llvm-project/libcxx/include/__functional_base

654 lines
17 KiB
Plaintext
Raw Normal View History

2010-05-12 03:42:16 +08:00
// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
2010-05-12 03:42:16 +08:00
//
2010-11-17 06:09:02 +08:00
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
2010-05-12 03:42:16 +08:00
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP_FUNCTIONAL_BASE
#define _LIBCPP_FUNCTIONAL_BASE
#include <__config>
#include <type_traits>
#include <typeinfo>
#include <exception>
#include <new>
#include <utility>
2010-05-12 03:42:16 +08:00
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
2010-05-12 03:42:16 +08:00
#pragma GCC system_header
#endif
2010-05-12 03:42:16 +08:00
_LIBCPP_BEGIN_NAMESPACE_STD
template <class _Arg1, class _Arg2, class _Result>
struct _LIBCPP_TEMPLATE_VIS binary_function
2010-05-12 03:42:16 +08:00
{
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
};
template <class _Tp>
struct __has_result_type
{
private:
struct __two {char __lx; char __lxx;};
2010-05-12 03:42:16 +08:00
template <class _Up> static __two __test(...);
template <class _Up> static char __test(typename _Up::result_type* = 0);
public:
static const bool value = sizeof(__test<_Tp>(0)) == 1;
};
#if _LIBCPP_STD_VER > 11
template <class _Tp = void>
#else
template <class _Tp>
#endif
struct _LIBCPP_TEMPLATE_VIS less : binary_function<_Tp, _Tp, bool>
{
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
bool operator()(const _Tp& __x, const _Tp& __y) const
{return __x < __y;}
};
#if _LIBCPP_STD_VER > 11
template <>
struct _LIBCPP_TEMPLATE_VIS less<void>
{
template <class _T1, class _T2>
_LIBCPP_CONSTEXPR_AFTER_CXX11 _LIBCPP_INLINE_VISIBILITY
auto operator()(_T1&& __t, _T2&& __u) const
_NOEXCEPT_(noexcept(_VSTD::forward<_T1>(__t) < _VSTD::forward<_T2>(__u)))
-> decltype (_VSTD::forward<_T1>(__t) < _VSTD::forward<_T2>(__u))
{ return _VSTD::forward<_T1>(__t) < _VSTD::forward<_T2>(__u); }
typedef void is_transparent;
};
#endif
2010-05-12 03:42:16 +08:00
// __weak_result_type
template <class _Tp>
struct __derives_from_unary_function
{
private:
struct __two {char __lx; char __lxx;};
2010-05-12 03:42:16 +08:00
static __two __test(...);
template <class _Ap, class _Rp>
static unary_function<_Ap, _Rp>
__test(const volatile unary_function<_Ap, _Rp>*);
2010-05-12 03:42:16 +08:00
public:
static const bool value = !is_same<decltype(__test((_Tp*)0)), __two>::value;
typedef decltype(__test((_Tp*)0)) type;
};
template <class _Tp>
struct __derives_from_binary_function
{
private:
struct __two {char __lx; char __lxx;};
2010-05-12 03:42:16 +08:00
static __two __test(...);
template <class _A1, class _A2, class _Rp>
static binary_function<_A1, _A2, _Rp>
__test(const volatile binary_function<_A1, _A2, _Rp>*);
2010-05-12 03:42:16 +08:00
public:
static const bool value = !is_same<decltype(__test((_Tp*)0)), __two>::value;
typedef decltype(__test((_Tp*)0)) type;
};
template <class _Tp, bool = __derives_from_unary_function<_Tp>::value>
struct __maybe_derive_from_unary_function // bool is true
: public __derives_from_unary_function<_Tp>::type
{
};
template <class _Tp>
struct __maybe_derive_from_unary_function<_Tp, false>
{
};
template <class _Tp, bool = __derives_from_binary_function<_Tp>::value>
struct __maybe_derive_from_binary_function // bool is true
: public __derives_from_binary_function<_Tp>::type
{
};
template <class _Tp>
struct __maybe_derive_from_binary_function<_Tp, false>
{
};
template <class _Tp, bool = __has_result_type<_Tp>::value>
struct __weak_result_type_imp // bool is true
: public __maybe_derive_from_unary_function<_Tp>,
public __maybe_derive_from_binary_function<_Tp>
{
typedef typename _Tp::result_type result_type;
};
template <class _Tp>
struct __weak_result_type_imp<_Tp, false>
: public __maybe_derive_from_unary_function<_Tp>,
public __maybe_derive_from_binary_function<_Tp>
{
};
template <class _Tp>
struct __weak_result_type
: public __weak_result_type_imp<_Tp>
{
};
// 0 argument case
template <class _Rp>
struct __weak_result_type<_Rp ()>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Rp>
struct __weak_result_type<_Rp (&)()>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Rp>
struct __weak_result_type<_Rp (*)()>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
// 1 argument case
template <class _Rp, class _A1>
struct __weak_result_type<_Rp (_A1)>
: public unary_function<_A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _A1>
struct __weak_result_type<_Rp (&)(_A1)>
: public unary_function<_A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _A1>
struct __weak_result_type<_Rp (*)(_A1)>
: public unary_function<_A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _Cp>
struct __weak_result_type<_Rp (_Cp::*)()>
: public unary_function<_Cp*, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _Cp>
struct __weak_result_type<_Rp (_Cp::*)() const>
: public unary_function<const _Cp*, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _Cp>
struct __weak_result_type<_Rp (_Cp::*)() volatile>
: public unary_function<volatile _Cp*, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _Cp>
struct __weak_result_type<_Rp (_Cp::*)() const volatile>
: public unary_function<const volatile _Cp*, _Rp>
2010-05-12 03:42:16 +08:00
{
};
// 2 argument case
template <class _Rp, class _A1, class _A2>
struct __weak_result_type<_Rp (_A1, _A2)>
: public binary_function<_A1, _A2, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _A1, class _A2>
struct __weak_result_type<_Rp (*)(_A1, _A2)>
: public binary_function<_A1, _A2, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _A1, class _A2>
struct __weak_result_type<_Rp (&)(_A1, _A2)>
: public binary_function<_A1, _A2, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _Cp, class _A1>
struct __weak_result_type<_Rp (_Cp::*)(_A1)>
: public binary_function<_Cp*, _A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _Cp, class _A1>
struct __weak_result_type<_Rp (_Cp::*)(_A1) const>
: public binary_function<const _Cp*, _A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _Cp, class _A1>
struct __weak_result_type<_Rp (_Cp::*)(_A1) volatile>
: public binary_function<volatile _Cp*, _A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
template <class _Rp, class _Cp, class _A1>
struct __weak_result_type<_Rp (_Cp::*)(_A1) const volatile>
: public binary_function<const volatile _Cp*, _A1, _Rp>
2010-05-12 03:42:16 +08:00
{
};
#ifndef _LIBCPP_CXX03_LANG
2010-05-12 03:42:16 +08:00
// 3 or more arguments
template <class _Rp, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_Rp (_A1, _A2, _A3, _A4...)>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Rp, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_Rp (&)(_A1, _A2, _A3, _A4...)>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Rp, class _A1, class _A2, class _A3, class ..._A4>
struct __weak_result_type<_Rp (*)(_A1, _A2, _A3, _A4...)>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Rp, class _Cp, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...)>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Rp, class _Cp, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...) const>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Rp, class _Cp, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...) volatile>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Rp, class _Cp, class _A1, class _A2, class ..._A3>
struct __weak_result_type<_Rp (_Cp::*)(_A1, _A2, _A3...) const volatile>
2010-05-12 03:42:16 +08:00
{
typedef _Rp result_type;
2010-05-12 03:42:16 +08:00
};
template <class _Tp, class ..._Args>
struct __invoke_return
{
typedef decltype(__invoke(_VSTD::declval<_Tp>(), _VSTD::declval<_Args>()...)) type;
2010-05-12 03:42:16 +08:00
};
#else // defined(_LIBCPP_CXX03_LANG)
#include <__functional_base_03>
#endif // !defined(_LIBCPP_CXX03_LANG)
template <class _Ret>
struct __invoke_void_return_wrapper
{
#ifndef _LIBCPP_CXX03_LANG
template <class ..._Args>
static _Ret __call(_Args&&... __args) {
return __invoke(_VSTD::forward<_Args>(__args)...);
}
#else
template <class _Fn>
static _Ret __call(_Fn __f) {
return __invoke(__f);
}
template <class _Fn, class _A0>
static _Ret __call(_Fn __f, _A0& __a0) {
return __invoke(__f, __a0);
}
template <class _Fn, class _A0, class _A1>
static _Ret __call(_Fn __f, _A0& __a0, _A1& __a1) {
return __invoke(__f, __a0, __a1);
}
template <class _Fn, class _A0, class _A1, class _A2>
static _Ret __call(_Fn __f, _A0& __a0, _A1& __a1, _A2& __a2){
return __invoke(__f, __a0, __a1, __a2);
}
#endif
};
template <>
struct __invoke_void_return_wrapper<void>
{
#ifndef _LIBCPP_CXX03_LANG
template <class ..._Args>
static void __call(_Args&&... __args) {
__invoke(_VSTD::forward<_Args>(__args)...);
}
#else
template <class _Fn>
static void __call(_Fn __f) {
__invoke(__f);
}
template <class _Fn, class _A0>
static void __call(_Fn __f, _A0& __a0) {
__invoke(__f, __a0);
}
template <class _Fn, class _A0, class _A1>
static void __call(_Fn __f, _A0& __a0, _A1& __a1) {
__invoke(__f, __a0, __a1);
}
template <class _Fn, class _A0, class _A1, class _A2>
static void __call(_Fn __f, _A0& __a0, _A1& __a1, _A2& __a2) {
__invoke(__f, __a0, __a1, __a2);
}
#endif
};
2010-05-12 03:42:16 +08:00
template <class _Tp>
class _LIBCPP_TEMPLATE_VIS reference_wrapper
2010-05-12 03:42:16 +08:00
: public __weak_result_type<_Tp>
{
public:
// types
typedef _Tp type;
private:
type* __f_;
public:
// construct/copy/destroy
_LIBCPP_INLINE_VISIBILITY reference_wrapper(type& __f) _NOEXCEPT
: __f_(_VSTD::addressof(__f)) {}
#ifndef _LIBCPP_CXX03_LANG
2010-05-12 03:42:16 +08:00
private: reference_wrapper(type&&); public: // = delete; // do not bind to temps
#endif
// access
_LIBCPP_INLINE_VISIBILITY operator type& () const _NOEXCEPT {return *__f_;}
_LIBCPP_INLINE_VISIBILITY type& get() const _NOEXCEPT {return *__f_;}
2010-05-12 03:42:16 +08:00
#ifndef _LIBCPP_CXX03_LANG
2010-05-12 03:42:16 +08:00
// invoke
template <class... _ArgTypes>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_of<type&, _ArgTypes...>::type
operator() (_ArgTypes&&... __args) const {
return __invoke(get(), _VSTD::forward<_ArgTypes>(__args)...);
}
#else
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return<type>::type
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
operator() () const {
return __invoke(get());
}
template <class _A0>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return0<type, _A0>::type
operator() (_A0& __a0) const {
return __invoke(get(), __a0);
}
template <class _A0>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return0<type, _A0 const>::type
operator() (_A0 const& __a0) const {
return __invoke(get(), __a0);
}
template <class _A0, class _A1>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0, _A1>::type
operator() (_A0& __a0, _A1& __a1) const {
return __invoke(get(), __a0, __a1);
}
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0 const, _A1>::type
operator() (_A0 const& __a0, _A1& __a1) const {
return __invoke(get(), __a0, __a1);
}
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0, _A1 const>::type
operator() (_A0& __a0, _A1 const& __a1) const {
return __invoke(get(), __a0, __a1);
}
template <class _A0, class _A1>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return1<type, _A0 const, _A1 const>::type
operator() (_A0 const& __a0, _A1 const& __a1) const {
return __invoke(get(), __a0, __a1);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1, _A2>::type
operator() (_A0& __a0, _A1& __a1, _A2& __a2) const {
return __invoke(get(), __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
[libcxx] Rewrite C++03 __invoke. Summary: This patch rewrites the C++03 `__invoke` and related meta-programming. There are a number of major changes. `__invoke` in C++03 now has a fallback overload for when the invoke expression is ill-formed (similar to C++11). This means that the `__invoke_return` traits will return `__nat` when `__invoke(...)` is ill formed. This would previously cause a compile error. Bullets 1-4 of `__invoke` have been rewritten. In the old version `__invoke` had 32 overloads for bullets 1 and 2, one for each possible cv-qualified function signature with arities 0-3. 64 overloads would be needed to support member functions with varargs. Currently these overloads were fundamentally broken. An example overload looked like: ``` template <class Rp, class Tp, class T1, class A0> Rp __invoke(Rp (Tp::*pm)(A0) const, T1&, A0&) ``` Because `A0` appeared in two different deducible contexts it would have to deduce to be an exact match or the overload would be rejected. This is made even worse because `A0` appears without a reference qualifier in the member function signature and with a reference qualifier as an `__invoke` parameter. This means that only member functions that took all of their arguments by value could be matched. One possible fix would be to make the second occurrence of `A0` appear in a non-deducible context. This way any type convertible to `A0` could be passed as the first parameter. The benefit of this approach is that the signature of the member function enforces the arity and types taken by the `__invoke` signature it generates. However nothing in the `INVOKE` specification requires this behavior. My solution is to use a `__invoke_enable_if<PM_Type, Tp>` metafunction to selectively enable the `__invoke` overloads for bullets 1, 2, 3 and 4. It uses `__member_function_traits` to inspect and extract the return type and class type of the pointer to member. Using `__member_function_traits` to inspect `PM_Type` also allows us to reduce the number of `__invoke` overloads from 32 to 8 and add varargs support at the same time. Because `__invoke_enable_if` knows the exact return type of `__invoke` for bullets 1-4 we no longer need to use `decltype(__invoke(...))` to compute the return type in the `__invoke_return*` traits. This will reduce the problems caused by `#define decltype(X) __typeof__(X)` in C++03. Tests for this change have already been committed. All tests in `test/std/utilities/function.objects` now pass in C++03, previously there were 20 failures. Reviewers: K-ballo, howard.hinnant, mclow.lists Subscribers: cfe-commits Differential Revision: http://reviews.llvm.org/D11553 llvm-svn: 246068
2015-08-27 04:15:02 +08:00
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1, _A2>::type
operator() (_A0 const& __a0, _A1& __a1, _A2& __a2) const {
return __invoke(get(), __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1 const, _A2>::type
operator() (_A0& __a0, _A1 const& __a1, _A2& __a2) const {
return __invoke(get(), __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1, _A2 const>::type
operator() (_A0& __a0, _A1& __a1, _A2 const& __a2) const {
return __invoke(get(), __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1 const, _A2>::type
operator() (_A0 const& __a0, _A1 const& __a1, _A2& __a2) const {
return __invoke(get(), __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1, _A2 const>::type
operator() (_A0 const& __a0, _A1& __a1, _A2 const& __a2) const {
return __invoke(get(), __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0, _A1 const, _A2 const>::type
operator() (_A0& __a0, _A1 const& __a1, _A2 const& __a2) const {
return __invoke(get(), __a0, __a1, __a2);
}
template <class _A0, class _A1, class _A2>
_LIBCPP_INLINE_VISIBILITY
typename __invoke_return2<type, _A0 const, _A1 const, _A2 const>::type
operator() (_A0 const& __a0, _A1 const& __a1, _A2 const& __a2) const {
return __invoke(get(), __a0, __a1, __a2);
}
#endif // _LIBCPP_CXX03_LANG
2010-05-12 03:42:16 +08:00
};
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<_Tp>
ref(_Tp& __t) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return reference_wrapper<_Tp>(__t);
}
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<_Tp>
ref(reference_wrapper<_Tp> __t) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return ref(__t.get());
}
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<const _Tp>
cref(const _Tp& __t) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return reference_wrapper<const _Tp>(__t);
}
template <class _Tp>
inline _LIBCPP_INLINE_VISIBILITY
reference_wrapper<const _Tp>
cref(reference_wrapper<_Tp> __t) _NOEXCEPT
2010-05-12 03:42:16 +08:00
{
return cref(__t.get());
}
#ifndef _LIBCPP_CXX03_LANG
template <class _Tp> void ref(const _Tp&&) = delete;
template <class _Tp> void cref(const _Tp&&) = delete;
#endif
2010-05-12 03:42:16 +08:00
#if _LIBCPP_STD_VER > 11
template <class _Tp, class, class = void>
struct __is_transparent : false_type {};
template <class _Tp, class _Up>
struct __is_transparent<_Tp, _Up,
typename __void_t<typename _Tp::is_transparent>::type>
: true_type {};
#endif
// allocator_arg_t
struct _LIBCPP_TEMPLATE_VIS allocator_arg_t { };
#if defined(_LIBCPP_CXX03_LANG) || defined(_LIBCPP_BUILDING_LIBRARY)
extern const allocator_arg_t allocator_arg;
#else
/* _LIBCPP_INLINE_VAR */ constexpr allocator_arg_t allocator_arg = allocator_arg_t();
#endif
// uses_allocator
template <class _Tp>
struct __has_allocator_type
{
private:
struct __two {char __lx; char __lxx;};
template <class _Up> static __two __test(...);
template <class _Up> static char __test(typename _Up::allocator_type* = 0);
public:
static const bool value = sizeof(__test<_Tp>(0)) == 1;
};
template <class _Tp, class _Alloc, bool = __has_allocator_type<_Tp>::value>
struct __uses_allocator
: public integral_constant<bool,
is_convertible<_Alloc, typename _Tp::allocator_type>::value>
{
};
template <class _Tp, class _Alloc>
struct __uses_allocator<_Tp, _Alloc, false>
: public false_type
{
};
template <class _Tp, class _Alloc>
struct _LIBCPP_TEMPLATE_VIS uses_allocator
: public __uses_allocator<_Tp, _Alloc>
{
};
#if _LIBCPP_STD_VER > 14
template <class _Tp, class _Alloc>
_LIBCPP_INLINE_VAR constexpr size_t uses_allocator_v = uses_allocator<_Tp, _Alloc>::value;
#endif
#ifndef _LIBCPP_CXX03_LANG
// allocator construction
template <class _Tp, class _Alloc, class ..._Args>
struct __uses_alloc_ctor_imp
{
typedef typename __uncvref<_Alloc>::type _RawAlloc;
static const bool __ua = uses_allocator<_Tp, _RawAlloc>::value;
static const bool __ic =
is_constructible<_Tp, allocator_arg_t, _Alloc, _Args...>::value;
static const int value = __ua ? 2 - __ic : 0;
};
template <class _Tp, class _Alloc, class ..._Args>
struct __uses_alloc_ctor
: integral_constant<int, __uses_alloc_ctor_imp<_Tp, _Alloc, _Args...>::value>
{};
template <class _Tp, class _Allocator, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
void __user_alloc_construct_impl (integral_constant<int, 0>, _Tp *__storage, const _Allocator &, _Args &&... __args )
{
new (__storage) _Tp (_VSTD::forward<_Args>(__args)...);
}
// FIXME: This should have a version which takes a non-const alloc.
template <class _Tp, class _Allocator, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
void __user_alloc_construct_impl (integral_constant<int, 1>, _Tp *__storage, const _Allocator &__a, _Args &&... __args )
{
new (__storage) _Tp (allocator_arg, __a, _VSTD::forward<_Args>(__args)...);
}
// FIXME: This should have a version which takes a non-const alloc.
template <class _Tp, class _Allocator, class... _Args>
inline _LIBCPP_INLINE_VISIBILITY
void __user_alloc_construct_impl (integral_constant<int, 2>, _Tp *__storage, const _Allocator &__a, _Args &&... __args )
{
new (__storage) _Tp (_VSTD::forward<_Args>(__args)..., __a);
}
#endif // _LIBCPP_CXX03_LANG
2010-05-12 03:42:16 +08:00
_LIBCPP_END_NAMESPACE_STD
#endif // _LIBCPP_FUNCTIONAL_BASE