(End && "End label should not be null!");
assert(Begin->isDefined() && "Invalid starting label");
assert(End->isDefined() && "Invalid end label");
addLabelAddress(D, dwarf::DW_AT_low_pc, Begin);
if (DD->getDwarfVersion() < 4)
addLabelAddress(D, dwarf::DW_AT_high_pc, End);
else
addLabelDelta(D, dwarf::DW_AT_high_pc, End, Begin);
}
// Find DIE for the given subprogram and attach appropriate DW_AT_low_pc
// and DW_AT_high_pc attributes. If there are global variables in this
// scope then create and insert DIEs for these variables.
DIE &DwarfCompileUnit::updateSubprogramScopeDIE(const DISubprogram *SP) {
DIE *SPDie = getOrCreateSubprogramDIE(SP, includeMinimalInlineScopes());
SmallVector<RangeSpan, 2> BB_List;
// If basic block sections are on, ranges for each basic block section has
// to be emitted separately.
for (const auto &R : Asm->MBBSectionRanges)
BB_List.push_back({R.second.BeginLabel, R.second.EndLabel});
attachRangesOrLowHighPC(*SPDie, BB_List);
if (DD->useAppleExtensionAttributes() &&
!DD->getCurrentFunction()->getTarget().Options.DisableFramePointerElim(
*DD->getCurrentFunction()))
addFlag(*SPDie, dwarf::DW_AT_APPLE_omit_frame_ptr);
// Only include DW_AT_frame_base in full debug info
if (!includeMinimalInlineScopes()) {
const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering();
TargetFrameLowering::DwarfFrameBase FrameBase =
TFI->getDwarfFrameBase(*Asm->MF);
switch (FrameBase.Kind) {
case TargetFrameLowering::DwarfFrameBase::Register: {
if (Register::isPhysicalRegister(FrameBase.Location.Reg)) {
MachineLocation Location(FrameBase.Location.Reg);
addAddress(*SPDie, dwarf::DW_AT_frame_base, Location);
}
break;
}
case TargetFrameLowering::DwarfFrameBase::CFA: {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_call_frame_cfa);
addBlock(*SPDie, dwarf::DW_AT_frame_base, Loc);
break;
}
case TargetFrameLowering::DwarfFrameBase::WasmFrameBase: {
// FIXME: duplicated from Target/WebAssembly/WebAssembly.h
// don't want to depend on target specific headers in this code?
const unsigned TI_GLOBAL_RELOC = 3;
if (FrameBase.Location.WasmLoc.Kind == TI_GLOBAL_RELOC) {
// These need to be relocatable.
assert(FrameBase.Location.WasmLoc.Index == 0); // Only SP so far.
auto SPSym = cast<MCSymbolWasm>(
Asm->GetExternalSymbolSymbol("__stack_pointer"));
// FIXME: this repeats what WebAssemblyMCInstLower::
// GetExternalSymbolSymbol does, since if there's no code that
// refers to this symbol, we have to set it here.
SPSym->setType(wasm::WASM_SYMBOL_TYPE_GLOBAL);
SPSym->setGlobalType(wasm::WasmGlobalType{
uint8_t(Asm->getSubtargetInfo().getTargetTriple().getArch() ==
Triple::wasm64
? wasm::WASM_TYPE_I64
: wasm::WASM_TYPE_I32),
true});
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_WASM_location);
addSInt(*Loc, dwarf::DW_FORM_sdata, TI_GLOBAL_RELOC);
if (!isDwoUnit()) {
addLabel(*Loc, dwarf::DW_FORM_data4, SPSym);
} else {
// FIXME: when writing dwo, we need to avoid relocations. Probably
// the "right" solution is to treat globals the way func and data
// symbols are (with entries in .debug_addr).
// For now, since we only ever use index 0, this should work as-is.
addUInt(*Loc, dwarf::DW_FORM_data4, FrameBase.Location.WasmLoc.Index);
}
addUInt(*Loc, dwarf::DW_FORM_data1, dwarf::DW_OP_stack_value);
addBlock(*SPDie, dwarf::DW_AT_frame_base, Loc);
} else {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
DIExpressionCursor Cursor({});
DwarfExpr.addWasmLocation(FrameBase.Location.WasmLoc.Kind,
FrameBase.Location.WasmLoc.Index);
DwarfExpr.addExpression(std::move(Cursor));
addBlock(*SPDie, dwarf::DW_AT_frame_base, DwarfExpr.finalize());
}
break;
}
}
}
// Add name to the name table, we do this here because we're guaranteed
// to have concrete versions of our DW_TAG_subprogram nodes.
DD->addSubprogramNames(*CUNode, SP, *SPDie);
return *SPDie;
}
// Construct a DIE for this scope.
void DwarfCompileUnit::constructScopeDIE(LexicalScope *Scope,
DIE &ParentScopeDIE) {
if (!Scope || !Scope->getScopeNode())
return;
auto *DS = Scope->getScopeNode();
assert((Scope->getInlinedAt() || !isa<DISubprogram>(DS)) &&
"Only handle inlined subprograms here, use "
"constructSubprogramScopeDIE for non-inlined "
"subprograms");
// Emit inlined subprograms.
if (Scope->getParent() && isa<DISubprogram>(DS)) {
DIE *ScopeDIE = constructInlinedScopeDIE(Scope);
if (!ScopeDIE)
return;
ParentScopeDIE.addChild(ScopeDIE);
createAndAddScopeChildren(Scope, *ScopeDIE);
return;
}
// Early exit when we know the scope DIE is going to be null.
if (DD->isLexicalScopeDIENull(Scope))
return;
// Emit lexical blocks.
DIE *ScopeDIE = constructLexicalScopeDIE(Scope);
assert(ScopeDIE && "Scope DIE should not be null.");
ParentScopeDIE.addChild(ScopeDIE);
createAndAddScopeChildren(Scope, *ScopeDIE);
}
void DwarfCompileUnit::addScopeRangeList(DIE &ScopeDIE,
SmallVector<RangeSpan, 2> Range) {
HasRangeLists = true;
// Add the range list to the set of ranges to be emitted.
auto IndexAndList =
(DD->getDwarfVersion() < 5 && Skeleton ? Skeleton->DU : DU)
->addRange(*(Skeleton ? Skeleton : this), std::move(Range));
uint32_t Index = IndexAndList.first;
auto &List = *IndexAndList.second;
// Under fission, ranges are specified by constant offsets relative to the
// CU's DW_AT_GNU_ranges_base.
// FIXME: For DWARF v5, do not generate the DW_AT_ranges attribute under
// fission until we support the forms using the .debug_addr section
// (DW_RLE_startx_endx etc.).
if (DD->getDwarfVersion() >= 5)
addUInt(ScopeDIE, dwarf::DW_AT_ranges, dwarf::DW_FORM_rnglistx, Index);
else {
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
const MCSymbol *RangeSectionSym =
TLOF.getDwarfRangesSection()->getBeginSymbol();
if (isDwoUnit())
addSectionDelta(ScopeDIE, dwarf::DW_AT_ranges, List.Label,
RangeSectionSym);
else
addSectionLabel(ScopeDIE, dwarf::DW_AT_ranges, List.Label,
RangeSectionSym);
}
}
void DwarfCompileUnit::attachRangesOrLowHighPC(
DIE &Die, SmallVector<RangeSpan, 2> Ranges) {
assert(!Ranges.empty());
if (!DD->useRangesSection() ||
(Ranges.size() == 1 &&
(!DD->alwaysUseRanges() ||
DD->getSectionLabel(&Ranges.front().Begin->getSection()) ==
Ranges.front().Begin))) {
const RangeSpan &Front = Ranges.front();
const RangeSpan &Back = Ranges.back();
attachLowHighPC(Die, Front.Begin, Back.End);
} else
addScopeRangeList(Die, std::move(Ranges));
}
void DwarfCompileUnit::attachRangesOrLowHighPC(
DIE &Die, const SmallVectorImpl<InsnRange> &Ranges) {
SmallVector<RangeSpan, 2> List;
List.reserve(Ranges.size());
for (const InsnRange &R : Ranges) {
auto *BeginLabel = DD->getLabelBeforeInsn(R.first);
auto *EndLabel = DD->getLabelAfterInsn(R.second);
const auto *BeginMBB = R.first->getParent();
const auto *EndMBB = R.second->getParent();
const auto *MBB = BeginMBB;
// Basic block sections allows basic block subsets to be placed in unique
// sections. For each section, the begin and end label must be added to the
// list. If there is more than one range, debug ranges must be used.
// Otherwise, low/high PC can be used.
// FIXME: Debug Info Emission depends on block order and this assumes that
// the order of blocks will be frozen beyond this point.
do {
if (MBB->sameSection(EndMBB) || MBB->isEndSection()) {
auto MBBSectionRange = Asm->MBBSectionRanges[MBB->getSectionIDNum()];
List.push_back(
{MBB->sameSection(BeginMBB) ? BeginLabel
: MBBSectionRange.BeginLabel,
MBB->sameSection(EndMBB) ? EndLabel : MBBSectionRange.EndLabel});
}
if (MBB->sameSection(EndMBB))
break;
MBB = MBB->getNextNode();
} while (true);
}
attachRangesOrLowHighPC(Die, std::move(List));
}
// This scope represents inlined body of a function. Construct DIE to
// represent this concrete inlined copy of the function.
DIE *DwarfCompileUnit::constructInlinedScopeDIE(LexicalScope *Scope) {
assert(Scope->getScopeNode());
auto *DS = Scope->getScopeNode();
auto *InlinedSP = getDISubprogram(DS);
// Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
// was inlined from another compile unit.
DIE *OriginDIE = getAbstractSPDies()[InlinedSP];
assert(OriginDIE && "Unable to find original DIE for an inlined subprogram.");
auto ScopeDIE = DIE::get(DIEValueAllocator, dwarf::DW_TAG_inlined_subroutine);
addDIEEntry(*ScopeDIE, dwarf::DW_AT_abstract_origin, *OriginDIE);
attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges());
// Add the call site information to the DIE.
const DILocation *IA = Scope->getInlinedAt();
addUInt(*ScopeDIE, dwarf::DW_AT_call_file, None,
getOrCreateSourceID(IA->getFile()));
addUInt(*ScopeDIE, dwarf::DW_AT_call_line, None, IA->getLine());
if (IA->getColumn())
addUInt(*ScopeDIE, dwarf::DW_AT_call_column, None, IA->getColumn());
if (IA->getDiscriminator() && DD->getDwarfVersion() >= 4)
addUInt(*ScopeDIE, dwarf::DW_AT_GNU_discriminator, None,
IA->getDiscriminator());
// Add name to the name table, we do this here because we're guaranteed
// to have concrete versions of our DW_TAG_inlined_subprogram nodes.
DD->addSubprogramNames(*CUNode, InlinedSP, *ScopeDIE);
return ScopeDIE;
}
// Construct new DW_TAG_lexical_block for this scope and attach
// DW_AT_low_pc/DW_AT_high_pc labels.
DIE *DwarfCompileUnit::constructLexicalScopeDIE(LexicalScope *Scope) {
if (DD->isLexicalScopeDIENull(Scope))
return nullptr;
auto ScopeDIE = DIE::get(DIEValueAllocator, dwarf::DW_TAG_lexical_block);
if (Scope->isAbstractScope())
return ScopeDIE;
attachRangesOrLowHighPC(*ScopeDIE, Scope->getRanges());
return ScopeDIE;
}
/// constructVariableDIE - Construct a DIE for the given DbgVariable.
DIE *DwarfCompileUnit::constructVariableDIE(DbgVariable &DV, bool Abstract) {
auto D = constructVariableDIEImpl(DV, Abstract);
DV.setDIE(*D);
return D;
}
DIE *DwarfCompileUnit::constructLabelDIE(DbgLabel &DL,
const LexicalScope &Scope) {
auto LabelDie = DIE::get(DIEValueAllocator, DL.getTag());
insertDIE(DL.getLabel(), LabelDie);
DL.setDIE(*LabelDie);
if (Scope.isAbstractScope())
applyLabelAttributes(DL, *LabelDie);
return LabelDie;
}
DIE *DwarfCompileUnit::constructVariableDIEImpl(const DbgVariable &DV,
bool Abstract) {
// Define variable debug information entry.
auto VariableDie = DIE::get(DIEValueAllocator, DV.getTag());
insertDIE(DV.getVariable(), VariableDie);
if (Abstract) {
applyVariableAttributes(DV, *VariableDie);
return VariableDie;
}
// Add variable address.
unsigned Index = DV.getDebugLocListIndex();
if (Index != ~0U) {
addLocationList(*VariableDie, dwarf::DW_AT_location, Index);
auto TagOffset = DV.getDebugLocListTagOffset();
if (TagOffset)
addUInt(*VariableDie, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1,
*TagOffset);
return VariableDie;
}
// Check if variable has a single location description.
if (auto *DVal = DV.getValueLoc()) {
if (!DVal->isVariadic()) {
const DbgValueLocEntry *Entry = DVal->getLocEntries().begin();
if (Entry->isLocation()) {
addVariableAddress(DV, *VariableDie, Entry->getLoc());
} else if (Entry->isInt()) {
auto *Expr = DV.getSingleExpression();
if (Expr && Expr->getNumElements()) {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
// If there is an expression, emit raw unsigned bytes.
DwarfExpr.addFragmentOffset(Expr);
DwarfExpr.addUnsignedConstant(Entry->getInt());
DwarfExpr.addExpression(Expr);
addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize());
if (DwarfExpr.TagOffset)
addUInt(*VariableDie, dwarf::DW_AT_LLVM_tag_offset,
dwarf::DW_FORM_data1, *DwarfExpr.TagOffset);
} else
addConstantValue(*VariableDie, Entry->getInt(), DV.getType());
} else if (Entry->isConstantFP()) {
addConstantFPValue(*VariableDie, Entry->getConstantFP());
} else if (Entry->isConstantInt()) {
addConstantValue(*VariableDie, Entry->getConstantInt(), DV.getType());
} else if (Entry->isTargetIndexLocation()) {
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
const DIBasicType *BT = dyn_cast<DIBasicType>(
static_cast<const Metadata *>(DV.getVariable()->getType()));
DwarfDebug::emitDebugLocValue(*Asm, BT, *DVal, DwarfExpr);
addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize());
}
return VariableDie;
}
// If any of the location entries are registers with the value 0, then the
// location is undefined.
if (any_of(DVal->getLocEntries(), [](const DbgValueLocEntry &Entry) {
return Entry.isLocation() && !Entry.getLoc().getReg();
}))
return VariableDie;
const DIExpression *Expr = DV.getSingleExpression();
assert(Expr && "Variadic Debug Value must have an Expression.");
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
DwarfExpr.addFragmentOffset(Expr);
DIExpressionCursor Cursor(Expr);
const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo();
auto AddEntry = [&](const DbgValueLocEntry &Entry,
DIExpressionCursor &Cursor) {
if (Entry.isLocation()) {
if (!DwarfExpr.addMachineRegExpression(TRI, Cursor,
Entry.getLoc().getReg()))
return false;
} else if (Entry.isInt()) {
// If there is an expression, emit raw unsigned bytes.
DwarfExpr.addUnsignedConstant(Entry.getInt());
} else if (Entry.isConstantFP()) {
// DwarfExpression does not support arguments wider than 64 bits
// (see PR52584).
// TODO: Consider chunking expressions containing overly wide
// arguments into separate pointer-sized fragment expressions.
APInt RawBytes = Entry.getConstantFP()->getValueAPF().bitcastToAPInt();
if (RawBytes.getBitWidth() > 64)
return false;
DwarfExpr.addUnsignedConstant(RawBytes.getZExtValue());
} else if (Entry.isConstantInt()) {
APInt RawBytes = Entry.getConstantInt()->getValue();
if (RawBytes.getBitWidth() > 64)
return false;
DwarfExpr.addUnsignedConstant(RawBytes.getZExtValue());
} else if (Entry.isTargetIndexLocation()) {
TargetIndexLocation Loc = Entry.getTargetIndexLocation();
// TODO TargetIndexLocation is a target-independent. Currently only the
// WebAssembly-specific encoding is supported.
assert(Asm->TM.getTargetTriple().isWasm());
DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
} else {
llvm_unreachable("Unsupported Entry type.");
}
return true;
};
if (!DwarfExpr.addExpression(
std::move(Cursor),
[&](unsigned Idx, DIExpressionCursor &Cursor) -> bool {
return AddEntry(DVal->getLocEntries()[Idx], Cursor);
}))
return VariableDie;
// Now attach the location information to the DIE.
addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize());
if (DwarfExpr.TagOffset)
addUInt(*VariableDie, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1,
*DwarfExpr.TagOffset);
return VariableDie;
}
// .. else use frame index.
if (!DV.hasFrameIndexExprs())
return VariableDie;
Optional<unsigned> NVPTXAddressSpace;
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
for (auto &Fragment : DV.getFrameIndexExprs()) {
Register FrameReg;
PR32382: Fix emitting complex DWARF expressions. The DWARF specification knows 3 kinds of non-empty simple location descriptions: 1. Register location descriptions - describe a variable in a register - consist of only a DW_OP_reg 2. Memory location descriptions - describe the address of a variable 3. Implicit location descriptions - describe the value of a variable - end with DW_OP_stack_value & friends The existing DwarfExpression code is pretty much ignorant of these restrictions. This used to not matter because we only emitted very short expressions that we happened to get right by accident. This patch makes DwarfExpression aware of the rules defined by the DWARF standard and now chooses the right kind of location description for each expression being emitted. This would have been an NFC commit (for the existing testsuite) if not for the way that clang describes captured block variables. Based on how the previous code in LLVM emitted locations, DW_OP_deref operations that should have come at the end of the expression are put at its beginning. Fixing this means changing the semantics of DIExpression, so this patch bumps the version number of DIExpression and implements a bitcode upgrade. There are two major changes in this patch: I had to fix the semantics of dbg.declare for describing function arguments. After this patch a dbg.declare always takes the *address* of a variable as the first argument, even if the argument is not an alloca. When lowering a DBG_VALUE, the decision of whether to emit a register location description or a memory location description depends on the MachineLocation — register machine locations may get promoted to memory locations based on their DIExpression. (Future) optimization passes that want to salvage implicit debug location for variables may do so by appending a DW_OP_stack_value. For example: DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8 DBG_VALUE, RAX --> DW_OP_reg0 +0 DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0 All testcases that were modified were regenerated from clang. I also added source-based testcases for each of these to the debuginfo-tests repository over the last week to make sure that no synchronized bugs slip in. The debuginfo-tests compile from source and run the debugger. https://bugs.llvm.org/show_bug.cgi?id=32382 <rdar://problem/31205000> Differential Revision: https://reviews.llvm.org/D31439 llvm-svn: 300522
2017-04-18 09:21:53 +08:00
const DIExpression *Expr = Fragment.Expr;
const TargetFrameLowering *TFI = Asm->MF->getSubtarget().getFrameLowering();
StackOffset Offset =
TFI->getFrameIndexReference(*Asm->MF, Fragment.FI, FrameReg);
PR32382: Fix emitting complex DWARF expressions. The DWARF specification knows 3 kinds of non-empty simple location descriptions: 1. Register location descriptions - describe a variable in a register - consist of only a DW_OP_reg 2. Memory location descriptions - describe the address of a variable 3. Implicit location descriptions - describe the value of a variable - end with DW_OP_stack_value & friends The existing DwarfExpression code is pretty much ignorant of these restrictions. This used to not matter because we only emitted very short expressions that we happened to get right by accident. This patch makes DwarfExpression aware of the rules defined by the DWARF standard and now chooses the right kind of location description for each expression being emitted. This would have been an NFC commit (for the existing testsuite) if not for the way that clang describes captured block variables. Based on how the previous code in LLVM emitted locations, DW_OP_deref operations that should have come at the end of the expression are put at its beginning. Fixing this means changing the semantics of DIExpression, so this patch bumps the version number of DIExpression and implements a bitcode upgrade. There are two major changes in this patch: I had to fix the semantics of dbg.declare for describing function arguments. After this patch a dbg.declare always takes the *address* of a variable as the first argument, even if the argument is not an alloca. When lowering a DBG_VALUE, the decision of whether to emit a register location description or a memory location description depends on the MachineLocation — register machine locations may get promoted to memory locations based on their DIExpression. (Future) optimization passes that want to salvage implicit debug location for variables may do so by appending a DW_OP_stack_value. For example: DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8 DBG_VALUE, RAX --> DW_OP_reg0 +0 DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0 All testcases that were modified were regenerated from clang. I also added source-based testcases for each of these to the debuginfo-tests repository over the last week to make sure that no synchronized bugs slip in. The debuginfo-tests compile from source and run the debugger. https://bugs.llvm.org/show_bug.cgi?id=32382 <rdar://problem/31205000> Differential Revision: https://reviews.llvm.org/D31439 llvm-svn: 300522
2017-04-18 09:21:53 +08:00
DwarfExpr.addFragmentOffset(Expr);
auto *TRI = Asm->MF->getSubtarget().getRegisterInfo();
SmallVector<uint64_t, 8> Ops;
TRI->getOffsetOpcodes(Offset, Ops);
// According to
// https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf
// cuda-gdb requires DW_AT_address_class for all variables to be able to
// correctly interpret address space of the variable address.
// Decode DW_OP_constu <DWARF Address Space> DW_OP_swap DW_OP_xderef
// sequence for the NVPTX + gdb target.
unsigned LocalNVPTXAddressSpace;
if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) {
const DIExpression *NewExpr =
DIExpression::extractAddressClass(Expr, LocalNVPTXAddressSpace);
if (NewExpr != Expr) {
Expr = NewExpr;
NVPTXAddressSpace = LocalNVPTXAddressSpace;
}
}
if (Expr)
Ops.append(Expr->elements_begin(), Expr->elements_end());
PR32382: Fix emitting complex DWARF expressions. The DWARF specification knows 3 kinds of non-empty simple location descriptions: 1. Register location descriptions - describe a variable in a register - consist of only a DW_OP_reg 2. Memory location descriptions - describe the address of a variable 3. Implicit location descriptions - describe the value of a variable - end with DW_OP_stack_value & friends The existing DwarfExpression code is pretty much ignorant of these restrictions. This used to not matter because we only emitted very short expressions that we happened to get right by accident. This patch makes DwarfExpression aware of the rules defined by the DWARF standard and now chooses the right kind of location description for each expression being emitted. This would have been an NFC commit (for the existing testsuite) if not for the way that clang describes captured block variables. Based on how the previous code in LLVM emitted locations, DW_OP_deref operations that should have come at the end of the expression are put at its beginning. Fixing this means changing the semantics of DIExpression, so this patch bumps the version number of DIExpression and implements a bitcode upgrade. There are two major changes in this patch: I had to fix the semantics of dbg.declare for describing function arguments. After this patch a dbg.declare always takes the *address* of a variable as the first argument, even if the argument is not an alloca. When lowering a DBG_VALUE, the decision of whether to emit a register location description or a memory location description depends on the MachineLocation — register machine locations may get promoted to memory locations based on their DIExpression. (Future) optimization passes that want to salvage implicit debug location for variables may do so by appending a DW_OP_stack_value. For example: DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8 DBG_VALUE, RAX --> DW_OP_reg0 +0 DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0 All testcases that were modified were regenerated from clang. I also added source-based testcases for each of these to the debuginfo-tests repository over the last week to make sure that no synchronized bugs slip in. The debuginfo-tests compile from source and run the debugger. https://bugs.llvm.org/show_bug.cgi?id=32382 <rdar://problem/31205000> Differential Revision: https://reviews.llvm.org/D31439 llvm-svn: 300522
2017-04-18 09:21:53 +08:00
DIExpressionCursor Cursor(Ops);
DwarfExpr.setMemoryLocationKind();
if (const MCSymbol *FrameSymbol = Asm->getFunctionFrameSymbol())
addOpAddress(*Loc, FrameSymbol);
else
DwarfExpr.addMachineRegExpression(
*Asm->MF->getSubtarget().getRegisterInfo(), Cursor, FrameReg);
PR32382: Fix emitting complex DWARF expressions. The DWARF specification knows 3 kinds of non-empty simple location descriptions: 1. Register location descriptions - describe a variable in a register - consist of only a DW_OP_reg 2. Memory location descriptions - describe the address of a variable 3. Implicit location descriptions - describe the value of a variable - end with DW_OP_stack_value & friends The existing DwarfExpression code is pretty much ignorant of these restrictions. This used to not matter because we only emitted very short expressions that we happened to get right by accident. This patch makes DwarfExpression aware of the rules defined by the DWARF standard and now chooses the right kind of location description for each expression being emitted. This would have been an NFC commit (for the existing testsuite) if not for the way that clang describes captured block variables. Based on how the previous code in LLVM emitted locations, DW_OP_deref operations that should have come at the end of the expression are put at its beginning. Fixing this means changing the semantics of DIExpression, so this patch bumps the version number of DIExpression and implements a bitcode upgrade. There are two major changes in this patch: I had to fix the semantics of dbg.declare for describing function arguments. After this patch a dbg.declare always takes the *address* of a variable as the first argument, even if the argument is not an alloca. When lowering a DBG_VALUE, the decision of whether to emit a register location description or a memory location description depends on the MachineLocation — register machine locations may get promoted to memory locations based on their DIExpression. (Future) optimization passes that want to salvage implicit debug location for variables may do so by appending a DW_OP_stack_value. For example: DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8 DBG_VALUE, RAX --> DW_OP_reg0 +0 DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0 All testcases that were modified were regenerated from clang. I also added source-based testcases for each of these to the debuginfo-tests repository over the last week to make sure that no synchronized bugs slip in. The debuginfo-tests compile from source and run the debugger. https://bugs.llvm.org/show_bug.cgi?id=32382 <rdar://problem/31205000> Differential Revision: https://reviews.llvm.org/D31439 llvm-svn: 300522
2017-04-18 09:21:53 +08:00
DwarfExpr.addExpression(std::move(Cursor));
}
if (Asm->TM.getTargetTriple().isNVPTX() && DD->tuneForGDB()) {
// According to
// https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf
// cuda-gdb requires DW_AT_address_class for all variables to be able to
// correctly interpret address space of the variable address.
const unsigned NVPTX_ADDR_local_space = 6;
addUInt(*VariableDie, dwarf::DW_AT_address_class, dwarf::DW_FORM_data1,
NVPTXAddressSpace ? *NVPTXAddressSpace : NVPTX_ADDR_local_space);
}
addBlock(*VariableDie, dwarf::DW_AT_location, DwarfExpr.finalize());
if (DwarfExpr.TagOffset)
addUInt(*VariableDie, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1,
*DwarfExpr.TagOffset);
return VariableDie;
}
DIE *DwarfCompileUnit::constructVariableDIE(DbgVariable &DV,
const LexicalScope &Scope,
DIE *&ObjectPointer) {
auto Var = constructVariableDIE(DV, Scope.isAbstractScope());
if (DV.isObjectPointer())
ObjectPointer = Var;
return Var;
}
/// Return all DIVariables that appear in count: expressions.
static SmallVector<const DIVariable *, 2> dependencies(DbgVariable *Var) {
SmallVector<const DIVariable *, 2> Result;
auto *Array = dyn_cast<DICompositeType>(Var->getType());
if (!Array || Array->getTag() != dwarf::DW_TAG_array_type)
return Result;
if (auto *DLVar = Array->getDataLocation())
Result.push_back(DLVar);
if (auto *AsVar = Array->getAssociated())
Result.push_back(AsVar);
if (auto *AlVar = Array->getAllocated())
Result.push_back(AlVar);
for (auto *El : Array->getElements()) {
if (auto *Subrange = dyn_cast<DISubrange>(El)) {
if (auto Count = Subrange->getCount())
if (auto *Dependency = Count.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
if (auto LB = Subrange->getLowerBound())
if (auto *Dependency = LB.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
if (auto UB = Subrange->getUpperBound())
if (auto *Dependency = UB.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
if (auto ST = Subrange->getStride())
if (auto *Dependency = ST.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
} else if (auto *GenericSubrange = dyn_cast<DIGenericSubrange>(El)) {
if (auto Count = GenericSubrange->getCount())
if (auto *Dependency = Count.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
if (auto LB = GenericSubrange->getLowerBound())
if (auto *Dependency = LB.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
if (auto UB = GenericSubrange->getUpperBound())
if (auto *Dependency = UB.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
if (auto ST = GenericSubrange->getStride())
if (auto *Dependency = ST.dyn_cast<DIVariable *>())
Result.push_back(Dependency);
}
}
return Result;
}
/// Sort local variables so that variables appearing inside of helper
/// expressions come first.
static SmallVector<DbgVariable *, 8>
sortLocalVars(SmallVectorImpl<DbgVariable *> &Input) {
SmallVector<DbgVariable *, 8> Result;
SmallVector<PointerIntPair<DbgVariable *, 1>, 8> WorkList;
// Map back from a DIVariable to its containing DbgVariable.
SmallDenseMap<const DILocalVariable *, DbgVariable *> DbgVar;
// Set of DbgVariables in Result.
SmallDenseSet<DbgVariable *, 8> Visited;
// For cycle detection.
SmallDenseSet<DbgVariable *, 8> Visiting;
// Initialize the worklist and the DIVariable lookup table.
for (auto Var : reverse(Input)) {
DbgVar.insert({Var->getVariable(), Var});
WorkList.push_back({Var, 0});
}
// Perform a stable topological sort by doing a DFS.
while (!WorkList.empty()) {
auto Item = WorkList.back();
DbgVariable *Var = Item.getPointer();
bool visitedAllDependencies = Item.getInt();
WorkList.pop_back();
assert(Var);
// Already handled.
if (Visited.count(Var))
continue;
// Add to Result if all dependencies are visited.
if (visitedAllDependencies) {
Visited.insert(Var);
Result.push_back(Var);
continue;
}
// Detect cycles.
auto Res = Visiting.insert(Var);
if (!Res.second) {
assert(false && "dependency cycle in local variables");
return Result;
}
// Push dependencies and this node onto the worklist, so that this node is
// visited again after all of its dependencies are handled.
WorkList.push_back({Var, 1});
for (auto *Dependency : dependencies(Var)) {
// Don't add dependency if it is in a different lexical scope or a global.
if (const auto *Dep = dyn_cast<const DILocalVariable>(Dependency))
if (DbgVariable *Var = DbgVar.lookup(Dep))
WorkList.push_back({Var, 0});
}
}
return Result;
}
DIE &DwarfCompileUnit::constructSubprogramScopeDIE(const DISubprogram *Sub,
LexicalScope *Scope) {
DIE &ScopeDIE = updateSubprogramScopeDIE(Sub);
if (Scope) {
assert(!Scope->getInlinedAt());
assert(!Scope->isAbstractScope());
// Collect lexical scope children first.
// ObjectPointer might be a local (non-argument) local variable if it's a
// block's synthetic this pointer.
if (DIE *ObjectPointer = createAndAddScopeChildren(Scope, ScopeDIE))
addDIEEntry(ScopeDIE, dwarf::DW_AT_object_pointer, *ObjectPointer);
}
// If this is a variadic function, add an unspecified parameter.
DITypeRefArray FnArgs = Sub->getType()->getTypeArray();
// If we have a single element of null, it is a function that returns void.
// If we have more than one elements and the last one is null, it is a
// variadic function.
if (FnArgs.size() > 1 && !FnArgs[FnArgs.size() - 1] &&
!includeMinimalInlineScopes())
ScopeDIE.addChild(
DIE::get(DIEValueAllocator, dwarf::DW_TAG_unspecified_parameters));
return ScopeDIE;
}
DIE *DwarfCompileUnit::createAndAddScopeChildren(LexicalScope *Scope,
DIE &ScopeDIE) {
DIE *ObjectPointer = nullptr;
// Emit function arguments (order is significant).
auto Vars = DU->getScopeVariables().lookup(Scope);
for (auto &DV : Vars.Args)
ScopeDIE.addChild(constructVariableDIE(*DV.second, *Scope, ObjectPointer));
// Emit local variables.
auto Locals = sortLocalVars(Vars.Locals);
for (DbgVariable *DV : Locals)
ScopeDIE.addChild(constructVariableDIE(*DV, *Scope, ObjectPointer));
// Emit imported entities (skipped in gmlt-like data).
if (!includeMinimalInlineScopes()) {
for (const auto *IE : ImportedEntities[Scope->getScopeNode()])
ScopeDIE.addChild(constructImportedEntityDIE(cast<DIImportedEntity>(IE)));
}
// Emit labels.
for (DbgLabel *DL : DU->getScopeLabels().lookup(Scope))
ScopeDIE.addChild(constructLabelDIE(*DL, *Scope));
// Emit inner lexical scopes.
auto needToEmitLexicalScope = [this](LexicalScope *LS) {
if (isa<DISubprogram>(LS->getScopeNode()))
return true;
auto Vars = DU->getScopeVariables().lookup(LS);
if (!Vars.Args.empty() || !Vars.Locals.empty())
return true;
if (!includeMinimalInlineScopes() &&
!ImportedEntities[LS->getScopeNode()].empty())
return true;
return false;
};
for (LexicalScope *LS : Scope->getChildren()) {
// If the lexical block doesn't have non-scope children, skip
// its emission and put its children directly to the parent scope.
if (needToEmitLexicalScope(LS))
constructScopeDIE(LS, ScopeDIE);
else
createAndAddScopeChildren(LS, ScopeDIE);
}
return ObjectPointer;
}
void DwarfCompileUnit::constructAbstractSubprogramScopeDIE(
LexicalScope *Scope) {
DIE *&AbsDef = getAbstractSPDies()[Scope->getScopeNode()];
if (AbsDef)
return;
auto *SP = cast<DISubprogram>(Scope->getScopeNode());
DIE *ContextDIE;
DwarfCompileUnit *ContextCU = this;
if (includeMinimalInlineScopes())
ContextDIE = &getUnitDie();
// Some of this is duplicated from DwarfUnit::getOrCreateSubprogramDIE, with
// the important distinction that the debug node is not associated with the
// DIE (since the debug node will be associated with the concrete DIE, if
// any). It could be refactored to some common utility function.
else if (auto *SPDecl = SP->getDeclaration()) {
ContextDIE = &getUnitDie();
getOrCreateSubprogramDIE(SPDecl);
} else {
ContextDIE = getOrCreateContextDIE(SP->getScope());
// The scope may be shared with a subprogram that has already been
// constructed in another CU, in which case we need to construct this
// subprogram in the same CU.
ContextCU = DD->lookupCU(ContextDIE->getUnitDie());
}
// Passing null as the associated node because the abstract definition
// shouldn't be found by lookup.
AbsDef = &ContextCU->createAndAddDIE(dwarf::DW_TAG_subprogram, *ContextDIE, nullptr);
ContextCU->applySubprogramAttributesToDefinition(SP, *AbsDef);
ContextCU->addSInt(*AbsDef, dwarf::DW_AT_inline,
DD->getDwarfVersion() <= 4 ? Optional<dwarf::Form>()
: dwarf::DW_FORM_implicit_const,
dwarf::DW_INL_inlined);
if (DIE *ObjectPointer = ContextCU->createAndAddScopeChildren(Scope, *AbsDef))
ContextCU->addDIEEntry(*AbsDef, dwarf::DW_AT_object_pointer, *ObjectPointer);
}
bool DwarfCompileUnit::useGNUAnalogForDwarf5Feature() const {
return DD->getDwarfVersion() == 4 && !DD->tuneForLLDB();
}
dwarf::Tag DwarfCompileUnit::getDwarf5OrGNUTag(dwarf::Tag Tag) const {
if (!useGNUAnalogForDwarf5Feature())
return Tag;
switch (Tag) {
case dwarf::DW_TAG_call_site:
return dwarf::DW_TAG_GNU_call_site;
case dwarf::DW_TAG_call_site_parameter:
return dwarf::DW_TAG_GNU_call_site_parameter;
default:
llvm_unreachable("DWARF5 tag with no GNU analog");
}
}
dwarf::Attribute
DwarfCompileUnit::getDwarf5OrGNUAttr(dwarf::Attribute Attr) const {
if (!useGNUAnalogForDwarf5Feature())
return Attr;
switch (Attr) {
case dwarf::DW_AT_call_all_calls:
return dwarf::DW_AT_GNU_all_call_sites;
case dwarf::DW_AT_call_target:
return dwarf::DW_AT_GNU_call_site_target;
case dwarf::DW_AT_call_origin:
return dwarf::DW_AT_abstract_origin;
case dwarf::DW_AT_call_return_pc:
return dwarf::DW_AT_low_pc;
case dwarf::DW_AT_call_value:
return dwarf::DW_AT_GNU_call_site_value;
case dwarf::DW_AT_call_tail_call:
return dwarf::DW_AT_GNU_tail_call;
default:
llvm_unreachable("DWARF5 attribute with no GNU analog");
}
}
dwarf::LocationAtom
DwarfCompileUnit::getDwarf5OrGNULocationAtom(dwarf::LocationAtom Loc) const {
if (!useGNUAnalogForDwarf5Feature())
return Loc;
switch (Loc) {
case dwarf::DW_OP_entry_value:
return dwarf::DW_OP_GNU_entry_value;
default:
llvm_unreachable("DWARF5 location atom with no GNU analog");
}
}
DIE &DwarfCompileUnit::constructCallSiteEntryDIE(DIE &ScopeDIE,
const DISubprogram *CalleeSP,
bool IsTail,
const MCSymbol *PCAddr,
const MCSymbol *CallAddr,
unsigned CallReg) {
// Insert a call site entry DIE within ScopeDIE.
DIE &CallSiteDIE = createAndAddDIE(getDwarf5OrGNUTag(dwarf::DW_TAG_call_site),
ScopeDIE, nullptr);
if (CallReg) {
// Indirect call.
addAddress(CallSiteDIE, getDwarf5OrGNUAttr(dwarf::DW_AT_call_target),
MachineLocation(CallReg));
} else {
DIE *CalleeDIE = getOrCreateSubprogramDIE(CalleeSP);
assert(CalleeDIE && "Could not create DIE for call site entry origin");
addDIEEntry(CallSiteDIE, getDwarf5OrGNUAttr(dwarf::DW_AT_call_origin),
*CalleeDIE);
}
if (IsTail) {
// Attach DW_AT_call_tail_call to tail calls for standards compliance.
addFlag(CallSiteDIE, getDwarf5OrGNUAttr(dwarf::DW_AT_call_tail_call));
// Attach the address of the branch instruction to allow the debugger to
// show where the tail call occurred. This attribute has no GNU analog.
//
// GDB works backwards from non-standard usage of DW_AT_low_pc (in DWARF4
// mode -- equivalently, in DWARF5 mode, DW_AT_call_return_pc) at tail-call
// site entries to figure out the PC of tail-calling branch instructions.
// This means it doesn't need the compiler to emit DW_AT_call_pc, so we
// don't emit it here.
//
// There's no need to tie non-GDB debuggers to this non-standardness, as it
// adds unnecessary complexity to the debugger. For non-GDB debuggers, emit
// the standard DW_AT_call_pc info.
if (!useGNUAnalogForDwarf5Feature())
addLabelAddress(CallSiteDIE, dwarf::DW_AT_call_pc, CallAddr);
}
// Attach the return PC to allow the debugger to disambiguate call paths
// from one function to another.
//
// The return PC is only really needed when the call /isn't/ a tail call, but
// GDB expects it in DWARF4 mode, even for tail calls (see the comment above
// the DW_AT_call_pc emission logic for an explanation).
if (!IsTail || useGNUAnalogForDwarf5Feature()) {
assert(PCAddr && "Missing return PC information for a call");
addLabelAddress(CallSiteDIE,
getDwarf5OrGNUAttr(dwarf::DW_AT_call_return_pc), PCAddr);
}
return CallSiteDIE;
}
void DwarfCompileUnit::constructCallSiteParmEntryDIEs(
DIE &CallSiteDIE, SmallVector<DbgCallSiteParam, 4> &Params) {
for (const auto &Param : Params) {
unsigned Register = Param.getRegister();
auto CallSiteDieParam =
DIE::get(DIEValueAllocator,
getDwarf5OrGNUTag(dwarf::DW_TAG_call_site_parameter));
insertDIE(CallSiteDieParam);
addAddress(*CallSiteDieParam, dwarf::DW_AT_location,
MachineLocation(Register));
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
DwarfExpr.setCallSiteParamValueFlag();
DwarfDebug::emitDebugLocValue(*Asm, nullptr, Param.getValue(), DwarfExpr);
addBlock(*CallSiteDieParam, getDwarf5OrGNUAttr(dwarf::DW_AT_call_value),
DwarfExpr.finalize());
CallSiteDIE.addChild(CallSiteDieParam);
}
}
DIE *DwarfCompileUnit::constructImportedEntityDIE(
const DIImportedEntity *Module) {
DIE *IMDie = DIE::get(DIEValueAllocator, (dwarf::Tag)Module->getTag());
insertDIE(Module, IMDie);
DIE *EntityDie;
auto *Entity = Module->getEntity();
if (auto *NS = dyn_cast<DINamespace>(Entity))
EntityDie = getOrCreateNameSpace(NS);
else if (auto *M = dyn_cast<DIModule>(Entity))
EntityDie = getOrCreateModule(M);
else if (auto *SP = dyn_cast<DISubprogram>(Entity))
EntityDie = getOrCreateSubprogramDIE(SP);
else if (auto *T = dyn_cast<DIType>(Entity))
EntityDie = getOrCreateTypeDIE(T);
else if (auto *GV = dyn_cast<DIGlobalVariable>(Entity))
EntityDie = getOrCreateGlobalVariableDIE(GV, {});
else
EntityDie = getDIE(Entity);
assert(EntityDie);
addSourceLine(*IMDie, Module->getLine(), Module->getFile());
addDIEEntry(*IMDie, dwarf::DW_AT_import, *EntityDie);
StringRef Name = Module->getName();
if (!Name.empty())
addString(*IMDie, dwarf::DW_AT_name, Name);
// This is for imported module with renamed entities (such as variables and
// subprograms).
DINodeArray Elements = Module->getElements();
for (const auto *Element : Elements) {
if (!Element)
continue;
IMDie->addChild(
constructImportedEntityDIE(cast<DIImportedEntity>(Element)));
}
return IMDie;
}
void DwarfCompileUnit::finishSubprogramDefinition(const DISubprogram *SP) {
DIE *D = getDIE(SP);
if (DIE *AbsSPDIE = getAbstractSPDies().lookup(SP)) {
if (D)
// If this subprogram has an abstract definition, reference that
addDIEEntry(*D, dwarf::DW_AT_abstract_origin, *AbsSPDIE);
} else {
assert(D || includeMinimalInlineScopes());
if (D)
// And attach the attributes
applySubprogramAttributesToDefinition(SP, *D);
}
}
void DwarfCompileUnit::finishEntityDefinition(const DbgEntity *Entity) {
DbgEntity *AbsEntity = getExistingAbstractEntity(Entity->getEntity());
auto *Die = Entity->getDIE();
/// Label may be used to generate DW_AT_low_pc, so put it outside
/// if/else block.
const DbgLabel *Label = nullptr;
if (AbsEntity && AbsEntity->getDIE()) {
addDIEEntry(*Die, dwarf::DW_AT_abstract_origin, *AbsEntity->getDIE());
Label = dyn_cast<const DbgLabel>(Entity);
} else {
if (const DbgVariable *Var = dyn_cast<const DbgVariable>(Entity))
applyVariableAttributes(*Var, *Die);
else if ((Label = dyn_cast<const DbgLabel>(Entity)))
applyLabelAttributes(*Label, *Die);
else
llvm_unreachable("DbgEntity must be DbgVariable or DbgLabel.");
}
if (Label)
if (const auto *Sym = Label->getSymbol())
addLabelAddress(*Die, dwarf::DW_AT_low_pc, Sym);
}
DbgEntity *DwarfCompileUnit::getExistingAbstractEntity(const DINode *Node) {
auto &AbstractEntities = getAbstractEntities();
auto I = AbstractEntities.find(Node);
if (I != AbstractEntities.end())
return I->second.get();
return nullptr;
}
void DwarfCompileUnit::createAbstractEntity(const DINode *Node,
LexicalScope *Scope) {
assert(Scope && Scope->isAbstractScope());
auto &Entity = getAbstractEntities()[Node];
if (isa<const DILocalVariable>(Node)) {
Entity = std::make_unique<DbgVariable>(
cast<const DILocalVariable>(Node), nullptr /* IA */);;
DU->addScopeVariable(Scope, cast<DbgVariable>(Entity.get()));
} else if (isa<const DILabel>(Node)) {
Entity = std::make_unique<DbgLabel>(
cast<const DILabel>(Node), nullptr /* IA */);
DU->addScopeLabel(Scope, cast<DbgLabel>(Entity.get()));
}
}
void DwarfCompileUnit::emitHeader(bool UseOffsets) {
// Don't bother labeling the .dwo unit, as its offset isn't used.
if (!Skeleton && !DD->useSectionsAsReferences()) {
LabelBegin = Asm->createTempSymbol("cu_begin");
Asm->OutStreamer->emitLabel(LabelBegin);
}
dwarf::UnitType UT = Skeleton ? dwarf::DW_UT_split_compile
: DD->useSplitDwarf() ? dwarf::DW_UT_skeleton
: dwarf::DW_UT_compile;
DwarfUnit::emitCommonHeader(UseOffsets, UT);
if (DD->getDwarfVersion() >= 5 && UT != dwarf::DW_UT_compile)
Asm->emitInt64(getDWOId());
}
bool DwarfCompileUnit::hasDwarfPubSections() const {
switch (CUNode->getNameTableKind()) {
case DICompileUnit::DebugNameTableKind::None:
return false;
// Opting in to GNU Pubnames/types overrides the default to ensure these are
// generated for things like Gold's gdb_index generation.
case DICompileUnit::DebugNameTableKind::GNU:
return true;
case DICompileUnit::DebugNameTableKind::Default:
return DD->tuneForGDB() && !includeMinimalInlineScopes() &&
!CUNode->isDebugDirectivesOnly() &&
DD->getAccelTableKind() != AccelTableKind::Apple &&
DD->getDwarfVersion() < 5;
}
llvm_unreachable("Unhandled DICompileUnit::DebugNameTableKind enum");
}
/// addGlobalName - Add a new global name to the compile unit.
void DwarfCompileUnit::addGlobalName(StringRef Name, const DIE &Die,
const DIScope *Context) {
if (!hasDwarfPubSections())
return;
std::string FullName = getParentContextString(Context) + Name.str();
GlobalNames[FullName] = &Die;
}
void DwarfCompileUnit::addGlobalNameForTypeUnit(StringRef Name,
const DIScope *Context) {
if (!hasDwarfPubSections())
return;
std::string FullName = getParentContextString(Context) + Name.str();
// Insert, allowing the entry to remain as-is if it's already present
// This way the CU-level type DIE is preferred over the "can't describe this
// type as a unit offset because it's not really in the CU at all, it's only
// in a type unit"
GlobalNames.insert(std::make_pair(std::move(FullName), &getUnitDie()));
}
/// Add a new global type to the unit.
void DwarfCompileUnit::addGlobalType(const DIType *Ty, const DIE &Die,
const DIScope *Context) {
if (!hasDwarfPubSections())
return;
std::string FullName = getParentContextString(Context) + Ty->getName().str();
GlobalTypes[FullName] = &Die;
}
void DwarfCompileUnit::addGlobalTypeUnitType(const DIType *Ty,
const DIScope *Context) {
if (!hasDwarfPubSections())
return;
std::string FullName = getParentContextString(Context) + Ty->getName().str();
// Insert, allowing the entry to remain as-is if it's already present
// This way the CU-level type DIE is preferred over the "can't describe this
// type as a unit offset because it's not really in the CU at all, it's only
// in a type unit"
GlobalTypes.insert(std::make_pair(std::move(FullName), &getUnitDie()));
}
void DwarfCompileUnit::addVariableAddress(const DbgVariable &DV, DIE &Die,
MachineLocation Location) {
if (DV.hasComplexAddress())
addComplexAddress(DV, Die, dwarf::DW_AT_location, Location);
else
addAddress(Die, dwarf::DW_AT_location, Location);
}
/// Add an address attribute to a die based on the location provided.
void DwarfCompileUnit::addAddress(DIE &Die, dwarf::Attribute Attribute,
const MachineLocation &Location) {
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
if (Location.isIndirect())
DwarfExpr.setMemoryLocationKind();
DIExpressionCursor Cursor({});
const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo();
if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
return;
DwarfExpr.addExpression(std::move(Cursor));
// Now attach the location information to the DIE.
addBlock(Die, Attribute, DwarfExpr.finalize());
if (DwarfExpr.TagOffset)
addUInt(Die, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1,
*DwarfExpr.TagOffset);
}
/// Start with the address based on the location provided, and generate the
/// DWARF information necessary to find the actual variable given the extra
/// address information encoded in the DbgVariable, starting from the starting
/// location. Add the DWARF information to the die.
void DwarfCompileUnit::addComplexAddress(const DbgVariable &DV, DIE &Die,
dwarf::Attribute Attribute,
const MachineLocation &Location) {
Reapply "AsmPrinter: Change DIEValue to be stored by value" This reverts commit r238350, effectively reapplying r238349 after fixing (all?) the problems, all somehow related to how I was using `AlignedArrayCharUnion<>` inside `DIEValue`: - MSVC can only handle `sizeof()` on types, not values. Change the assert. - GCC doesn't know the `is_trivially_copyable` type trait. Instead of asserting it, add destructors. - Call placement new even when constructing POD (i.e., the pointers). - Instead of copying the char buffer, copy the casted classes. I've left in a couple of `static_assert`s that I think both MSVC and GCC know how to handle. If the bots disagree with me, I'll remove them. - Check that the constructed type is either standard layout or a pointer. This protects against a programming error: we really want the "small" `DIEValue`s to be small and simple, so don't accidentally change them not to be. - Similarly, check that the size of the buffer is no bigger than a `uint64_t` or a pointer. (I thought checking against `sizeof(uint64_t)` would be good enough, but Chandler suggested that pointers might sometimes be bigger than that in the context of sanitizers.) I've also committed r238359 in the meantime, which introduces a DIEValue.def to simplify dispatching between the various types (thanks to a review comment by David Blaikie). Without that, this commit would be almost unintelligible. Here's the original commit message: -- Change `DIEValue` to be stored/passed/etc. by value, instead of reference. It's now a discriminated union, with a `Val` field storing the actual type. The classes that used to inherit from `DIEValue` no longer do. There are two categories of these: - Small values fit in a single pointer and are stored by value. - Large values require auxiliary storage, and are stored by reference. The only non-mechanical change is to tools/dsymutil/DwarfLinker.cpp. It was relying on `DIEInteger`s being passed around by reference, so I replaced that assumption with a `PatchLocation` type that stores a safe reference to where the `DIEInteger` lives instead. This commit causes a temporary regression in memory usage, since I've left merging `DIEAbbrevData` into `DIEValue` for a follow-up commit. I measured an increase from 845 MB to 879 MB, around 3.9%. The follow-up drops it lower than the starting point, and I've only recently brought the memory this low anyway, so I'm committing these changes separately to keep them incremental. (I also considered swapping the commits, but the other one first would cause a lot more code churn.) (I'm looking at `llc` memory usage on `verify-uselistorder.lto.opt.bc`; see r236629 for details.) -- llvm-svn: 238362
2015-05-28 06:14:58 +08:00
DIELoc *Loc = new (DIEValueAllocator) DIELoc;
DIEDwarfExpression DwarfExpr(*Asm, *this, *Loc);
const DIExpression *DIExpr = DV.getSingleExpression();
DwarfExpr.addFragmentOffset(DIExpr);
DwarfExpr.setLocation(Location, DIExpr);
DIExpressionCursor Cursor(DIExpr);
if (DIExpr->isEntryValue())
[DebugInfo] Add a DW_OP_LLVM_entry_value operation Summary: Internally in LLVM's metadata we use DW_OP_entry_value operations with the same semantics as DWARF; that is, its operand specifies the number of bytes that the entry value covers. At the time of emitting entry values we don't know the emitted size of the DWARF expression that the entry value will cover. Currently the size is hardcoded to 1 in DIExpression, and other values causes the verifier to fail. As the size is 1, that effectively means that we can only have valid entry values for registers that can be encoded in one byte, which are the registers with DWARF numbers 0 to 31 (as they can be encoded as single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump will print an operation "correctly", even if the byte size is less than that, which may make it seem that we emit correct DWARF for registers with DWARF numbers > 31. If you instead use readelf for such cases, it will interpret the number of specified bytes as a DWARF expression. This seems like a limitation in llvm-dwarfdump. As suggested in D66746, a way forward would be to add an internal variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand instead specifies the number of operations that the entry value covers, and we then translate that into the byte size at the time of emission. In this patch that internal operation is added. This patch keeps the limitation that a entry value can only be applied to simple register locations, but it will fix the issue with the size operand being incorrect for DWARF numbers > 31. Reviewers: aprantl, vsk, djtodoro, NikolaPrica Reviewed By: aprantl Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits Tags: #debug-info, #llvm Differential Revision: https://reviews.llvm.org/D67492 llvm-svn: 374881
2019-10-15 19:31:21 +08:00
DwarfExpr.beginEntryValueExpression(Cursor);
const TargetRegisterInfo &TRI = *Asm->MF->getSubtarget().getRegisterInfo();
if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
return;
DwarfExpr.addExpression(std::move(Cursor));
// Now attach the location information to the DIE.
addBlock(Die, Attribute, DwarfExpr.finalize());
if (DwarfExpr.TagOffset)
addUInt(Die, dwarf::DW_AT_LLVM_tag_offset, dwarf::DW_FORM_data1,
*DwarfExpr.TagOffset);
}
/// Add a Dwarf loclistptr attribute data and value.
void DwarfCompileUnit::addLocationList(DIE &Die, dwarf::Attribute Attribute,
unsigned Index) {
dwarf::Form Form = (DD->getDwarfVersion() >= 5)
? dwarf::DW_FORM_loclistx
: DD->getDwarfSectionOffsetForm();
addAttribute(Die, Attribute, Form, DIELocList(Index));
}
void DwarfCompileUnit::applyVariableAttributes(const DbgVariable &Var,
DIE &VariableDie) {
StringRef Name = Var.getName();
if (!Name.empty())
addString(VariableDie, dwarf::DW_AT_name, Name);
const auto *DIVar = Var.getVariable();
if (DIVar) {
if (uint32_t AlignInBytes = DIVar->getAlignInBytes())
addUInt(VariableDie, dwarf::DW_AT_alignment, dwarf::DW_FORM_udata,
AlignInBytes);
addAnnotation(VariableDie, DIVar->getAnnotations());
}
addSourceLine(VariableDie, DIVar);
addType(VariableDie, Var.getType());
if (Var.isArtificial())
addFlag(VariableDie, dwarf::DW_AT_artificial);
}
void DwarfCompileUnit::applyLabelAttributes(const DbgLabel &Label,
DIE &LabelDie) {
StringRef Name = Label.getName();
if (!Name.empty())
addString(LabelDie, dwarf::DW_AT_name, Name);
const auto *DILabel = Label.getLabel();
addSourceLine(LabelDie, DILabel);
}
/// Add a Dwarf expression attribute data and value.
void DwarfCompileUnit::addExpr(DIELoc &Die, dwarf::Form Form,
const MCExpr *Expr) {
addAttribute(Die, (dwarf::Attribute)0, Form, DIEExpr(Expr));
}
void DwarfCompileUnit::applySubprogramAttributesToDefinition(
const DISubprogram *SP, DIE &SPDie) {
auto *SPDecl = SP->getDeclaration();
auto *Context = SPDecl ? SPDecl->getScope() : SP->getScope();
applySubprogramAttributes(SP, SPDie, includeMinimalInlineScopes());
addGlobalName(SP->getName(), SPDie, Context);
}
bool DwarfCompileUnit::isDwoUnit() const {
return DD->useSplitDwarf() && Skeleton;
}
void DwarfCompileUnit::finishNonUnitTypeDIE(DIE& D, const DICompositeType *CTy) {
constructTypeDIE(D, CTy);
}
bool DwarfCompileUnit::includeMinimalInlineScopes() const {
return getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly ||
(DD->useSplitDwarf() && !Skeleton);
}
void DwarfCompileUnit::addAddrTableBase() {
const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
MCSymbol *Label = DD->getAddressPool().getLabel();
addSectionLabel(getUnitDie(),
DD->getDwarfVersion() >= 5 ? dwarf::DW_AT_addr_base
: dwarf::DW_AT_GNU_addr_base,
Label, TLOF.getDwarfAddrSection()->getBeginSymbol());
}
void DwarfCompileUnit::addBaseTypeRef(DIEValueList &Die, int64_t Idx) {
addAttribute(Die, (dwarf::Attribute)0, dwarf::DW_FORM_udata,
new (DIEValueAllocator) DIEBaseTypeRef(this, Idx));
}
void DwarfCompileUnit::createBaseTypeDIEs() {
// Insert the base_type DIEs directly after the CU so that their offsets will
// fit in the fixed size ULEB128 used inside the location expressions.
// Maintain order by iterating backwards and inserting to the front of CU
// child list.
for (auto &Btr : reverse(ExprRefedBaseTypes)) {
DIE &Die = getUnitDie().addChildFront(
DIE::get(DIEValueAllocator, dwarf::DW_TAG_base_type));
SmallString<32> Str;
addString(Die, dwarf::DW_AT_name,
Twine(dwarf::AttributeEncodingString(Btr.Encoding) +
"_" + Twine(Btr.BitSize)).toStringRef(Str));
addUInt(Die, dwarf::DW_AT_encoding, dwarf::DW_FORM_data1, Btr.Encoding);
// Round up to smallest number of bytes that contains this number of bits.
addUInt(Die, dwarf::DW_AT_byte_size, None, divideCeil(Btr.BitSize, 8));
Btr.Die = &Die;
}
}