llvm-project/llvm/utils/TableGen/CodeGenInstruction.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

779 lines
30 KiB
C++
Raw Normal View History

//===- CodeGenInstruction.cpp - CodeGen Instruction Class Wrapper ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenInstruction class.
//
//===----------------------------------------------------------------------===//
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <set>
using namespace llvm;
//===----------------------------------------------------------------------===//
// CGIOperandList Implementation
//===----------------------------------------------------------------------===//
CGIOperandList::CGIOperandList(Record *R) : TheDef(R) {
isPredicable = false;
hasOptionalDef = false;
isVariadic = false;
2011-01-26 10:03:37 +08:00
DagInit *OutDI = R->getValueAsDag("OutOperandList");
2011-01-26 10:03:37 +08:00
if (DefInit *Init = dyn_cast<DefInit>(OutDI->getOperator())) {
if (Init->getDef()->getName() != "outs")
PrintFatalError(R->getLoc(),
R->getName() +
": invalid def name for output list: use 'outs'");
} else
PrintFatalError(R->getLoc(),
R->getName() + ": invalid output list: use 'outs'");
2011-01-26 10:03:37 +08:00
NumDefs = OutDI->getNumArgs();
DagInit *InDI = R->getValueAsDag("InOperandList");
if (DefInit *Init = dyn_cast<DefInit>(InDI->getOperator())) {
if (Init->getDef()->getName() != "ins")
PrintFatalError(R->getLoc(),
R->getName() +
": invalid def name for input list: use 'ins'");
} else
PrintFatalError(R->getLoc(),
R->getName() + ": invalid input list: use 'ins'");
2011-01-26 10:03:37 +08:00
unsigned MIOperandNo = 0;
std::set<std::string> OperandNames;
unsigned e = InDI->getNumArgs() + OutDI->getNumArgs();
OperandList.reserve(e);
for (unsigned i = 0; i != e; ++i){
Init *ArgInit;
StringRef ArgName;
if (i < NumDefs) {
ArgInit = OutDI->getArg(i);
ArgName = OutDI->getArgNameStr(i);
} else {
ArgInit = InDI->getArg(i-NumDefs);
ArgName = InDI->getArgNameStr(i-NumDefs);
}
2011-01-26 10:03:37 +08:00
DefInit *Arg = dyn_cast<DefInit>(ArgInit);
if (!Arg)
PrintFatalError(R->getLoc(), "Illegal operand for the '" + R->getName() +
"' instruction!");
2011-01-26 10:03:37 +08:00
Record *Rec = Arg->getDef();
std::string PrintMethod = "printOperand";
std::string EncoderMethod;
std::string OperandType = "OPERAND_UNKNOWN";
std::string OperandNamespace = "MCOI";
unsigned NumOps = 1;
DagInit *MIOpInfo = nullptr;
if (Rec->isSubClassOf("RegisterOperand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
OperandType = Rec->getValueAsString("OperandType");
OperandNamespace = Rec->getValueAsString("OperandNamespace");
EncoderMethod = Rec->getValueAsString("EncoderMethod");
} else if (Rec->isSubClassOf("Operand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
OperandType = Rec->getValueAsString("OperandType");
OperandNamespace = Rec->getValueAsString("OperandNamespace");
// If there is an explicit encoder method, use it.
EncoderMethod = Rec->getValueAsString("EncoderMethod");
MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
2011-01-26 10:03:37 +08:00
// Verify that MIOpInfo has an 'ops' root value.
if (!isa<DefInit>(MIOpInfo->getOperator()) ||
cast<DefInit>(MIOpInfo->getOperator())->getDef()->getName() != "ops")
PrintFatalError(R->getLoc(),
"Bad value for MIOperandInfo in operand '" +
Rec->getName() + "'\n");
2011-01-26 10:03:37 +08:00
// If we have MIOpInfo, then we have #operands equal to number of entries
// in MIOperandInfo.
if (unsigned NumArgs = MIOpInfo->getNumArgs())
NumOps = NumArgs;
2011-01-26 10:03:37 +08:00
if (Rec->isSubClassOf("PredicateOp"))
isPredicable = true;
else if (Rec->isSubClassOf("OptionalDefOperand"))
hasOptionalDef = true;
} else if (Rec->getName() == "variable_ops") {
isVariadic = true;
continue;
} else if (Rec->isSubClassOf("RegisterClass")) {
OperandType = "OPERAND_REGISTER";
} else if (!Rec->isSubClassOf("PointerLikeRegClass") &&
!Rec->isSubClassOf("unknown_class"))
PrintFatalError(R->getLoc(), "Unknown operand class '" + Rec->getName() +
"' in '" + R->getName() +
"' instruction!");
2011-01-26 10:03:37 +08:00
// Check that the operand has a name and that it's unique.
if (ArgName.empty())
PrintFatalError(R->getLoc(), "In instruction '" + R->getName() +
"', operand #" + Twine(i) +
" has no name!");
if (!OperandNames.insert(ArgName).second)
PrintFatalError(R->getLoc(),
"In instruction '" + R->getName() + "', operand #" +
Twine(i) +
" has the same name as a previous operand!");
2011-01-26 10:03:37 +08:00
OperandList.emplace_back(Rec, ArgName, PrintMethod, EncoderMethod,
OperandNamespace + "::" + OperandType, MIOperandNo,
NumOps, MIOpInfo);
MIOperandNo += NumOps;
}
2011-01-26 10:03:37 +08:00
// Make sure the constraints list for each operand is large enough to hold
// constraint info, even if none is present.
for (OperandInfo &OpInfo : OperandList)
OpInfo.Constraints.resize(OpInfo.MINumOperands);
}
/// getOperandNamed - Return the index of the operand with the specified
/// non-empty name. If the instruction does not have an operand with the
/// specified name, abort.
///
unsigned CGIOperandList::getOperandNamed(StringRef Name) const {
unsigned OpIdx;
if (hasOperandNamed(Name, OpIdx))
return OpIdx;
PrintFatalError(TheDef->getLoc(), "'" + TheDef->getName() +
"' does not have an operand named '$" +
Name + "'!");
}
/// hasOperandNamed - Query whether the instruction has an operand of the
/// given name. If so, return true and set OpIdx to the index of the
/// operand. Otherwise, return false.
bool CGIOperandList::hasOperandNamed(StringRef Name, unsigned &OpIdx) const {
assert(!Name.empty() && "Cannot search for operand with no name!");
for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
if (OperandList[i].Name == Name) {
OpIdx = i;
return true;
}
return false;
}
2009-12-16 03:28:13 +08:00
std::pair<unsigned,unsigned>
CGIOperandList::ParseOperandName(const std::string &Op, bool AllowWholeOp) {
if (Op.empty() || Op[0] != '$')
PrintFatalError(TheDef->getLoc(),
TheDef->getName() + ": Illegal operand name: '" + Op + "'");
2011-01-26 10:03:37 +08:00
std::string OpName = Op.substr(1);
std::string SubOpName;
2011-01-26 10:03:37 +08:00
// Check to see if this is $foo.bar.
std::string::size_type DotIdx = OpName.find_first_of('.');
if (DotIdx != std::string::npos) {
SubOpName = OpName.substr(DotIdx+1);
if (SubOpName.empty())
PrintFatalError(TheDef->getLoc(),
TheDef->getName() +
": illegal empty suboperand name in '" + Op + "'");
OpName = OpName.substr(0, DotIdx);
}
2011-01-26 10:03:37 +08:00
unsigned OpIdx = getOperandNamed(OpName);
2011-01-26 10:03:37 +08:00
if (SubOpName.empty()) { // If no suboperand name was specified:
// If one was needed, throw.
if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp &&
SubOpName.empty())
PrintFatalError(TheDef->getLoc(),
TheDef->getName() +
": Illegal to refer to"
" whole operand part of complex operand '" +
Op + "'");
2011-01-26 10:03:37 +08:00
// Otherwise, return the operand.
return std::make_pair(OpIdx, 0U);
}
2011-01-26 10:03:37 +08:00
// Find the suboperand number involved.
DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo;
if (!MIOpInfo)
PrintFatalError(TheDef->getLoc(), TheDef->getName() +
": unknown suboperand name in '" +
Op + "'");
2011-01-26 10:03:37 +08:00
// Find the operand with the right name.
for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i)
if (MIOpInfo->getArgNameStr(i) == SubOpName)
return std::make_pair(OpIdx, i);
2011-01-26 10:03:37 +08:00
// Otherwise, didn't find it!
PrintFatalError(TheDef->getLoc(), TheDef->getName() +
": unknown suboperand name in '" + Op +
"'");
return std::make_pair(0U, 0U);
}
static void ParseConstraint(const std::string &CStr, CGIOperandList &Ops,
Record *Rec) {
// EARLY_CLOBBER: @early $reg
std::string::size_type wpos = CStr.find_first_of(" \t");
std::string::size_type start = CStr.find_first_not_of(" \t");
std::string Tok = CStr.substr(start, wpos - start);
if (Tok == "@earlyclobber") {
std::string Name = CStr.substr(wpos+1);
wpos = Name.find_first_not_of(" \t");
if (wpos == std::string::npos)
PrintFatalError(
Rec->getLoc(), "Illegal format for @earlyclobber constraint in '" +
Rec->getName() + "': '" + CStr + "'");
Name = Name.substr(wpos);
std::pair<unsigned,unsigned> Op = Ops.ParseOperandName(Name, false);
2011-01-26 10:03:37 +08:00
// Build the string for the operand
if (!Ops[Op.first].Constraints[Op.second].isNone())
PrintFatalError(
Rec->getLoc(), "Operand '" + Name + "' of '" + Rec->getName() +
"' cannot have multiple constraints!");
Ops[Op.first].Constraints[Op.second] =
CGIOperandList::ConstraintInfo::getEarlyClobber();
return;
}
2011-01-26 10:03:37 +08:00
// Only other constraint is "TIED_TO" for now.
std::string::size_type pos = CStr.find_first_of('=');
if (pos == std::string::npos)
PrintFatalError(
Rec->getLoc(), "Unrecognized constraint '" + CStr +
"' in '" + Rec->getName() + "'");
start = CStr.find_first_not_of(" \t");
2011-01-26 10:03:37 +08:00
// TIED_TO: $src1 = $dst
wpos = CStr.find_first_of(" \t", start);
if (wpos == std::string::npos || wpos > pos)
PrintFatalError(
Rec->getLoc(), "Illegal format for tied-to constraint in '" +
Rec->getName() + "': '" + CStr + "'");
std::string LHSOpName = StringRef(CStr).substr(start, wpos - start);
std::pair<unsigned,unsigned> LHSOp = Ops.ParseOperandName(LHSOpName, false);
wpos = CStr.find_first_not_of(" \t", pos + 1);
if (wpos == std::string::npos)
PrintFatalError(
Rec->getLoc(), "Illegal format for tied-to constraint: '" + CStr + "'");
std::string RHSOpName = StringRef(CStr).substr(wpos);
std::pair<unsigned,unsigned> RHSOp = Ops.ParseOperandName(RHSOpName, false);
// Sort the operands into order, which should put the output one
// first. But keep the original order, for use in diagnostics.
bool FirstIsDest = (LHSOp < RHSOp);
std::pair<unsigned,unsigned> DestOp = (FirstIsDest ? LHSOp : RHSOp);
StringRef DestOpName = (FirstIsDest ? LHSOpName : RHSOpName);
std::pair<unsigned,unsigned> SrcOp = (FirstIsDest ? RHSOp : LHSOp);
StringRef SrcOpName = (FirstIsDest ? RHSOpName : LHSOpName);
// Ensure one operand is a def and the other is a use.
if (DestOp.first >= Ops.NumDefs)
PrintFatalError(
Rec->getLoc(), "Input operands '" + LHSOpName + "' and '" + RHSOpName +
"' of '" + Rec->getName() + "' cannot be tied!");
if (SrcOp.first < Ops.NumDefs)
PrintFatalError(
Rec->getLoc(), "Output operands '" + LHSOpName + "' and '" + RHSOpName +
"' of '" + Rec->getName() + "' cannot be tied!");
// The constraint has to go on the operand with higher index, i.e.
// the source one. Check there isn't another constraint there
// already.
if (!Ops[SrcOp.first].Constraints[SrcOp.second].isNone())
PrintFatalError(
Rec->getLoc(), "Operand '" + SrcOpName + "' of '" + Rec->getName() +
"' cannot have multiple constraints!");
2011-01-26 10:03:37 +08:00
unsigned DestFlatOpNo = Ops.getFlattenedOperandNumber(DestOp);
auto NewConstraint = CGIOperandList::ConstraintInfo::getTied(DestFlatOpNo);
// Check that the earlier operand is not the target of another tie
// before making it the target of this one.
for (const CGIOperandList::OperandInfo &Op : Ops) {
for (unsigned i = 0; i < Op.MINumOperands; i++)
if (Op.Constraints[i] == NewConstraint)
PrintFatalError(
Rec->getLoc(), "Operand '" + DestOpName + "' of '" + Rec->getName() +
"' cannot have multiple operands tied to it!");
}
2011-01-26 10:03:37 +08:00
Ops[SrcOp.first].Constraints[SrcOp.second] = NewConstraint;
}
static void ParseConstraints(const std::string &CStr, CGIOperandList &Ops,
Record *Rec) {
if (CStr.empty()) return;
2011-01-26 10:03:37 +08:00
const std::string delims(",");
std::string::size_type bidx, eidx;
2011-01-26 10:03:37 +08:00
bidx = CStr.find_first_not_of(delims);
while (bidx != std::string::npos) {
eidx = CStr.find_first_of(delims, bidx);
if (eidx == std::string::npos)
eidx = CStr.length();
2011-01-26 10:03:37 +08:00
ParseConstraint(CStr.substr(bidx, eidx - bidx), Ops, Rec);
bidx = CStr.find_first_not_of(delims, eidx);
}
}
void CGIOperandList::ProcessDisableEncoding(std::string DisableEncoding) {
while (1) {
std::pair<StringRef, StringRef> P = getToken(DisableEncoding, " ,\t");
std::string OpName = P.first;
DisableEncoding = P.second;
if (OpName.empty()) break;
2011-01-26 10:03:37 +08:00
// Figure out which operand this is.
std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false);
2011-01-26 10:03:37 +08:00
// Mark the operand as not-to-be encoded.
if (Op.second >= OperandList[Op.first].DoNotEncode.size())
OperandList[Op.first].DoNotEncode.resize(Op.second+1);
OperandList[Op.first].DoNotEncode[Op.second] = true;
}
2011-01-26 10:03:37 +08:00
}
//===----------------------------------------------------------------------===//
// CodeGenInstruction Implementation
//===----------------------------------------------------------------------===//
CodeGenInstruction::CodeGenInstruction(Record *R)
: TheDef(R), Operands(R), InferredFrom(nullptr) {
Namespace = R->getValueAsString("Namespace");
AsmString = R->getValueAsString("AsmString");
isPreISelOpcode = R->getValueAsBit("isPreISelOpcode");
isReturn = R->getValueAsBit("isReturn");
isEHScopeReturn = R->getValueAsBit("isEHScopeReturn");
isBranch = R->getValueAsBit("isBranch");
isIndirectBranch = R->getValueAsBit("isIndirectBranch");
isCompare = R->getValueAsBit("isCompare");
isMoveImm = R->getValueAsBit("isMoveImm");
isMoveReg = R->getValueAsBit("isMoveReg");
isBitcast = R->getValueAsBit("isBitcast");
isSelect = R->getValueAsBit("isSelect");
isBarrier = R->getValueAsBit("isBarrier");
isCall = R->getValueAsBit("isCall");
isAdd = R->getValueAsBit("isAdd");
isTrap = R->getValueAsBit("isTrap");
canFoldAsLoad = R->getValueAsBit("canFoldAsLoad");
[ARM] Make fullfp16 instructions not conditionalisable. More or less all the instructions defined in the v8.2a full-fp16 extension are defined as UNPREDICTABLE if you put them in an IT block (Thumb) or use with any condition other than AL (ARM). LLVM didn't know that, and was happy to conditionalise them. In order to force these instructions to count as not predicable, I had to make a small Tablegen change. The code generation back end mostly decides if an instruction was predicable by looking for something it can identify as a predicate operand; there's an isPredicable bit flag that overrides that check in the positive direction, but nothing that overrides it in the negative direction. (I considered the alternative approach of actually removing the predicate operand from those instructions, but thought that it would be more painful overall for instructions differing only in data type to have different shapes of operand list. This way, the only code that has to notice the difference is the if-converter.) So I've added an isUnpredicable bit alongside isPredicable, and set that bit on the right subset of FP16 instructions, and also on the VSEL, VMAXNM/VMINNM and VRINT[ANPM] families which should be unpredicable for all data types. I've included a couple of representative regression tests, both of which previously caused an fp16 instruction to be conditionalised in ARM state and (with -arm-no-restrict-it) to be put in an IT block in Thumb. Reviewers: SjoerdMeijer, t.p.northover, efriedma Reviewed By: efriedma Subscribers: jdoerfert, javed.absar, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D57823 llvm-svn: 354768
2019-02-25 18:39:53 +08:00
isPredicable = !R->getValueAsBit("isUnpredicable") && (
Operands.isPredicable || R->getValueAsBit("isPredicable"));
isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
isCommutable = R->getValueAsBit("isCommutable");
isTerminator = R->getValueAsBit("isTerminator");
isReMaterializable = R->getValueAsBit("isReMaterializable");
hasDelaySlot = R->getValueAsBit("hasDelaySlot");
usesCustomInserter = R->getValueAsBit("usesCustomInserter");
hasPostISelHook = R->getValueAsBit("hasPostISelHook");
hasCtrlDep = R->getValueAsBit("hasCtrlDep");
isNotDuplicable = R->getValueAsBit("isNotDuplicable");
isRegSequence = R->getValueAsBit("isRegSequence");
isExtractSubreg = R->getValueAsBit("isExtractSubreg");
isInsertSubreg = R->getValueAsBit("isInsertSubreg");
isConvergent = R->getValueAsBit("isConvergent");
hasNoSchedulingInfo = R->getValueAsBit("hasNoSchedulingInfo");
FastISelShouldIgnore = R->getValueAsBit("FastISelShouldIgnore");
variadicOpsAreDefs = R->getValueAsBit("variadicOpsAreDefs");
bool Unset;
mayLoad = R->getValueAsBitOrUnset("mayLoad", Unset);
mayLoad_Unset = Unset;
mayStore = R->getValueAsBitOrUnset("mayStore", Unset);
mayStore_Unset = Unset;
Allow target to handle STRICT floating-point nodes The ISD::STRICT_ nodes used to implement the constrained floating-point intrinsics are currently never passed to the target back-end, which makes it impossible to handle them correctly (e.g. mark instructions are depending on a floating-point status and control register, or mark instructions as possibly trapping). This patch allows the target to use setOperationAction to switch the action on ISD::STRICT_ nodes to Legal. If this is done, the SelectionDAG common code will stop converting the STRICT nodes to regular floating-point nodes, but instead pass the STRICT nodes to the target using normal SelectionDAG matching rules. To avoid having the back-end duplicate all the floating-point instruction patterns to handle both strict and non-strict variants, we make the MI codegen explicitly aware of the floating-point exceptions by introducing two new concepts: - A new MCID flag "mayRaiseFPException" that the target should set on any instruction that possibly can raise FP exception according to the architecture definition. - A new MI flag FPExcept that CodeGen/SelectionDAG will set on any MI instruction resulting from expansion of any constrained FP intrinsic. Any MI instruction that is *both* marked as mayRaiseFPException *and* FPExcept then needs to be considered as raising exceptions by MI-level codegen (e.g. scheduling). Setting those two new flags is straightforward. The mayRaiseFPException flag is simply set via TableGen by marking all relevant instruction patterns in the .td files. The FPExcept flag is set in SDNodeFlags when creating the STRICT_ nodes in the SelectionDAG, and gets inherited in the MachineSDNode nodes created from it during instruction selection. The flag is then transfered to an MIFlag when creating the MI from the MachineSDNode. This is handled just like fast-math flags like no-nans are handled today. This patch includes both common code changes required to implement the new features, and the SystemZ implementation. Reviewed By: andrew.w.kaylor Differential Revision: https://reviews.llvm.org/D55506 llvm-svn: 362663
2019-06-06 06:33:10 +08:00
mayRaiseFPException = R->getValueAsBit("mayRaiseFPException");
hasSideEffects = R->getValueAsBitOrUnset("hasSideEffects", Unset);
hasSideEffects_Unset = Unset;
isAsCheapAsAMove = R->getValueAsBit("isAsCheapAsAMove");
hasExtraSrcRegAllocReq = R->getValueAsBit("hasExtraSrcRegAllocReq");
hasExtraDefRegAllocReq = R->getValueAsBit("hasExtraDefRegAllocReq");
isCodeGenOnly = R->getValueAsBit("isCodeGenOnly");
isPseudo = R->getValueAsBit("isPseudo");
ImplicitDefs = R->getValueAsListOfDefs("Defs");
ImplicitUses = R->getValueAsListOfDefs("Uses");
[TableGen] Support multi-alternative pattern fragments A TableGen instruction record usually contains a DAG pattern that will describe the SelectionDAG operation that can be implemented by this instruction. However, there will be cases where several different DAG patterns can all be implemented by the same instruction. The way to represent this today is to write additional patterns in the Pattern (or usually Pat) class that map those extra DAG patterns to the instruction. This usually also works fine. However, I've noticed cases where the current setup seems to require quite a bit of extra (and duplicated) text in the target .td files. For example, in the SystemZ back-end, there are quite a number of instructions that can implement an "add-with-overflow" operation. The same instructions also need to be used to implement just plain addition (simply ignoring the extra overflow output). The current solution requires creating extra Pat pattern for every instruction, duplicating the information about which particular add operands map best to which particular instruction. This patch enhances TableGen to support a new PatFrags class, which can be used to encapsulate multiple alternative patterns that may all match to the same instruction. It operates the same way as the existing PatFrag class, except that it accepts a list of DAG patterns to match instead of just a single one. As an example, we can now define a PatFrags to match either an "add-with-overflow" or a regular add operation: def z_sadd : PatFrags<(ops node:$src1, node:$src2), [(z_saddo node:$src1, node:$src2), (add node:$src1, node:$src2)]>; and then use this in the add instruction pattern: defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>; These SystemZ target changes are implemented here as well. Note that PatFrag is now defined as a subclass of PatFrags, which means that some users of internals of PatFrag need to be updated. (E.g. instead of using PatFrag.Fragment you now need to use !head(PatFrag.Fragments).) The implementation is based on the following main ideas: - InlinePatternFragments may now replace each original pattern with several result patterns, not just one. - parseInstructionPattern delays calling InlinePatternFragments and InferAllTypes. Instead, it extracts a single DAG match pattern from the main instruction pattern. - Processing of the DAG match pattern part of the main instruction pattern now shares most code with processing match patterns from the Pattern class. - Direct use of main instruction patterns in InferFromPattern and EmitResultInstructionAsOperand is removed; everything now operates solely on DAG match patterns. Reviewed by: hfinkel Differential Revision: https://reviews.llvm.org/D48545 llvm-svn: 336999
2018-07-13 21:18:00 +08:00
// This flag is only inferred from the pattern.
hasChain = false;
hasChain_Inferred = false;
// Parse Constraints.
ParseConstraints(R->getValueAsString("Constraints"), Operands, R);
// Parse the DisableEncoding field.
Operands.ProcessDisableEncoding(R->getValueAsString("DisableEncoding"));
// First check for a ComplexDeprecationPredicate.
if (R->getValue("ComplexDeprecationPredicate")) {
HasComplexDeprecationPredicate = true;
DeprecatedReason = R->getValueAsString("ComplexDeprecationPredicate");
} else if (RecordVal *Dep = R->getValue("DeprecatedFeatureMask")) {
// Check if we have a Subtarget feature mask.
HasComplexDeprecationPredicate = false;
DeprecatedReason = Dep->getValue()->getAsString();
} else {
// This instruction isn't deprecated.
HasComplexDeprecationPredicate = false;
DeprecatedReason = "";
}
}
/// HasOneImplicitDefWithKnownVT - If the instruction has at least one
/// implicit def and it has a known VT, return the VT, otherwise return
/// MVT::Other.
MVT::SimpleValueType CodeGenInstruction::
HasOneImplicitDefWithKnownVT(const CodeGenTarget &TargetInfo) const {
if (ImplicitDefs.empty()) return MVT::Other;
2011-01-26 10:03:37 +08:00
// Check to see if the first implicit def has a resolvable type.
Record *FirstImplicitDef = ImplicitDefs[0];
assert(FirstImplicitDef->isSubClassOf("Register"));
const std::vector<ValueTypeByHwMode> &RegVTs =
TargetInfo.getRegisterVTs(FirstImplicitDef);
if (RegVTs.size() == 1 && RegVTs[0].isSimple())
return RegVTs[0].getSimple().SimpleTy;
return MVT::Other;
}
/// FlattenAsmStringVariants - Flatten the specified AsmString to only
/// include text from the specified variant, returning the new string.
std::string CodeGenInstruction::
FlattenAsmStringVariants(StringRef Cur, unsigned Variant) {
std::string Res = "";
2011-01-26 10:03:37 +08:00
for (;;) {
// Find the start of the next variant string.
size_t VariantsStart = 0;
for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
if (Cur[VariantsStart] == '{' &&
(VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
Cur[VariantsStart-1] != '\\')))
break;
2011-01-26 10:03:37 +08:00
// Add the prefix to the result.
Res += Cur.slice(0, VariantsStart);
if (VariantsStart == Cur.size())
break;
2011-01-26 10:03:37 +08:00
++VariantsStart; // Skip the '{'.
2011-01-26 10:03:37 +08:00
// Scan to the end of the variants string.
size_t VariantsEnd = VariantsStart;
unsigned NestedBraces = 1;
for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
if (--NestedBraces == 0)
break;
} else if (Cur[VariantsEnd] == '{')
++NestedBraces;
}
2011-01-26 10:03:37 +08:00
// Select the Nth variant (or empty).
StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
for (unsigned i = 0; i != Variant; ++i)
Selection = Selection.split('|').second;
Res += Selection.split('|').first;
2011-01-26 10:03:37 +08:00
assert(VariantsEnd != Cur.size() &&
"Unterminated variants in assembly string!");
Cur = Cur.substr(VariantsEnd + 1);
}
2011-01-26 10:03:37 +08:00
return Res;
}
bool CodeGenInstruction::isOperandAPointer(unsigned i) const {
if (DagInit *ConstraintList = TheDef->getValueAsDag("InOperandList")) {
if (i < ConstraintList->getNumArgs()) {
if (DefInit *Constraint = dyn_cast<DefInit>(ConstraintList->getArg(i))) {
return Constraint->getDef()->isSubClassOf("TypedOperand") &&
Constraint->getDef()->getValueAsBit("IsPointer");
}
}
}
return false;
}
//===----------------------------------------------------------------------===//
/// CodeGenInstAlias Implementation
//===----------------------------------------------------------------------===//
/// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias
/// constructor. It checks if an argument in an InstAlias pattern matches
/// the corresponding operand of the instruction. It returns true on a
/// successful match, with ResOp set to the result operand to be used.
bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo,
Record *InstOpRec, bool hasSubOps,
ArrayRef<SMLoc> Loc, CodeGenTarget &T,
ResultOperand &ResOp) {
Init *Arg = Result->getArg(AliasOpNo);
DefInit *ADI = dyn_cast<DefInit>(Arg);
Record *ResultRecord = ADI ? ADI->getDef() : nullptr;
if (ADI && ADI->getDef() == InstOpRec) {
// If the operand is a record, it must have a name, and the record type
// must match up with the instruction's argument type.
if (!Result->getArgName(AliasOpNo))
PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) +
" must have a name!");
ResOp = ResultOperand(Result->getArgNameStr(AliasOpNo), ResultRecord);
return true;
}
// For register operands, the source register class can be a subclass
// of the instruction register class, not just an exact match.
if (InstOpRec->isSubClassOf("RegisterOperand"))
InstOpRec = InstOpRec->getValueAsDef("RegClass");
if (ADI && ADI->getDef()->isSubClassOf("RegisterOperand"))
ADI = ADI->getDef()->getValueAsDef("RegClass")->getDefInit();
if (ADI && ADI->getDef()->isSubClassOf("RegisterClass")) {
if (!InstOpRec->isSubClassOf("RegisterClass"))
return false;
if (!T.getRegisterClass(InstOpRec)
.hasSubClass(&T.getRegisterClass(ADI->getDef())))
return false;
ResOp = ResultOperand(Result->getArgNameStr(AliasOpNo), ResultRecord);
return true;
}
// Handle explicit registers.
if (ADI && ADI->getDef()->isSubClassOf("Register")) {
if (InstOpRec->isSubClassOf("OptionalDefOperand")) {
DagInit *DI = InstOpRec->getValueAsDag("MIOperandInfo");
// The operand info should only have a single (register) entry. We
// want the register class of it.
InstOpRec = cast<DefInit>(DI->getArg(0))->getDef();
}
if (!InstOpRec->isSubClassOf("RegisterClass"))
return false;
if (!T.getRegisterClass(InstOpRec)
.contains(T.getRegBank().getReg(ADI->getDef())))
PrintFatalError(Loc, "fixed register " + ADI->getDef()->getName() +
" is not a member of the " + InstOpRec->getName() +
" register class!");
if (Result->getArgName(AliasOpNo))
PrintFatalError(Loc, "result fixed register argument must "
"not have a name!");
ResOp = ResultOperand(ResultRecord);
return true;
}
// Handle "zero_reg" for optional def operands.
if (ADI && ADI->getDef()->getName() == "zero_reg") {
// Check if this is an optional def.
// Tied operands where the source is a sub-operand of a complex operand
// need to represent both operands in the alias destination instruction.
// Allow zero_reg for the tied portion. This can and should go away once
// the MC representation of things doesn't use tied operands at all.
//if (!InstOpRec->isSubClassOf("OptionalDefOperand"))
// throw TGError(Loc, "reg0 used for result that is not an "
// "OptionalDefOperand!");
ResOp = ResultOperand(static_cast<Record*>(nullptr));
return true;
}
// Literal integers.
if (IntInit *II = dyn_cast<IntInit>(Arg)) {
if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
return false;
// Integer arguments can't have names.
if (Result->getArgName(AliasOpNo))
PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) +
" must not have a name!");
ResOp = ResultOperand(II->getValue());
return true;
}
// Bits<n> (also used for 0bxx literals)
if (BitsInit *BI = dyn_cast<BitsInit>(Arg)) {
if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
return false;
if (!BI->isComplete())
return false;
// Convert the bits init to an integer and use that for the result.
IntInit *II =
dyn_cast_or_null<IntInit>(BI->convertInitializerTo(IntRecTy::get()));
if (!II)
return false;
ResOp = ResultOperand(II->getValue());
return true;
}
// If both are Operands with the same MVT, allow the conversion. It's
// up to the user to make sure the values are appropriate, just like
// for isel Pat's.
if (InstOpRec->isSubClassOf("Operand") && ADI &&
ADI->getDef()->isSubClassOf("Operand")) {
// FIXME: What other attributes should we check here? Identical
// MIOperandInfo perhaps?
if (InstOpRec->getValueInit("Type") != ADI->getDef()->getValueInit("Type"))
return false;
ResOp = ResultOperand(Result->getArgNameStr(AliasOpNo), ADI->getDef());
return true;
}
return false;
}
unsigned CodeGenInstAlias::ResultOperand::getMINumOperands() const {
if (!isRecord())
return 1;
Record *Rec = getRecord();
if (!Rec->isSubClassOf("Operand"))
return 1;
DagInit *MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
if (MIOpInfo->getNumArgs() == 0) {
// Unspecified, so it defaults to 1
return 1;
}
return MIOpInfo->getNumArgs();
}
CodeGenInstAlias::CodeGenInstAlias(Record *R, CodeGenTarget &T)
: TheDef(R) {
Result = R->getValueAsDag("ResultInst");
AsmString = R->getValueAsString("AsmString");
// Verify that the root of the result is an instruction.
DefInit *DI = dyn_cast<DefInit>(Result->getOperator());
if (!DI || !DI->getDef()->isSubClassOf("Instruction"))
PrintFatalError(R->getLoc(),
"result of inst alias should be an instruction");
ResultInst = &T.getInstruction(DI->getDef());
2011-01-26 10:03:37 +08:00
// NameClass - If argument names are repeated, we need to verify they have
// the same class.
StringMap<Record*> NameClass;
for (unsigned i = 0, e = Result->getNumArgs(); i != e; ++i) {
DefInit *ADI = dyn_cast<DefInit>(Result->getArg(i));
if (!ADI || !Result->getArgName(i))
continue;
// Verify we don't have something like: (someinst GR16:$foo, GR32:$foo)
// $foo can exist multiple times in the result list, but it must have the
// same type.
Record *&Entry = NameClass[Result->getArgNameStr(i)];
if (Entry && Entry != ADI->getDef())
PrintFatalError(R->getLoc(), "result value $" + Result->getArgNameStr(i) +
" is both " + Entry->getName() + " and " +
ADI->getDef()->getName() + "!");
Entry = ADI->getDef();
}
2011-01-26 10:03:37 +08:00
// Decode and validate the arguments of the result.
unsigned AliasOpNo = 0;
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
// Tied registers don't have an entry in the result dag unless they're part
// of a complex operand, in which case we include them anyways, as we
// don't have any other way to specify the whole operand.
if (ResultInst->Operands[i].MINumOperands == 1 &&
ResultInst->Operands[i].getTiedRegister() != -1) {
// Tied operands of different RegisterClass should be explicit within an
// instruction's syntax and so cannot be skipped.
int TiedOpNum = ResultInst->Operands[i].getTiedRegister();
if (ResultInst->Operands[i].Rec->getName() ==
ResultInst->Operands[TiedOpNum].Rec->getName())
continue;
}
if (AliasOpNo >= Result->getNumArgs())
PrintFatalError(R->getLoc(), "not enough arguments for instruction!");
Record *InstOpRec = ResultInst->Operands[i].Rec;
unsigned NumSubOps = ResultInst->Operands[i].MINumOperands;
ResultOperand ResOp(static_cast<int64_t>(0));
if (tryAliasOpMatch(Result, AliasOpNo, InstOpRec, (NumSubOps > 1),
R->getLoc(), T, ResOp)) {
// If this is a simple operand, or a complex operand with a custom match
// class, then we can match is verbatim.
if (NumSubOps == 1 ||
(InstOpRec->getValue("ParserMatchClass") &&
InstOpRec->getValueAsDef("ParserMatchClass")
->getValueAsString("Name") != "Imm")) {
ResultOperands.push_back(ResOp);
ResultInstOperandIndex.push_back(std::make_pair(i, -1));
++AliasOpNo;
// Otherwise, we need to match each of the suboperands individually.
} else {
DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef();
// Take care to instantiate each of the suboperands with the correct
// nomenclature: $foo.bar
ResultOperands.emplace_back(
Result->getArgName(AliasOpNo)->getAsUnquotedString() + "." +
MIOI->getArgName(SubOp)->getAsUnquotedString(), SubRec);
ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
}
++AliasOpNo;
}
continue;
}
2011-01-26 10:03:37 +08:00
// If the argument did not match the instruction operand, and the operand
// is composed of multiple suboperands, try matching the suboperands.
if (NumSubOps > 1) {
DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
if (AliasOpNo >= Result->getNumArgs())
PrintFatalError(R->getLoc(), "not enough arguments for instruction!");
Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef();
if (tryAliasOpMatch(Result, AliasOpNo, SubRec, false,
R->getLoc(), T, ResOp)) {
ResultOperands.push_back(ResOp);
ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
++AliasOpNo;
} else {
PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) +
" does not match instruction operand class " +
(SubOp == 0 ? InstOpRec->getName() :SubRec->getName()));
}
}
continue;
}
PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) +
" does not match instruction operand class " +
InstOpRec->getName());
}
2011-01-26 10:03:37 +08:00
if (AliasOpNo != Result->getNumArgs())
PrintFatalError(R->getLoc(), "too many operands for instruction!");
}