llvm-project/llvm/lib/Linker/LinkModules.cpp

2092 lines
76 KiB
C++
Raw Normal View History

2009-03-03 18:04:23 +08:00
//===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM module linker.
//
//===----------------------------------------------------------------------===//
#include "llvm/Linker/Linker.h"
#include "llvm-c/Linker.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Transforms/Utils/Cloning.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// TypeMap implementation.
//===----------------------------------------------------------------------===//
namespace {
class TypeMapTy : public ValueMapTypeRemapper {
/// This is a mapping from a source type to a destination type to use.
DenseMap<Type *, Type *> MappedTypes;
/// When checking to see if two subgraphs are isomorphic, we speculatively
/// add types to MappedTypes, but keep track of them here in case we need to
/// roll back.
SmallVector<Type *, 16> SpeculativeTypes;
SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
/// This is a list of non-opaque structs in the source module that are mapped
/// to an opaque struct in the destination module.
SmallVector<StructType *, 16> SrcDefinitionsToResolve;
/// This is the set of opaque types in the destination modules who are
/// getting a body from the source module.
SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
public:
TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
: DstStructTypesSet(DstStructTypesSet) {}
Linker::IdentifiedStructTypeSet &DstStructTypesSet;
/// Indicate that the specified type in the destination module is conceptually
/// equivalent to the specified type in the source module.
void addTypeMapping(Type *DstTy, Type *SrcTy);
/// Produce a body for an opaque type in the dest module from a type
/// definition in the source module.
void linkDefinedTypeBodies();
/// Return the mapped type to use for the specified input type from the
/// source module.
Type *get(Type *SrcTy);
Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
FunctionType *get(FunctionType *T) {
return cast<FunctionType>(get((Type *)T));
}
/// Dump out the type map for debugging purposes.
void dump() const {
for (auto &Pair : MappedTypes) {
dbgs() << "TypeMap: ";
Pair.first->print(dbgs());
dbgs() << " => ";
Pair.second->print(dbgs());
dbgs() << '\n';
}
}
private:
Type *remapType(Type *SrcTy) override { return get(SrcTy); }
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
};
}
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
assert(SpeculativeTypes.empty());
assert(SpeculativeDstOpaqueTypes.empty());
// Check to see if these types are recursively isomorphic and establish a
// mapping between them if so.
if (!areTypesIsomorphic(DstTy, SrcTy)) {
// Oops, they aren't isomorphic. Just discard this request by rolling out
// any speculative mappings we've established.
for (Type *Ty : SpeculativeTypes)
MappedTypes.erase(Ty);
SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
SpeculativeDstOpaqueTypes.size());
for (StructType *Ty : SpeculativeDstOpaqueTypes)
DstResolvedOpaqueTypes.erase(Ty);
} else {
for (Type *Ty : SpeculativeTypes)
if (auto *STy = dyn_cast<StructType>(Ty))
if (STy->hasName())
STy->setName("");
}
SpeculativeTypes.clear();
SpeculativeDstOpaqueTypes.clear();
}
/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
// Two types with differing kinds are clearly not isomorphic.
if (DstTy->getTypeID() != SrcTy->getTypeID())
return false;
// If we have an entry in the MappedTypes table, then we have our answer.
Type *&Entry = MappedTypes[SrcTy];
if (Entry)
return Entry == DstTy;
// Two identical types are clearly isomorphic. Remember this
// non-speculatively.
if (DstTy == SrcTy) {
Entry = DstTy;
return true;
}
// Okay, we have two types with identical kinds that we haven't seen before.
// If this is an opaque struct type, special case it.
if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
// Mapping an opaque type to any struct, just keep the dest struct.
if (SSTy->isOpaque()) {
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
return true;
}
// Mapping a non-opaque source type to an opaque dest. If this is the first
// type that we're mapping onto this destination type then we succeed. Keep
// the dest, but fill it in later. If this is the second (different) type
// that we're trying to map onto the same opaque type then we fail.
if (cast<StructType>(DstTy)->isOpaque()) {
// We can only map one source type onto the opaque destination type.
if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
return false;
SrcDefinitionsToResolve.push_back(SSTy);
SpeculativeTypes.push_back(SrcTy);
SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
Entry = DstTy;
return true;
}
}
// If the number of subtypes disagree between the two types, then we fail.
if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
return false;
// Fail if any of the extra properties (e.g. array size) of the type disagree.
if (isa<IntegerType>(DstTy))
return false; // bitwidth disagrees.
if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
return false;
} else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
return false;
} else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
StructType *SSTy = cast<StructType>(SrcTy);
if (DSTy->isLiteral() != SSTy->isLiteral() ||
DSTy->isPacked() != SSTy->isPacked())
return false;
} else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
return false;
} else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
return false;
}
// Otherwise, we speculate that these two types will line up and recursively
// check the subelements.
Entry = DstTy;
SpeculativeTypes.push_back(SrcTy);
for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
if (!areTypesIsomorphic(DstTy->getContainedType(I),
SrcTy->getContainedType(I)))
return false;
// If everything seems to have lined up, then everything is great.
return true;
}
void TypeMapTy::linkDefinedTypeBodies() {
SmallVector<Type *, 16> Elements;
for (StructType *SrcSTy : SrcDefinitionsToResolve) {
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
assert(DstSTy->isOpaque());
// Map the body of the source type over to a new body for the dest type.
Elements.resize(SrcSTy->getNumElements());
for (unsigned I = 0, E = Elements.size(); I != E; ++I)
Elements[I] = get(SrcSTy->getElementType(I));
DstSTy->setBody(Elements, SrcSTy->isPacked());
DstStructTypesSet.switchToNonOpaque(DstSTy);
}
SrcDefinitionsToResolve.clear();
DstResolvedOpaqueTypes.clear();
}
void TypeMapTy::finishType(StructType *DTy, StructType *STy,
ArrayRef<Type *> ETypes) {
DTy->setBody(ETypes, STy->isPacked());
// Steal STy's name.
if (STy->hasName()) {
SmallString<16> TmpName = STy->getName();
STy->setName("");
DTy->setName(TmpName);
}
DstStructTypesSet.addNonOpaque(DTy);
}
Type *TypeMapTy::get(Type *Ty) {
SmallPtrSet<StructType *, 8> Visited;
return get(Ty, Visited);
}
Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
// If we already have an entry for this type, return it.
Type **Entry = &MappedTypes[Ty];
if (*Entry)
return *Entry;
// These are types that LLVM itself will unique.
bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
#ifndef NDEBUG
if (!IsUniqued) {
for (auto &Pair : MappedTypes) {
assert(!(Pair.first != Ty && Pair.second == Ty) &&
"mapping to a source type");
}
}
#endif
if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
StructType *DTy = StructType::create(Ty->getContext());
return *Entry = DTy;
}
// If this is not a recursive type, then just map all of the elements and
// then rebuild the type from inside out.
SmallVector<Type *, 4> ElementTypes;
// If there are no element types to map, then the type is itself. This is
// true for the anonymous {} struct, things like 'float', integers, etc.
if (Ty->getNumContainedTypes() == 0 && IsUniqued)
return *Entry = Ty;
// Remap all of the elements, keeping track of whether any of them change.
bool AnyChange = false;
ElementTypes.resize(Ty->getNumContainedTypes());
for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
ElementTypes[I] = get(Ty->getContainedType(I), Visited);
AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
}
// If we found our type while recursively processing stuff, just use it.
Entry = &MappedTypes[Ty];
if (*Entry) {
if (auto *DTy = dyn_cast<StructType>(*Entry)) {
if (DTy->isOpaque()) {
auto *STy = cast<StructType>(Ty);
finishType(DTy, STy, ElementTypes);
}
}
return *Entry;
}
// If all of the element types mapped directly over and the type is not
// a nomed struct, then the type is usable as-is.
if (!AnyChange && IsUniqued)
return *Entry = Ty;
// Otherwise, rebuild a modified type.
switch (Ty->getTypeID()) {
default:
llvm_unreachable("unknown derived type to remap");
case Type::ArrayTyID:
return *Entry = ArrayType::get(ElementTypes[0],
cast<ArrayType>(Ty)->getNumElements());
case Type::VectorTyID:
return *Entry = VectorType::get(ElementTypes[0],
cast<VectorType>(Ty)->getNumElements());
case Type::PointerTyID:
return *Entry = PointerType::get(ElementTypes[0],
cast<PointerType>(Ty)->getAddressSpace());
case Type::FunctionTyID:
return *Entry = FunctionType::get(ElementTypes[0],
makeArrayRef(ElementTypes).slice(1),
cast<FunctionType>(Ty)->isVarArg());
case Type::StructTyID: {
auto *STy = cast<StructType>(Ty);
bool IsPacked = STy->isPacked();
if (IsUniqued)
return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
// If the type is opaque, we can just use it directly.
if (STy->isOpaque()) {
DstStructTypesSet.addOpaque(STy);
return *Entry = Ty;
}
if (StructType *OldT =
DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
STy->setName("");
return *Entry = OldT;
}
if (!AnyChange) {
DstStructTypesSet.addNonOpaque(STy);
return *Entry = Ty;
}
StructType *DTy = StructType::create(Ty->getContext());
finishType(DTy, STy, ElementTypes);
return *Entry = DTy;
}
}
}
//===----------------------------------------------------------------------===//
// ModuleLinker implementation.
//===----------------------------------------------------------------------===//
namespace {
class ModuleLinker;
/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class ValueMaterializerTy final : public ValueMaterializer {
ModuleLinker *ModLinker;
public:
ValueMaterializerTy(ModuleLinker *ModLinker) : ModLinker(ModLinker) {}
Value *materializeDeclFor(Value *V) override;
void materializeInitFor(GlobalValue *New, GlobalValue *Old) override;
};
class LinkDiagnosticInfo : public DiagnosticInfo {
const Twine &Msg;
public:
LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
void print(DiagnosticPrinter &DP) const override;
};
LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
const Twine &Msg)
: DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
/// This is an implementation class for the LinkModules function, which is the
/// entrypoint for this file.
class ModuleLinker {
Module &DstM;
Module &SrcM;
TypeMapTy TypeMap;
ValueMaterializerTy ValMaterializer;
/// Mapping of values from what they used to be in Src, to what they are now
/// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
/// due to the use of Value handles which the Linker doesn't actually need,
/// but this allows us to reuse the ValueMapper code.
ValueToValueMapTy ValueMap;
// Set of items not to link in from source.
SmallPtrSet<const GlobalValue *, 16> DoNotLinkFromSource;
Use the DiagnosticHandler to print diagnostics when reading bitcode. The bitcode reading interface used std::error_code to report an error to the callers and it is the callers job to print diagnostics. This is not ideal for error handling or diagnostic reporting: * For error handling, all that the callers care about is 3 possibilities: * It worked * The bitcode file is corrupted/invalid. * The file is not bitcode at all. * For diagnostic, it is user friendly to include far more information about the invalid case so the user can find out what is wrong with the bitcode file. This comes up, for example, when a developer introduces a bug while extending the format. The compromise we had was to have a lot of error codes. With this patch we use the DiagnosticHandler to communicate with the human and std::error_code to communicate with the caller. This allows us to have far fewer error codes and adds the infrastructure to print better diagnostics. This is so because the diagnostics are printed when he issue is found. The code that detected the problem in alive in the stack and can pass down as much context as needed. As an example the patch updates test/Bitcode/invalid.ll. Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the caller. A simple one like llvm-dis can just use fatal errors. The gold plugin needs a bit more complex treatment because of being passed non-bitcode files. An hypothetical interactive tool would make all bitcode errors non-fatal. llvm-svn: 225562
2015-01-10 08:07:30 +08:00
DiagnosticHandlerFunction DiagnosticHandler;
/// For symbol clashes, prefer those from Src.
unsigned Flags;
/// Function index passed into ModuleLinker for using in function
/// importing/exporting handling.
const FunctionInfoIndex *ImportIndex;
/// Function to import from source module, all other functions are
/// imported as declarations instead of definitions.
DenseSet<const GlobalValue *> *ImportFunction;
/// Set to true if the given FunctionInfoIndex contains any functions
/// from this source module, in which case we must conservatively assume
/// that any of its functions may be imported into another module
/// as part of a different backend compilation process.
bool HasExportedFunctions = false;
Restore "Move metadata linking after lazy global materialization/linking." Summary: This reverts commit r251965. Restore "Move metadata linking after lazy global materialization/linking." This restores commit r251926, with fixes for the LTO bootstrapping bot failure. The bot failure was caused by references from debug metadata to otherwise unreferenced globals. Previously, this caused the lazy linking to link in their defs, which is unnecessary. With this patch, because lazy linking is complete when we encounter the metadata reference, the materializer created a declaration. For definitions such as aliases and comdats, it is illegal to have a declaration. Furthermore, metadata linking should not change code generation. Therefore, when linking of global value bodies is complete, the materializer will simply return nullptr as the new reference for the linked metadata. This change required fixing a different test to ensure there was a real reference to a linkonce global that was only being reference from metadata. Note that the new changes to the only-needed-named-metadata.ll test illustrate an issue with llvm-link -only-needed handling of comdat groups, whereby it may result in an incomplete comdat group. I note this in the test comments, but the issue is orthogonal to this patch (it can be reproduced without any metadata at head). Reviewers: dexonsmith, rafael, tra Subscribers: tobiasvk, joker.eph, llvm-commits Differential Revision: http://reviews.llvm.org/D14447 llvm-svn: 252320
2015-11-07 01:50:53 +08:00
/// Set to true when all global value body linking is complete (including
/// lazy linking). Used to prevent metadata linking from creating new
/// references.
bool DoneLinkingBodies = false;
Restore "Move metadata linking after lazy global materialization/linking." Summary: This reverts commit r251965. Restore "Move metadata linking after lazy global materialization/linking." This restores commit r251926, with fixes for the LTO bootstrapping bot failure. The bot failure was caused by references from debug metadata to otherwise unreferenced globals. Previously, this caused the lazy linking to link in their defs, which is unnecessary. With this patch, because lazy linking is complete when we encounter the metadata reference, the materializer created a declaration. For definitions such as aliases and comdats, it is illegal to have a declaration. Furthermore, metadata linking should not change code generation. Therefore, when linking of global value bodies is complete, the materializer will simply return nullptr as the new reference for the linked metadata. This change required fixing a different test to ensure there was a real reference to a linkonce global that was only being reference from metadata. Note that the new changes to the only-needed-named-metadata.ll test illustrate an issue with llvm-link -only-needed handling of comdat groups, whereby it may result in an incomplete comdat group. I note this in the test comments, but the issue is orthogonal to this patch (it can be reproduced without any metadata at head). Reviewers: dexonsmith, rafael, tra Subscribers: tobiasvk, joker.eph, llvm-commits Differential Revision: http://reviews.llvm.org/D14447 llvm-svn: 252320
2015-11-07 01:50:53 +08:00
bool HasError = false;
public:
ModuleLinker(Module &DstM, Linker::IdentifiedStructTypeSet &Set, Module &SrcM,
DiagnosticHandlerFunction DiagnosticHandler, unsigned Flags,
const FunctionInfoIndex *Index = nullptr,
DenseSet<const GlobalValue *> *FuncToImport = nullptr)
: DstM(DstM), SrcM(SrcM), TypeMap(Set), ValMaterializer(this),
DiagnosticHandler(DiagnosticHandler), Flags(Flags), ImportIndex(Index),
ImportFunction(FuncToImport) {
assert((ImportIndex || !ImportFunction) &&
"Expect a FunctionInfoIndex when importing");
// If we have a FunctionInfoIndex but no function to import,
// then this is the primary module being compiled in a ThinLTO
// backend compilation, and we need to see if it has functions that
// may be exported to another backend compilation.
if (ImportIndex && !ImportFunction)
HasExportedFunctions = ImportIndex->hasExportedFunctions(&SrcM);
}
bool run();
Value *materializeDeclFor(Value *V);
void materializeInitFor(GlobalValue *New, GlobalValue *Old);
private:
bool shouldOverrideFromSrc() { return Flags & Linker::OverrideFromSrc; }
bool shouldLinkOnlyNeeded() { return Flags & Linker::LinkOnlyNeeded; }
bool shouldInternalizeLinkedSymbols() {
return Flags & Linker::InternalizeLinkedSymbols;
}
/// Handles cloning of a global values from the source module into
/// the destination module, including setting the attributes and visibility.
GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, const GlobalValue *SGV,
const GlobalValue *DGV, bool ForDefinition);
/// Check if we should promote the given local value to global scope.
bool doPromoteLocalToGlobal(const GlobalValue *SGV);
bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
const GlobalValue &Src);
/// Helper method for setting a message and returning an error code.
bool emitError(const Twine &Message) {
DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
HasError = true;
return true;
}
void emitWarning(const Twine &Message) {
DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
}
bool getComdatLeader(Module &M, StringRef ComdatName,
const GlobalVariable *&GVar);
bool computeResultingSelectionKind(StringRef ComdatName,
Comdat::SelectionKind Src,
Comdat::SelectionKind Dst,
Comdat::SelectionKind &Result,
bool &LinkFromSrc);
std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
ComdatsChosen;
bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
bool &LinkFromSrc);
// Keep track of the global value members of each comdat in source.
DenseMap<const Comdat *, std::vector<GlobalValue *>> ComdatMembers;
/// Given a global in the source module, return the global in the
/// destination module that is being linked to, if any.
GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
// If the source has no name it can't link. If it has local linkage,
// there is no name match-up going on.
if (!SrcGV->hasName() || GlobalValue::isLocalLinkage(getLinkage(SrcGV)))
return nullptr;
// Otherwise see if we have a match in the destination module's symtab.
GlobalValue *DGV = DstM.getNamedValue(getName(SrcGV));
if (!DGV)
return nullptr;
// If we found a global with the same name in the dest module, but it has
// internal linkage, we are really not doing any linkage here.
if (DGV->hasLocalLinkage())
return nullptr;
// Otherwise, we do in fact link to the destination global.
return DGV;
}
void computeTypeMapping();
void upgradeMismatchedGlobalArray(StringRef Name);
void upgradeMismatchedGlobals();
bool linkIfNeeded(GlobalValue &GV);
bool linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV);
bool linkGlobalValueProto(GlobalValue *GV);
bool linkModuleFlagsMetadata();
void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
bool linkFunctionBody(Function &Dst, Function &Src);
void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
bool linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
/// Functions that take care of cloning a specific global value type
/// into the destination module.
GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap,
const GlobalVariable *SGVar);
Function *copyFunctionProto(TypeMapTy &TypeMap, const Function *SF);
GlobalValue *copyGlobalAliasProto(TypeMapTy &TypeMap, const GlobalAlias *SGA);
/// Helper methods to check if we are importing from or potentially
/// exporting from the current source module.
bool isPerformingImport() { return ImportFunction != nullptr; }
bool isModuleExporting() { return HasExportedFunctions; }
/// If we are importing from the source module, checks if we should
/// import SGV as a definition, otherwise import as a declaration.
bool doImportAsDefinition(const GlobalValue *SGV);
/// Get the name for SGV that should be used in the linked destination
/// module. Specifically, this handles the case where we need to rename
/// a local that is being promoted to global scope.
std::string getName(const GlobalValue *SGV);
/// Get the new linkage for SGV that should be used in the linked destination
/// module. Specifically, for ThinLTO importing or exporting it may need
/// to be adjusted.
GlobalValue::LinkageTypes getLinkage(const GlobalValue *SGV);
/// Copies the necessary global value attributes and name from the source
/// to the newly cloned global value.
void copyGVAttributes(GlobalValue *NewGV, const GlobalValue *SrcGV);
/// Updates the visibility for the new global cloned from the source
/// and, if applicable, linked with an existing destination global.
/// Handles visibility change required for promoted locals.
void setVisibility(GlobalValue *NewGV, const GlobalValue *SGV,
const GlobalValue *DGV = nullptr);
void linkNamedMDNodes();
};
}
/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
// If the global doesn't force its name or if it already has the right name,
// there is nothing for us to do.
// Note that any required local to global promotion should already be done,
// so promoted locals will not skip this handling as their linkage is no
// longer local.
if (GV->hasLocalLinkage() || GV->getName() == Name)
return;
Module *M = GV->getParent();
// If there is a conflict, rename the conflict.
if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
GV->takeName(ConflictGV);
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
} else {
GV->setName(Name); // Force the name back
}
}
/// copy additional attributes (those not needed to construct a GlobalValue)
/// from the SrcGV to the DestGV.
void ModuleLinker::copyGVAttributes(GlobalValue *NewGV,
const GlobalValue *SrcGV) {
NewGV->copyAttributesFrom(SrcGV);
forceRenaming(NewGV, getName(SrcGV));
}
bool ModuleLinker::doImportAsDefinition(const GlobalValue *SGV) {
if (!isPerformingImport())
return false;
auto *GA = dyn_cast<GlobalAlias>(SGV);
if (GA) {
if (GA->hasWeakAnyLinkage())
return false;
const GlobalObject *GO = GA->getBaseObject();
if (!GO->hasLinkOnceODRLinkage())
return false;
return doImportAsDefinition(GO);
}
// Always import GlobalVariable definitions, except for the special
// case of WeakAny which are imported as ExternalWeak declarations
// (see comments in ModuleLinker::getLinkage). The linkage changes
// described in ModuleLinker::getLinkage ensure the correct behavior (e.g.
// global variables with external linkage are transformed to
// available_externally definitions, which are ultimately turned into
// declarations after the EliminateAvailableExternally pass).
if (isa<GlobalVariable>(SGV) && !SGV->isDeclaration() &&
!SGV->hasWeakAnyLinkage())
return true;
// Only import the function requested for importing.
auto *SF = dyn_cast<Function>(SGV);
if (SF && ImportFunction->count(SF))
return true;
// Otherwise no.
return false;
}
bool ModuleLinker::doPromoteLocalToGlobal(const GlobalValue *SGV) {
assert(SGV->hasLocalLinkage());
// Both the imported references and the original local variable must
// be promoted.
if (!isPerformingImport() && !isModuleExporting())
return false;
// Local const variables never need to be promoted unless they are address
// taken. The imported uses can simply use the clone created in this module.
// For now we are conservative in determining which variables are not
// address taken by checking the unnamed addr flag. To be more aggressive,
// the address taken information must be checked earlier during parsing
// of the module and recorded in the function index for use when importing
// from that module.
auto *GVar = dyn_cast<GlobalVariable>(SGV);
if (GVar && GVar->isConstant() && GVar->hasUnnamedAddr())
return false;
// Eventually we only need to promote functions in the exporting module that
// are referenced by a potentially exported function (i.e. one that is in the
// function index).
return true;
}
std::string ModuleLinker::getName(const GlobalValue *SGV) {
// For locals that must be promoted to global scope, ensure that
// the promoted name uniquely identifies the copy in the original module,
// using the ID assigned during combined index creation. When importing,
// we rename all locals (not just those that are promoted) in order to
// avoid naming conflicts between locals imported from different modules.
if (SGV->hasLocalLinkage() &&
(doPromoteLocalToGlobal(SGV) || isPerformingImport()))
return FunctionInfoIndex::getGlobalNameForLocal(
SGV->getName(),
ImportIndex->getModuleId(SGV->getParent()->getModuleIdentifier()));
return SGV->getName();
}
GlobalValue::LinkageTypes ModuleLinker::getLinkage(const GlobalValue *SGV) {
// Any local variable that is referenced by an exported function needs
// to be promoted to global scope. Since we don't currently know which
// functions reference which local variables/functions, we must treat
// all as potentially exported if this module is exporting anything.
if (isModuleExporting()) {
if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV))
return GlobalValue::ExternalLinkage;
return SGV->getLinkage();
}
// Otherwise, if we aren't importing, no linkage change is needed.
if (!isPerformingImport())
return SGV->getLinkage();
switch (SGV->getLinkage()) {
case GlobalValue::ExternalLinkage:
// External defnitions are converted to available_externally
// definitions upon import, so that they are available for inlining
// and/or optimization, but are turned into declarations later
// during the EliminateAvailableExternally pass.
if (doImportAsDefinition(SGV) && !dyn_cast<GlobalAlias>(SGV))
return GlobalValue::AvailableExternallyLinkage;
// An imported external declaration stays external.
return SGV->getLinkage();
case GlobalValue::AvailableExternallyLinkage:
// An imported available_externally definition converts
// to external if imported as a declaration.
if (!doImportAsDefinition(SGV))
return GlobalValue::ExternalLinkage;
// An imported available_externally declaration stays that way.
return SGV->getLinkage();
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
// These both stay the same when importing the definition.
// The ThinLTO pass will eventually force-import their definitions.
return SGV->getLinkage();
case GlobalValue::WeakAnyLinkage:
// Can't import weak_any definitions correctly, or we might change the
// program semantics, since the linker will pick the first weak_any
// definition and importing would change the order they are seen by the
// linker. The module linking caller needs to enforce this.
assert(!doImportAsDefinition(SGV));
// If imported as a declaration, it becomes external_weak.
return GlobalValue::ExternalWeakLinkage;
case GlobalValue::WeakODRLinkage:
// For weak_odr linkage, there is a guarantee that all copies will be
// equivalent, so the issue described above for weak_any does not exist,
// and the definition can be imported. It can be treated similarly
// to an imported externally visible global value.
if (doImportAsDefinition(SGV) && !dyn_cast<GlobalAlias>(SGV))
return GlobalValue::AvailableExternallyLinkage;
else
return GlobalValue::ExternalLinkage;
case GlobalValue::AppendingLinkage:
// It would be incorrect to import an appending linkage variable,
// since it would cause global constructors/destructors to be
// executed multiple times. This should have already been handled
// by linkGlobalValueProto.
llvm_unreachable("Cannot import appending linkage variable");
case GlobalValue::InternalLinkage:
case GlobalValue::PrivateLinkage:
// If we are promoting the local to global scope, it is handled
// similarly to a normal externally visible global.
if (doPromoteLocalToGlobal(SGV)) {
if (doImportAsDefinition(SGV) && !dyn_cast<GlobalAlias>(SGV))
return GlobalValue::AvailableExternallyLinkage;
else
return GlobalValue::ExternalLinkage;
}
// A non-promoted imported local definition stays local.
// The ThinLTO pass will eventually force-import their definitions.
return SGV->getLinkage();
case GlobalValue::ExternalWeakLinkage:
// External weak doesn't apply to definitions, must be a declaration.
assert(!doImportAsDefinition(SGV));
// Linkage stays external_weak.
return SGV->getLinkage();
case GlobalValue::CommonLinkage:
// Linkage stays common on definitions.
// The ThinLTO pass will eventually force-import their definitions.
return SGV->getLinkage();
}
llvm_unreachable("unknown linkage type");
}
/// Loop through the global variables in the src module and merge them into the
/// dest module.
GlobalVariable *
ModuleLinker::copyGlobalVariableProto(TypeMapTy &TypeMap,
const GlobalVariable *SGVar) {
// No linking to be performed or linking from the source: simply create an
// identical version of the symbol over in the dest module... the
// initializer will be filled in later by LinkGlobalInits.
GlobalVariable *NewDGV =
new GlobalVariable(DstM, TypeMap.get(SGVar->getType()->getElementType()),
SGVar->isConstant(), GlobalValue::ExternalLinkage,
/*init*/ nullptr, getName(SGVar),
/*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
SGVar->getType()->getAddressSpace());
return NewDGV;
}
/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
Function *ModuleLinker::copyFunctionProto(TypeMapTy &TypeMap,
const Function *SF) {
// If there is no linkage to be performed or we are linking from the source,
// bring SF over.
return Function::Create(TypeMap.get(SF->getFunctionType()),
GlobalValue::ExternalLinkage, getName(SF), &DstM);
}
/// Set up prototypes for any aliases that come over from the source module.
GlobalValue *ModuleLinker::copyGlobalAliasProto(TypeMapTy &TypeMap,
const GlobalAlias *SGA) {
// If we are importing and encounter a weak_any alias, or an alias to
// an object being imported as a declaration, we must import the alias
// as a declaration as well, which involves converting it to a non-alias.
// See comments in ModuleLinker::getLinkage for why we cannot import
// weak_any defintions.
if (isPerformingImport() && !doImportAsDefinition(SGA)) {
// Need to convert to declaration. All aliases must be definitions.
const GlobalValue *GVal = SGA->getBaseObject();
GlobalValue *NewGV;
if (auto *GVar = dyn_cast<GlobalVariable>(GVal))
NewGV = copyGlobalVariableProto(TypeMap, GVar);
else {
auto *F = dyn_cast<Function>(GVal);
assert(F);
NewGV = copyFunctionProto(TypeMap, F);
}
// Set the linkage to External or ExternalWeak (see comments in
// ModuleLinker::getLinkage for why WeakAny is converted to ExternalWeak).
if (SGA->hasWeakAnyLinkage())
NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
else
NewGV->setLinkage(GlobalValue::ExternalLinkage);
return NewGV;
}
// If there is no linkage to be performed or we're linking from the source,
// bring over SGA.
auto *Ty = TypeMap.get(SGA->getValueType());
return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
GlobalValue::ExternalLinkage, getName(SGA), &DstM);
}
2015-11-29 22:33:06 +08:00
static GlobalValue::VisibilityTypes
getMinVisibility(GlobalValue::VisibilityTypes A,
GlobalValue::VisibilityTypes B) {
if (A == GlobalValue::HiddenVisibility || B == GlobalValue::HiddenVisibility)
return GlobalValue::HiddenVisibility;
if (A == GlobalValue::ProtectedVisibility ||
B == GlobalValue::ProtectedVisibility)
return GlobalValue::ProtectedVisibility;
return GlobalValue::DefaultVisibility;
}
void ModuleLinker::setVisibility(GlobalValue *NewGV, const GlobalValue *SGV,
const GlobalValue *DGV) {
GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
if (DGV)
2015-11-29 22:33:06 +08:00
Visibility = getMinVisibility(DGV->getVisibility(), Visibility);
// For promoted locals, mark them hidden so that they can later be
// stripped from the symbol table to reduce bloat.
if (SGV->hasLocalLinkage() && doPromoteLocalToGlobal(SGV))
Visibility = GlobalValue::HiddenVisibility;
NewGV->setVisibility(Visibility);
}
GlobalValue *ModuleLinker::copyGlobalValueProto(TypeMapTy &TypeMap,
const GlobalValue *SGV,
const GlobalValue *DGV,
bool ForDefinition) {
GlobalValue *NewGV;
if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
NewGV = copyGlobalVariableProto(TypeMap, SGVar);
} else if (auto *SF = dyn_cast<Function>(SGV)) {
NewGV = copyFunctionProto(TypeMap, SF);
} else {
if (ForDefinition)
NewGV = copyGlobalAliasProto(TypeMap, cast<GlobalAlias>(SGV));
else
NewGV = new GlobalVariable(
DstM, TypeMap.get(SGV->getType()->getElementType()),
/*isConstant*/ false, GlobalValue::ExternalLinkage,
/*init*/ nullptr, getName(SGV),
/*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
SGV->getType()->getAddressSpace());
}
if (ForDefinition)
NewGV->setLinkage(getLinkage(SGV));
else if (SGV->hasAvailableExternallyLinkage() || SGV->hasWeakLinkage() ||
SGV->hasLinkOnceLinkage())
NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
copyGVAttributes(NewGV, SGV);
setVisibility(NewGV, SGV, DGV);
return NewGV;
}
Value *ValueMaterializerTy::materializeDeclFor(Value *V) {
return ModLinker->materializeDeclFor(V);
}
Value *ModuleLinker::materializeDeclFor(Value *V) {
auto *SGV = dyn_cast<GlobalValue>(V);
if (!SGV)
return nullptr;
Restore "Move metadata linking after lazy global materialization/linking." Summary: This reverts commit r251965. Restore "Move metadata linking after lazy global materialization/linking." This restores commit r251926, with fixes for the LTO bootstrapping bot failure. The bot failure was caused by references from debug metadata to otherwise unreferenced globals. Previously, this caused the lazy linking to link in their defs, which is unnecessary. With this patch, because lazy linking is complete when we encounter the metadata reference, the materializer created a declaration. For definitions such as aliases and comdats, it is illegal to have a declaration. Furthermore, metadata linking should not change code generation. Therefore, when linking of global value bodies is complete, the materializer will simply return nullptr as the new reference for the linked metadata. This change required fixing a different test to ensure there was a real reference to a linkonce global that was only being reference from metadata. Note that the new changes to the only-needed-named-metadata.ll test illustrate an issue with llvm-link -only-needed handling of comdat groups, whereby it may result in an incomplete comdat group. I note this in the test comments, but the issue is orthogonal to this patch (it can be reproduced without any metadata at head). Reviewers: dexonsmith, rafael, tra Subscribers: tobiasvk, joker.eph, llvm-commits Differential Revision: http://reviews.llvm.org/D14447 llvm-svn: 252320
2015-11-07 01:50:53 +08:00
// If we are done linking global value bodies (i.e. we are performing
// metadata linking), don't link in the global value due to this
// reference, simply map it to null.
if (DoneLinkingBodies)
Restore "Move metadata linking after lazy global materialization/linking." Summary: This reverts commit r251965. Restore "Move metadata linking after lazy global materialization/linking." This restores commit r251926, with fixes for the LTO bootstrapping bot failure. The bot failure was caused by references from debug metadata to otherwise unreferenced globals. Previously, this caused the lazy linking to link in their defs, which is unnecessary. With this patch, because lazy linking is complete when we encounter the metadata reference, the materializer created a declaration. For definitions such as aliases and comdats, it is illegal to have a declaration. Furthermore, metadata linking should not change code generation. Therefore, when linking of global value bodies is complete, the materializer will simply return nullptr as the new reference for the linked metadata. This change required fixing a different test to ensure there was a real reference to a linkonce global that was only being reference from metadata. Note that the new changes to the only-needed-named-metadata.ll test illustrate an issue with llvm-link -only-needed handling of comdat groups, whereby it may result in an incomplete comdat group. I note this in the test comments, but the issue is orthogonal to this patch (it can be reproduced without any metadata at head). Reviewers: dexonsmith, rafael, tra Subscribers: tobiasvk, joker.eph, llvm-commits Differential Revision: http://reviews.llvm.org/D14447 llvm-svn: 252320
2015-11-07 01:50:53 +08:00
return nullptr;
linkGlobalValueProto(SGV);
if (HasError)
return nullptr;
Value *Ret = ValueMap[SGV];
assert(Ret);
return Ret;
}
void ValueMaterializerTy::materializeInitFor(GlobalValue *New,
GlobalValue *Old) {
return ModLinker->materializeInitFor(New, Old);
}
void ModuleLinker::materializeInitFor(GlobalValue *New, GlobalValue *Old) {
if (auto *F = dyn_cast<Function>(New)) {
if (!F->isDeclaration())
return;
} else if (auto *V = dyn_cast<GlobalVariable>(New)) {
if (V->hasInitializer())
return;
} else {
auto *A = cast<GlobalAlias>(New);
if (A->getAliasee())
return;
}
if (Old->isDeclaration())
return;
if (isPerformingImport() && !doImportAsDefinition(Old))
return;
if (!New->hasLocalLinkage() && DoNotLinkFromSource.count(Old))
return;
linkGlobalValueBody(*New, *Old);
}
bool ModuleLinker::getComdatLeader(Module &M, StringRef ComdatName,
const GlobalVariable *&GVar) {
const GlobalValue *GVal = M.getNamedValue(ComdatName);
if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
GVal = GA->getBaseObject();
if (!GVal)
// We cannot resolve the size of the aliasee yet.
return emitError("Linking COMDATs named '" + ComdatName +
"': COMDAT key involves incomputable alias size.");
}
GVar = dyn_cast_or_null<GlobalVariable>(GVal);
if (!GVar)
return emitError(
"Linking COMDATs named '" + ComdatName +
"': GlobalVariable required for data dependent selection!");
return false;
}
bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
Comdat::SelectionKind Src,
Comdat::SelectionKind Dst,
Comdat::SelectionKind &Result,
bool &LinkFromSrc) {
// The ability to mix Comdat::SelectionKind::Any with
// Comdat::SelectionKind::Largest is a behavior that comes from COFF.
bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
Dst == Comdat::SelectionKind::Largest;
bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
Src == Comdat::SelectionKind::Largest;
if (DstAnyOrLargest && SrcAnyOrLargest) {
if (Dst == Comdat::SelectionKind::Largest ||
Src == Comdat::SelectionKind::Largest)
Result = Comdat::SelectionKind::Largest;
else
Result = Comdat::SelectionKind::Any;
} else if (Src == Dst) {
Result = Dst;
} else {
return emitError("Linking COMDATs named '" + ComdatName +
"': invalid selection kinds!");
}
switch (Result) {
case Comdat::SelectionKind::Any:
// Go with Dst.
LinkFromSrc = false;
break;
case Comdat::SelectionKind::NoDuplicates:
return emitError("Linking COMDATs named '" + ComdatName +
"': noduplicates has been violated!");
case Comdat::SelectionKind::ExactMatch:
case Comdat::SelectionKind::Largest:
case Comdat::SelectionKind::SameSize: {
const GlobalVariable *DstGV;
const GlobalVariable *SrcGV;
if (getComdatLeader(DstM, ComdatName, DstGV) ||
getComdatLeader(SrcM, ComdatName, SrcGV))
return true;
const DataLayout &DstDL = DstM.getDataLayout();
const DataLayout &SrcDL = SrcM.getDataLayout();
uint64_t DstSize =
DstDL.getTypeAllocSize(DstGV->getType()->getPointerElementType());
uint64_t SrcSize =
SrcDL.getTypeAllocSize(SrcGV->getType()->getPointerElementType());
if (Result == Comdat::SelectionKind::ExactMatch) {
if (SrcGV->getInitializer() != DstGV->getInitializer())
return emitError("Linking COMDATs named '" + ComdatName +
"': ExactMatch violated!");
LinkFromSrc = false;
} else if (Result == Comdat::SelectionKind::Largest) {
LinkFromSrc = SrcSize > DstSize;
} else if (Result == Comdat::SelectionKind::SameSize) {
if (SrcSize != DstSize)
return emitError("Linking COMDATs named '" + ComdatName +
"': SameSize violated!");
LinkFromSrc = false;
} else {
llvm_unreachable("unknown selection kind");
}
break;
}
}
return false;
}
bool ModuleLinker::getComdatResult(const Comdat *SrcC,
Comdat::SelectionKind &Result,
bool &LinkFromSrc) {
Comdat::SelectionKind SSK = SrcC->getSelectionKind();
StringRef ComdatName = SrcC->getName();
Module::ComdatSymTabType &ComdatSymTab = DstM.getComdatSymbolTable();
Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
if (DstCI == ComdatSymTab.end()) {
// Use the comdat if it is only available in one of the modules.
LinkFromSrc = true;
Result = SSK;
return false;
}
const Comdat *DstC = &DstCI->second;
Comdat::SelectionKind DSK = DstC->getSelectionKind();
return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
LinkFromSrc);
}
bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
const GlobalValue &Dest,
const GlobalValue &Src) {
// Should we unconditionally use the Src?
if (shouldOverrideFromSrc()) {
LinkFromSrc = true;
return false;
}
// We always have to add Src if it has appending linkage.
if (Src.hasAppendingLinkage()) {
// Caller should have already determined that we can't link from source
// when importing (see comments in linkGlobalValueProto).
assert(!isPerformingImport());
LinkFromSrc = true;
return false;
}
bool SrcIsDeclaration = Src.isDeclarationForLinker();
bool DestIsDeclaration = Dest.isDeclarationForLinker();
if (isPerformingImport()) {
if (isa<Function>(&Src)) {
// For functions, LinkFromSrc iff this is the function requested
// for importing. For variables, decide below normally.
LinkFromSrc = ImportFunction->count(&Src);
return false;
}
// Check if this is an alias with an already existing definition
// in Dest, which must have come from a prior importing pass from
// the same Src module. Unlike imported function and variable
// definitions, which are imported as available_externally and are
// not definitions for the linker, that is not a valid linkage for
// imported aliases which must be definitions. Simply use the existing
// Dest copy.
if (isa<GlobalAlias>(&Src) && !DestIsDeclaration) {
assert(isa<GlobalAlias>(&Dest));
LinkFromSrc = false;
return false;
}
}
if (SrcIsDeclaration) {
// If Src is external or if both Src & Dest are external.. Just link the
// external globals, we aren't adding anything.
if (Src.hasDLLImportStorageClass()) {
// If one of GVs is marked as DLLImport, result should be dllimport'ed.
LinkFromSrc = DestIsDeclaration;
return false;
}
// If the Dest is weak, use the source linkage.
LinkFromSrc = Dest.hasExternalWeakLinkage();
return false;
}
if (DestIsDeclaration) {
// If Dest is external but Src is not:
LinkFromSrc = true;
return false;
}
if (Src.hasCommonLinkage()) {
if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
LinkFromSrc = true;
return false;
}
if (!Dest.hasCommonLinkage()) {
LinkFromSrc = false;
return false;
}
const DataLayout &DL = Dest.getParent()->getDataLayout();
uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
LinkFromSrc = SrcSize > DestSize;
return false;
}
if (Src.isWeakForLinker()) {
assert(!Dest.hasExternalWeakLinkage());
assert(!Dest.hasAvailableExternallyLinkage());
if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
LinkFromSrc = true;
return false;
}
LinkFromSrc = false;
return false;
}
if (Dest.isWeakForLinker()) {
assert(Src.hasExternalLinkage());
LinkFromSrc = true;
return false;
}
assert(!Src.hasExternalWeakLinkage());
assert(!Dest.hasExternalWeakLinkage());
assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
"Unexpected linkage type!");
return emitError("Linking globals named '" + Src.getName() +
"': symbol multiply defined!");
}
/// Loop over all of the linked values to compute type mappings. For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void ModuleLinker::computeTypeMapping() {
for (GlobalValue &SGV : SrcM.globals()) {
2014-11-25 12:26:19 +08:00
GlobalValue *DGV = getLinkedToGlobal(&SGV);
if (!DGV)
continue;
if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
continue;
}
// Unify the element type of appending arrays.
ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
2014-11-25 12:26:19 +08:00
ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
2009-08-12 02:01:24 +08:00
}
for (GlobalValue &SGV : SrcM) {
2014-11-25 12:26:19 +08:00
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
}
for (GlobalValue &SGV : SrcM.aliases()) {
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
}
// Incorporate types by name, scanning all the types in the source module.
// At this point, the destination module may have a type "%foo = { i32 }" for
// example. When the source module got loaded into the same LLVMContext, if
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
std::vector<StructType *> Types = SrcM.getIdentifiedStructTypes();
Ask the module for its the identified types. When lazy reading a module, the types used in a function will not be visible to a TypeFinder until the body is read. This patch fixes that by asking the module for its identified struct types. If a materializer is present, the module asks it. If not, it uses a TypeFinder. This fixes pr21374. I will be the first to say that this is ugly, but it was the best I could find. Some of the options I looked at: * Asking the LLVMContext. This could be made to work for gold, but not currently for ld64. ld64 will load multiple modules into a single context before merging them. This causes us to see types from future merges. Unfortunately, MappedTypes is not just a cache when it comes to opaque types. Once the mapping has been made, we have to remember it for as long as the key may be used. This would mean moving MappedTypes to the Linker class and having to drop the Linker::LinkModules static methods, which are visible from C. * Adding an option to ignore function bodies in the TypeFinder. This would fix the PR by picking the worst result. It would work, but unfortunately we are currently quite dependent on the upfront type merging. I will try to reduce our dependency, but it is not clear that we will be able to get rid of it for now. The only clean solution I could think of is making the Module own the types. This would have other advantages, but it is a much bigger change. I will propose it, but it is nice to have this fixed while that is discussed. With the gold plugin, this patch takes the number of types in the LTO clang binary from 52817 to 49669. llvm-svn: 223215
2014-12-03 15:18:23 +08:00
for (StructType *ST : Types) {
if (!ST->hasName())
continue;
// Check to see if there is a dot in the name followed by a digit.
size_t DotPos = ST->getName().rfind('.');
if (DotPos == 0 || DotPos == StringRef::npos ||
ST->getName().back() == '.' ||
!isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
continue;
// Check to see if the destination module has a struct with the prefix name.
StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos));
if (!DST)
continue;
// Don't use it if this actually came from the source module. They're in
// the same LLVMContext after all. Also don't use it unless the type is
// actually used in the destination module. This can happen in situations
// like this:
//
// Module A Module B
// -------- --------
// %Z = type { %A } %B = type { %C.1 }
// %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
// %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
// %C = type { i8* } %B.3 = type { %C.1 }
//
// When we link Module B with Module A, the '%B' in Module B is
// used. However, that would then use '%C.1'. But when we process '%C.1',
// we prefer to take the '%C' version. So we are then left with both
// '%C.1' and '%C' being used for the same types. This leads to some
// variables using one type and some using the other.
if (TypeMap.DstStructTypesSet.hasType(DST))
TypeMap.addTypeMapping(DST, ST);
}
// Now that we have discovered all of the type equivalences, get a body for
// any 'opaque' types in the dest module that are now resolved.
TypeMap.linkDefinedTypeBodies();
2009-08-12 02:01:24 +08:00
}
static void upgradeGlobalArray(GlobalVariable *GV) {
ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
StructType *OldTy = cast<StructType>(ATy->getElementType());
assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
// Get the upgraded 3 element type.
PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
VoidPtrTy};
StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
// Build new constants with a null third field filled in.
Constant *OldInitC = GV->getInitializer();
ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
// Invalid initializer; give up.
return;
std::vector<Constant *> Initializers;
if (OldInit && OldInit->getNumOperands()) {
Value *Null = Constant::getNullValue(VoidPtrTy);
for (Use &U : OldInit->operands()) {
ConstantStruct *Init = cast<ConstantStruct>(U.get());
Initializers.push_back(ConstantStruct::get(
NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
}
}
assert(Initializers.size() == ATy->getNumElements() &&
"Failed to copy all array elements");
// Replace the old GV with a new one.
ATy = ArrayType::get(NewTy, Initializers.size());
Constant *NewInit = ConstantArray::get(ATy, Initializers);
GlobalVariable *NewGV = new GlobalVariable(
*GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
GV->isExternallyInitialized());
NewGV->copyAttributesFrom(GV);
NewGV->takeName(GV);
assert(GV->use_empty() && "program cannot use initializer list");
GV->eraseFromParent();
}
void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
// Look for the global arrays.
auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM.getNamedValue(Name));
if (!DstGV)
return;
auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM.getNamedValue(Name));
if (!SrcGV)
return;
// Check if the types already match.
auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
auto *SrcTy =
cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
if (DstTy == SrcTy)
return;
// Grab the element types. We can only upgrade an array of a two-field
// struct. Only bother if the other one has three-fields.
auto *DstEltTy = cast<StructType>(DstTy->getElementType());
auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
upgradeGlobalArray(DstGV);
return;
}
if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
upgradeGlobalArray(SrcGV);
// We can't upgrade any other differences.
}
void ModuleLinker::upgradeMismatchedGlobals() {
upgradeMismatchedGlobalArray("llvm.global_ctors");
upgradeMismatchedGlobalArray("llvm.global_dtors");
}
static void getArrayElements(const Constant *C,
SmallVectorImpl<Constant *> &Dest) {
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
for (unsigned i = 0; i != NumElements; ++i)
Dest.push_back(C->getAggregateElement(i));
}
/// If there were any appending global variables, link them together now.
/// Return true on error.
bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV) {
ArrayType *SrcTy =
cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
Type *EltTy = SrcTy->getElementType();
if (DstGV) {
ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
return emitError(
"Linking globals named '" + SrcGV->getName() +
"': can only link appending global with another appending global!");
// Check to see that they two arrays agree on type.
if (EltTy != DstTy->getElementType())
return emitError("Appending variables with different element types!");
if (DstGV->isConstant() != SrcGV->isConstant())
return emitError("Appending variables linked with different const'ness!");
if (DstGV->getAlignment() != SrcGV->getAlignment())
return emitError(
"Appending variables with different alignment need to be linked!");
if (DstGV->getVisibility() != SrcGV->getVisibility())
return emitError(
"Appending variables with different visibility need to be linked!");
if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
return emitError(
"Appending variables with different unnamed_addr need to be linked!");
if (StringRef(DstGV->getSection()) != SrcGV->getSection())
return emitError(
"Appending variables with different section name need to be linked!");
}
SmallVector<Constant *, 16> DstElements;
if (DstGV)
getArrayElements(DstGV->getInitializer(), DstElements);
SmallVector<Constant *, 16> SrcElements;
getArrayElements(SrcGV->getInitializer(), SrcElements);
StringRef Name = SrcGV->getName();
bool IsNewStructor =
(Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
cast<StructType>(EltTy)->getNumElements() == 3;
if (IsNewStructor)
SrcElements.erase(
std::remove_if(SrcElements.begin(), SrcElements.end(),
[this](Constant *E) {
auto *Key = dyn_cast<GlobalValue>(
E->getAggregateElement(2)->stripPointerCasts());
return DoNotLinkFromSource.count(Key);
}),
SrcElements.end());
uint64_t NewSize = DstElements.size() + SrcElements.size();
ArrayType *NewType = ArrayType::get(EltTy, NewSize);
// Create the new global variable.
GlobalVariable *NG = new GlobalVariable(
DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
/*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
SrcGV->getType()->getAddressSpace());
// Propagate alignment, visibility and section info.
copyGVAttributes(NG, SrcGV);
// Replace any uses of the two global variables with uses of the new
// global.
ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
for (auto *V : SrcElements) {
DstElements.push_back(
MapValue(V, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer));
}
NG->setInitializer(ConstantArray::get(NewType, DstElements));
if (DstGV) {
DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
DstGV->eraseFromParent();
}
return false;
}
bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
GlobalValue *DGV = getLinkedToGlobal(SGV);
// Handle the ultra special appending linkage case first.
assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
if (SGV->hasAppendingLinkage() && isPerformingImport()) {
// Don't want to append to global_ctors list, for example, when we
// are importing for ThinLTO, otherwise the global ctors and dtors
// get executed multiple times for local variables (the latter causing
// double frees).
DoNotLinkFromSource.insert(SGV);
return false;
}
if (SGV->hasAppendingLinkage())
return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
cast<GlobalVariable>(SGV));
bool LinkFromSrc = true;
Comdat *C = nullptr;
bool HasUnnamedAddr = SGV->hasUnnamedAddr();
if (const Comdat *SC = SGV->getComdat()) {
Comdat::SelectionKind SK;
std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
C = DstM.getOrInsertComdat(SC->getName());
C->setSelectionKind(SK);
if (SGV->hasLocalLinkage())
LinkFromSrc = true;
} else if (DGV) {
if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
return true;
}
if (!LinkFromSrc) {
// Track the source global so that we don't attempt to copy it over when
// processing global initializers.
DoNotLinkFromSource.insert(SGV);
if (DGV)
// Make sure to remember this mapping.
ValueMap[SGV] =
ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
}
Revert r221014: "Refactor duplicated code in liking GlobalValues." This commit introduces heap-use-after-free detected by ASan. Here is the output for one of several tests that detect it: ******************** TEST 'LLVM :: Linker/AppendingLinkage.ll' FAILED ******************** Command Output (stderr): -- ================================================================= ==2122==ERROR: AddressSanitizer: heap-use-after-free on address 0x60c00000b9c8 at pc 0x0000005d05d1 bp 0x7fff64ed27c0 sp 0x7fff64ed27b8 READ of size 4 at 0x60c00000b9c8 thread T0 #0 0x5d05d0 in llvm::GlobalValue::setUnnamedAddr(bool) /usr/local/google/home/chandlerc/src/llvm/build/../include/llvm/IR/GlobalValue.h:115:35 #1 0x69fff1 in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1041:5 #2 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9 #3 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10 #4 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9 #5 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287 #6 0x41eb71 in _start (/usr/local/google/home/chandlerc/src/llvm/build/bin/llvm-link+0x41eb71) 0x60c00000b9c8 is located 72 bytes inside of 128-byte region [0x60c00000b980,0x60c00000ba00) freed by thread T0 here: #0 0x4a1e6b in operator delete(void*) /usr/local/google/home/chandlerc/src/llvm/opt-build/../projects/compiler-rt/lib/asan/asan_new_delete.cc:94:3 #1 0x5d1a7a in llvm::iplist<llvm::GlobalVariable, llvm::ilist_traits<llvm::GlobalVariable> >::erase(llvm::ilist_iterator<llvm::GlobalVariable>) /usr/local/google/home/chandlerc/src/llvm/build/../inclu de/llvm/ADT/ilist.h:466:5 #2 0x5d1980 in llvm::GlobalVariable::eraseFromParent() /usr/local/google/home/chandlerc/src/llvm/build/../lib/IR/Globals.cpp:204:3 #3 0x6a8a4d in (anonymous namespace)::ModuleLinker::linkAppendingVarProto(llvm::GlobalVariable*, llvm::GlobalVariable const*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules. cpp:980:3 #4 0x6a7403 in (anonymous namespace)::ModuleLinker::linkGlobalVariableProto(llvm::GlobalVariable const*, llvm::GlobalValue*, bool) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkMod ules.cpp:1074:11 #5 0x69ff4e in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1028:13 #6 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9 #7 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10 #8 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9 #9 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287 previously allocated by thread T0 here: #0 0x4a192b in operator new(unsigned long) /usr/local/google/home/chandlerc/src/llvm/opt-build/../projects/compiler-rt/lib/asan/asan_new_delete.cc:62:35 #1 0x61d85c in llvm::User::operator new(unsigned long, unsigned int) /usr/local/google/home/chandlerc/src/llvm/build/../lib/IR/User.cpp:57:19 #2 0x6a7525 in (anonymous namespace)::ModuleLinker::linkGlobalVariableProto(llvm::GlobalVariable const*, llvm::GlobalValue*, bool) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkMod ules.cpp:1100:3 #3 0x69ff4e in (anonymous namespace)::ModuleLinker::linkGlobalValueProto(llvm::GlobalValue*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1028:13 #4 0x697229 in (anonymous namespace)::ModuleLinker::run() /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1485:9 #5 0x696542 in llvm::Linker::linkInModule(llvm::Module*) /usr/local/google/home/chandlerc/src/llvm/build/../lib/Linker/LinkModules.cpp:1621:10 #6 0x4a2db7 in main /usr/local/google/home/chandlerc/src/llvm/build/../tools/llvm-link/llvm-link.cpp:116:9 #7 0x7f4ae61e5ec4 in __libc_start_main /build/buildd/eglibc-2.19/csu/libc-start.c:287 SUMMARY: AddressSanitizer: heap-use-after-free /usr/local/google/home/chandlerc/src/llvm/build/../include/llvm/IR/GlobalValue.h:115 llvm::GlobalValue::setUnnamedAddr(bool) Shadow bytes around the buggy address: 0x0c187fff96e0: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00 0x0c187fff96f0: 00 00 00 00 00 00 00 fa fa fa fa fa fa fa fa fa 0x0c187fff9700: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fa 0x0c187fff9710: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00 0x0c187fff9720: 00 00 00 00 00 00 00 00 fa fa fa fa fa fa fa fa =>0x0c187fff9730: fd fd fd fd fd fd fd fd fd[fd]fd fd fd fd fd fd 0x0c187fff9740: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd 0x0c187fff9750: fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa fa 0x0c187fff9760: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c187fff9770: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd 0x0c187fff9780: fd fd fd fd fd fd fd fd fa fa fa fa fa fa fa fa Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Heap right redzone: fb Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack partial redzone: f4 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac ASan internal: fe ==2122==ABORTING llvm-svn: 221096
2014-11-02 17:10:31 +08:00
if (DGV)
HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
GlobalValue *NewGV;
if (!LinkFromSrc && DGV) {
NewGV = DGV;
// When linking from source we setVisibility from copyGlobalValueProto.
setVisibility(NewGV, SGV, DGV);
} else {
NewGV = copyGlobalValueProto(TypeMap, SGV, DGV, LinkFromSrc);
if (isPerformingImport() && !doImportAsDefinition(SGV))
DoNotLinkFromSource.insert(SGV);
}
NewGV->setUnnamedAddr(HasUnnamedAddr);
if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
if (C && LinkFromSrc)
NewGO->setComdat(C);
if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
}
if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
auto *SGVar = dyn_cast<GlobalVariable>(SGV);
if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
(!DGVar->isConstant() || !SGVar->isConstant()))
NewGVar->setConstant(false);
}
// Make sure to remember this mapping.
if (NewGV != DGV) {
if (DGV) {
DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
DGV->eraseFromParent();
}
ValueMap[SGV] = NewGV;
}
return false;
}
/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
// Figure out what the initializer looks like in the dest module.
Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap,
RF_MoveDistinctMDs, &TypeMap, &ValMaterializer));
}
/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
assert(Dst.isDeclaration() && !Src.isDeclaration());
// Materialize if needed.
if (std::error_code EC = Src.materialize())
return emitError(EC.message());
// Link in the prefix data.
if (Src.hasPrefixData())
Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap,
RF_MoveDistinctMDs, &TypeMap, &ValMaterializer));
// Link in the prologue data.
if (Src.hasPrologueData())
Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap,
RF_MoveDistinctMDs, &TypeMap,
&ValMaterializer));
// Link in the personality function.
if (Src.hasPersonalityFn())
Dst.setPersonalityFn(MapValue(Src.getPersonalityFn(), ValueMap,
RF_MoveDistinctMDs, &TypeMap,
&ValMaterializer));
// Go through and convert function arguments over, remembering the mapping.
Function::arg_iterator DI = Dst.arg_begin();
for (Argument &Arg : Src.args()) {
DI->setName(Arg.getName()); // Copy the name over.
// Add a mapping to our mapping.
ValueMap[&Arg] = &*DI;
2014-12-08 22:20:10 +08:00
++DI;
}
// Copy over the metadata attachments.
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
Src.getAllMetadata(MDs);
for (const auto &I : MDs)
Dst.setMetadata(I.first, MapMetadata(I.second, ValueMap, RF_MoveDistinctMDs,
&TypeMap, &ValMaterializer));
// Splice the body of the source function into the dest function.
Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
// At this point, all of the instructions and values of the function are now
// copied over. The only problem is that they are still referencing values in
// the Source function as operands. Loop through all of the operands of the
// functions and patch them up to point to the local versions.
for (BasicBlock &BB : Dst)
2014-12-08 22:20:10 +08:00
for (Instruction &I : BB)
RemapInstruction(&I, ValueMap,
RF_IgnoreMissingEntries | RF_MoveDistinctMDs, &TypeMap,
&ValMaterializer);
// There is no need to map the arguments anymore.
for (Argument &Arg : Src.args())
2014-12-08 22:20:10 +08:00
ValueMap.erase(&Arg);
Src.dematerialize();
return false;
}
void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
Constant *Aliasee = Src.getAliasee();
Constant *Val = MapValue(Aliasee, ValueMap, RF_MoveDistinctMDs, &TypeMap,
&ValMaterializer);
Dst.setAliasee(Val);
}
bool ModuleLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
if (const Comdat *SC = Src.getComdat()) {
// To ensure that we don't generate an incomplete comdat group,
// we must materialize and map in any other members that are not
// yet materialized in Dst, which also ensures their definitions
// are linked in. Otherwise, linkonce and other lazy linked GVs will
// not be materialized if they aren't referenced.
for (auto *SGV : ComdatMembers[SC]) {
auto *DGV = cast_or_null<GlobalValue>(ValueMap[SGV]);
if (DGV && !DGV->isDeclaration())
continue;
MapValue(SGV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer);
}
}
if (shouldInternalizeLinkedSymbols())
if (auto *DGV = dyn_cast<GlobalValue>(&Dst))
DGV->setLinkage(GlobalValue::InternalLinkage);
if (auto *F = dyn_cast<Function>(&Src))
return linkFunctionBody(cast<Function>(Dst), *F);
if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
linkGlobalInit(cast<GlobalVariable>(Dst), *GVar);
return false;
}
linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
return false;
}
/// Insert all of the named MDNodes in Src into the Dest module.
void ModuleLinker::linkNamedMDNodes() {
const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata();
for (const NamedMDNode &NMD : SrcM.named_metadata()) {
// Don't link module flags here. Do them separately.
if (&NMD == SrcModFlags)
continue;
NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
// Add Src elements into Dest node.
for (const MDNode *op : NMD.operands())
Fix mapping of unmaterialized global values during metadata linking Summary: The patch to move metadata linking after global value linking didn't correctly map unmaterialized global values to null as desired. They were in fact mapped to the source copy. It largely worked by accident since most module linker clients destroyed the source module which caused the source GVs to be replaced by null, but caused a failure with LTO linking on Windows: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312869.html The problem is that a null return value from materializeValueFor is handled by mapping the value to self. This is the desired behavior when materializeValueFor is passed a non-GlobalValue. The problem is how to distinguish that case from the case where we really do want to map to null. This patch addresses this by passing in a new flag to the value mapper indicating that unmapped global values should be mapped to null. Other Value types are handled as before. Note that the documented behavior of asserting on unmapped values when the flag RF_IgnoreMissingValues isn't set is currently disabled with FIXME notes due to bootstrap failures. I modified these disabled asserts so when they are eventually enabled again it won't assert for the unmapped values when the new RF_NullMapMissingGlobalValues flag is set. I also considered using a callback into the value materializer, but a flag seemed cleaner given that there are already existing flags. I also considered modifying materializeValueFor to return the input value when we want to map to source and then treat a null return to mean map to null. However, there are other value materializer subclasses that implement materializeValueFor, and they would all need to be audited and the return values possibly changed, which seemed error-prone. Reviewers: dexonsmith, joker.eph Subscribers: pcc, llvm-commits Differential Revision: http://reviews.llvm.org/D14682 llvm-svn: 253170
2015-11-15 22:50:14 +08:00
DestNMD->addOperand(MapMetadata(
op, ValueMap, RF_MoveDistinctMDs | RF_NullMapMissingGlobalValues,
&TypeMap, &ValMaterializer));
}
}
/// Merge the linker flags in Src into the Dest module.
bool ModuleLinker::linkModuleFlagsMetadata() {
// If the source module has no module flags, we are done.
const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata();
if (!SrcModFlags)
return false;
// If the destination module doesn't have module flags yet, then just copy
// over the source module's flags.
NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
if (DstModFlags->getNumOperands() == 0) {
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
DstModFlags->addOperand(SrcModFlags->getOperand(I));
return false;
}
// First build a map of the existing module flags and requirements.
DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
SmallSetVector<MDNode *, 16> Requirements;
for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
MDNode *Op = DstModFlags->getOperand(I);
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
MDString *ID = cast<MDString>(Op->getOperand(1));
if (Behavior->getZExtValue() == Module::Require) {
Requirements.insert(cast<MDNode>(Op->getOperand(2)));
} else {
Flags[ID] = std::make_pair(Op, I);
}
}
// Merge in the flags from the source module, and also collect its set of
// requirements.
bool HasErr = false;
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
MDNode *SrcOp = SrcModFlags->getOperand(I);
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
ConstantInt *SrcBehavior =
mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
MDString *ID = cast<MDString>(SrcOp->getOperand(1));
MDNode *DstOp;
unsigned DstIndex;
std::tie(DstOp, DstIndex) = Flags.lookup(ID);
unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
// If this is a requirement, add it and continue.
if (SrcBehaviorValue == Module::Require) {
// If the destination module does not already have this requirement, add
// it.
if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
DstModFlags->addOperand(SrcOp);
}
continue;
}
// If there is no existing flag with this ID, just add it.
if (!DstOp) {
Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
DstModFlags->addOperand(SrcOp);
continue;
}
// Otherwise, perform a merge.
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
ConstantInt *DstBehavior =
mdconst::extract<ConstantInt>(DstOp->getOperand(0));
unsigned DstBehaviorValue = DstBehavior->getZExtValue();
// If either flag has override behavior, handle it first.
if (DstBehaviorValue == Module::Override) {
// Diagnose inconsistent flags which both have override behavior.
if (SrcBehaviorValue == Module::Override &&
SrcOp->getOperand(2) != DstOp->getOperand(2)) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting override values");
}
continue;
} else if (SrcBehaviorValue == Module::Override) {
// Update the destination flag to that of the source.
DstModFlags->setOperand(DstIndex, SrcOp);
Flags[ID].first = SrcOp;
continue;
}
// Diagnose inconsistent merge behavior types.
if (SrcBehaviorValue != DstBehaviorValue) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting behaviors");
continue;
}
auto replaceDstValue = [&](MDNode *New) {
Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
DstModFlags->setOperand(DstIndex, Flag);
Flags[ID].first = Flag;
};
// Perform the merge for standard behavior types.
switch (SrcBehaviorValue) {
case Module::Require:
case Module::Override:
llvm_unreachable("not possible");
case Module::Error: {
// Emit an error if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
HasErr |= emitError("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Warning: {
// Emit a warning if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
emitWarning("linking module flags '" + ID->getString() +
"': IDs have conflicting values");
}
continue;
}
case Module::Append: {
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
SmallVector<Metadata *, 8> MDs;
MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
MDs.append(DstValue->op_begin(), DstValue->op_end());
MDs.append(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM.getContext(), MDs));
break;
}
case Module::AppendUnique: {
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
SmallSetVector<Metadata *, 16> Elts;
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
Elts.insert(DstValue->op_begin(), DstValue->op_end());
Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM.getContext(),
makeArrayRef(Elts.begin(), Elts.end())));
break;
}
}
}
// Check all of the requirements.
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
MDNode *Requirement = Requirements[I];
MDString *Flag = cast<MDString>(Requirement->getOperand(0));
IR: Split Metadata from Value Split `Metadata` away from the `Value` class hierarchy, as part of PR21532. Assembly and bitcode changes are in the wings, but this is the bulk of the change for the IR C++ API. I have a follow-up patch prepared for `clang`. If this breaks other sub-projects, I apologize in advance :(. Help me compile it on Darwin I'll try to fix it. FWIW, the errors should be easy to fix, so it may be simpler to just fix it yourself. This breaks the build for all metadata-related code that's out-of-tree. Rest assured the transition is mechanical and the compiler should catch almost all of the problems. Here's a quick guide for updating your code: - `Metadata` is the root of a class hierarchy with three main classes: `MDNode`, `MDString`, and `ValueAsMetadata`. It is distinct from the `Value` class hierarchy. It is typeless -- i.e., instances do *not* have a `Type`. - `MDNode`'s operands are all `Metadata *` (instead of `Value *`). - `TrackingVH<MDNode>` and `WeakVH` referring to metadata can be replaced with `TrackingMDNodeRef` and `TrackingMDRef`, respectively. If you're referring solely to resolved `MDNode`s -- post graph construction -- just use `MDNode*`. - `MDNode` (and the rest of `Metadata`) have only limited support for `replaceAllUsesWith()`. As long as an `MDNode` is pointing at a forward declaration -- the result of `MDNode::getTemporary()` -- it maintains a side map of its uses and can RAUW itself. Once the forward declarations are fully resolved RAUW support is dropped on the ground. This means that uniquing collisions on changing operands cause nodes to become "distinct". (This already happened fairly commonly, whenever an operand went to null.) If you're constructing complex (non self-reference) `MDNode` cycles, you need to call `MDNode::resolveCycles()` on each node (or on a top-level node that somehow references all of the nodes). Also, don't do that. Metadata cycles (and the RAUW machinery needed to construct them) are expensive. - An `MDNode` can only refer to a `Constant` through a bridge called `ConstantAsMetadata` (one of the subclasses of `ValueAsMetadata`). As a side effect, accessing an operand of an `MDNode` that is known to be, e.g., `ConstantInt`, takes three steps: first, cast from `Metadata` to `ConstantAsMetadata`; second, extract the `Constant`; third, cast down to `ConstantInt`. The eventual goal is to introduce `MDInt`/`MDFloat`/etc. and have metadata schema owners transition away from using `Constant`s when the type isn't important (and they don't care about referring to `GlobalValue`s). In the meantime, I've added transitional API to the `mdconst` namespace that matches semantics with the old code, in order to avoid adding the error-prone three-step equivalent to every call site. If your old code was: MDNode *N = foo(); bar(isa <ConstantInt>(N->getOperand(0))); baz(cast <ConstantInt>(N->getOperand(1))); bak(cast_or_null <ConstantInt>(N->getOperand(2))); bat(dyn_cast <ConstantInt>(N->getOperand(3))); bay(dyn_cast_or_null<ConstantInt>(N->getOperand(4))); you can trivially match its semantics with: MDNode *N = foo(); bar(mdconst::hasa <ConstantInt>(N->getOperand(0))); baz(mdconst::extract <ConstantInt>(N->getOperand(1))); bak(mdconst::extract_or_null <ConstantInt>(N->getOperand(2))); bat(mdconst::dyn_extract <ConstantInt>(N->getOperand(3))); bay(mdconst::dyn_extract_or_null<ConstantInt>(N->getOperand(4))); and when you transition your metadata schema to `MDInt`: MDNode *N = foo(); bar(isa <MDInt>(N->getOperand(0))); baz(cast <MDInt>(N->getOperand(1))); bak(cast_or_null <MDInt>(N->getOperand(2))); bat(dyn_cast <MDInt>(N->getOperand(3))); bay(dyn_cast_or_null<MDInt>(N->getOperand(4))); - A `CallInst` -- specifically, intrinsic instructions -- can refer to metadata through a bridge called `MetadataAsValue`. This is a subclass of `Value` where `getType()->isMetadataTy()`. `MetadataAsValue` is the *only* class that can legally refer to a `LocalAsMetadata`, which is a bridged form of non-`Constant` values like `Argument` and `Instruction`. It can also refer to any other `Metadata` subclass. (I'll break all your testcases in a follow-up commit, when I propagate this change to assembly.) llvm-svn: 223802
2014-12-10 02:38:53 +08:00
Metadata *ReqValue = Requirement->getOperand(1);
MDNode *Op = Flags[Flag].first;
if (!Op || Op->getOperand(2) != ReqValue) {
HasErr |= emitError("linking module flags '" + Flag->getString() +
"': does not have the required value");
continue;
}
}
return HasErr;
}
// This function returns true if the triples match.
static bool triplesMatch(const Triple &T0, const Triple &T1) {
// If vendor is apple, ignore the version number.
if (T0.getVendor() == Triple::Apple)
return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() &&
T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS();
return T0 == T1;
}
// This function returns the merged triple.
static std::string mergeTriples(const Triple &SrcTriple,
const Triple &DstTriple) {
// If vendor is apple, pick the triple with the larger version number.
if (SrcTriple.getVendor() == Triple::Apple)
if (DstTriple.isOSVersionLT(SrcTriple))
return SrcTriple.str();
return DstTriple.str();
}
bool ModuleLinker::linkIfNeeded(GlobalValue &GV) {
GlobalValue *DGV = getLinkedToGlobal(&GV);
if (shouldLinkOnlyNeeded() && !(DGV && DGV->isDeclaration()))
return false;
if (DGV && !GV.hasLocalLinkage()) {
GlobalValue::VisibilityTypes Visibility =
getMinVisibility(DGV->getVisibility(), GV.getVisibility());
DGV->setVisibility(Visibility);
GV.setVisibility(Visibility);
}
if (const Comdat *SC = GV.getComdat()) {
bool LinkFromSrc;
Comdat::SelectionKind SK;
std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
if (!LinkFromSrc) {
DoNotLinkFromSource.insert(&GV);
return false;
}
}
if (!DGV && !shouldOverrideFromSrc() &&
(GV.hasLocalLinkage() || GV.hasLinkOnceLinkage() ||
GV.hasAvailableExternallyLinkage())) {
return false;
}
MapValue(&GV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer);
return HasError;
}
bool ModuleLinker::run() {
// Inherit the target data from the source module if the destination module
// doesn't have one already.
if (DstM.getDataLayout().isDefault())
DstM.setDataLayout(SrcM.getDataLayout());
if (SrcM.getDataLayout() != DstM.getDataLayout()) {
emitWarning("Linking two modules of different data layouts: '" +
SrcM.getModuleIdentifier() + "' is '" +
SrcM.getDataLayoutStr() + "' whereas '" +
DstM.getModuleIdentifier() + "' is '" +
DstM.getDataLayoutStr() + "'\n");
}
// Copy the target triple from the source to dest if the dest's is empty.
if (DstM.getTargetTriple().empty() && !SrcM.getTargetTriple().empty())
DstM.setTargetTriple(SrcM.getTargetTriple());
Triple SrcTriple(SrcM.getTargetTriple()), DstTriple(DstM.getTargetTriple());
if (!SrcM.getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
emitWarning("Linking two modules of different target triples: " +
SrcM.getModuleIdentifier() + "' is '" + SrcM.getTargetTriple() +
"' whereas '" + DstM.getModuleIdentifier() + "' is '" +
DstM.getTargetTriple() + "'\n");
DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple));
2008-02-20 02:49:08 +08:00
// Append the module inline asm string.
if (!SrcM.getModuleInlineAsm().empty()) {
if (DstM.getModuleInlineAsm().empty())
DstM.setModuleInlineAsm(SrcM.getModuleInlineAsm());
else
DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
SrcM.getModuleInlineAsm());
}
// Loop over all of the linked values to compute type mappings.
computeTypeMapping();
ComdatsChosen.clear();
for (const auto &SMEC : SrcM.getComdatSymbolTable()) {
const Comdat &C = SMEC.getValue();
if (ComdatsChosen.count(&C))
continue;
Comdat::SelectionKind SK;
bool LinkFromSrc;
if (getComdatResult(&C, SK, LinkFromSrc))
return true;
ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
}
// Upgrade mismatched global arrays.
upgradeMismatchedGlobals();
for (GlobalVariable &GV : SrcM.globals())
if (const Comdat *SC = GV.getComdat())
ComdatMembers[SC].push_back(&GV);
for (Function &SF : SrcM)
if (const Comdat *SC = SF.getComdat())
ComdatMembers[SC].push_back(&SF);
for (GlobalAlias &GA : SrcM.aliases())
if (const Comdat *SC = GA.getComdat())
ComdatMembers[SC].push_back(&GA);
// Insert all of the globals in src into the DstM module... without linking
// initializers (which could refer to functions not yet mapped over).
for (GlobalVariable &GV : SrcM.globals())
if (linkIfNeeded(GV))
return true;
for (Function &SF : SrcM)
if (linkIfNeeded(SF))
return true;
for (GlobalAlias &GA : SrcM.aliases())
if (linkIfNeeded(GA))
return true;
for (const auto &Entry : DstM.getComdatSymbolTable()) {
const Comdat &C = Entry.getValue();
if (C.getSelectionKind() == Comdat::Any)
continue;
const GlobalValue *GV = SrcM.getNamedValue(C.getName());
if (GV)
MapValue(GV, ValueMap, RF_MoveDistinctMDs, &TypeMap, &ValMaterializer);
}
Restore "Move metadata linking after lazy global materialization/linking." Summary: This reverts commit r251965. Restore "Move metadata linking after lazy global materialization/linking." This restores commit r251926, with fixes for the LTO bootstrapping bot failure. The bot failure was caused by references from debug metadata to otherwise unreferenced globals. Previously, this caused the lazy linking to link in their defs, which is unnecessary. With this patch, because lazy linking is complete when we encounter the metadata reference, the materializer created a declaration. For definitions such as aliases and comdats, it is illegal to have a declaration. Furthermore, metadata linking should not change code generation. Therefore, when linking of global value bodies is complete, the materializer will simply return nullptr as the new reference for the linked metadata. This change required fixing a different test to ensure there was a real reference to a linkonce global that was only being reference from metadata. Note that the new changes to the only-needed-named-metadata.ll test illustrate an issue with llvm-link -only-needed handling of comdat groups, whereby it may result in an incomplete comdat group. I note this in the test comments, but the issue is orthogonal to this patch (it can be reproduced without any metadata at head). Reviewers: dexonsmith, rafael, tra Subscribers: tobiasvk, joker.eph, llvm-commits Differential Revision: http://reviews.llvm.org/D14447 llvm-svn: 252320
2015-11-07 01:50:53 +08:00
// Note that we are done linking global value bodies. This prevents
// metadata linking from creating new references.
DoneLinkingBodies = true;
// Remap all of the named MDNodes in Src into the DstM module. We do this
// after linking GlobalValues so that MDNodes that reference GlobalValues
// are properly remapped.
linkNamedMDNodes();
// Merge the module flags into the DstM module.
if (linkModuleFlagsMetadata())
return true;
return false;
}
Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
: ETypes(E), IsPacked(P) {}
Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
: ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
if (IsPacked != That.IsPacked)
return false;
if (ETypes != That.ETypes)
return false;
return true;
}
bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
return !this->operator==(That);
}
StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
return DenseMapInfo<StructType *>::getEmptyKey();
}
StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
return DenseMapInfo<StructType *>::getTombstoneKey();
}
unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
Key.IsPacked);
}
unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
const StructType *RHS) {
if (RHS == getEmptyKey())
return LHS == getEmptyKey();
if (RHS == getTombstoneKey())
return LHS == getTombstoneKey();
return KeyTy(LHS) == KeyTy(RHS);
}
void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
}
void Linker::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
assert(!Ty->isOpaque());
NonOpaqueStructTypes.insert(Ty);
bool Removed = OpaqueStructTypes.erase(Ty);
(void)Removed;
assert(Removed);
}
void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
assert(Ty->isOpaque());
OpaqueStructTypes.insert(Ty);
}
StructType *
Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
bool IsPacked) {
Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
auto I = NonOpaqueStructTypes.find_as(Key);
if (I == NonOpaqueStructTypes.end())
return nullptr;
return *I;
}
bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
if (Ty->isOpaque())
return OpaqueStructTypes.count(Ty);
auto I = NonOpaqueStructTypes.find(Ty);
if (I == NonOpaqueStructTypes.end())
return false;
return *I == Ty;
}
Linker::Linker(Module &M, DiagnosticHandlerFunction DiagnosticHandler)
: Composite(M), DiagnosticHandler(DiagnosticHandler) {
TypeFinder StructTypes;
StructTypes.run(M, true);
for (StructType *Ty : StructTypes) {
if (Ty->isOpaque())
IdentifiedStructTypes.addOpaque(Ty);
else
IdentifiedStructTypes.addNonOpaque(Ty);
}
}
Linker::Linker(Module &M)
: Linker(M, [this](const DiagnosticInfo &DI) {
Composite.getContext().diagnose(DI);
}) {}
bool Linker::linkInModule(Module &Src, unsigned Flags,
const FunctionInfoIndex *Index,
DenseSet<const GlobalValue *> *FuncToImport) {
ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
DiagnosticHandler, Flags, Index, FuncToImport);
bool RetCode = TheLinker.run();
Composite.dropTriviallyDeadConstantArrays();
return RetCode;
}
//===----------------------------------------------------------------------===//
// LinkModules entrypoint.
//===----------------------------------------------------------------------===//
/// This function links two modules together, with the resulting Dest module
/// modified to be the composite of the two input modules. If an error occurs,
/// true is returned and ErrorMsg (if not null) is set to indicate the problem.
/// Upon failure, the Dest module could be in a modified state, and shouldn't be
/// relied on to be consistent.
bool Linker::linkModules(Module &Dest, Module &Src,
DiagnosticHandlerFunction DiagnosticHandler,
unsigned Flags) {
Linker L(Dest, DiagnosticHandler);
return L.linkInModule(Src, Flags);
}
bool Linker::linkModules(Module &Dest, Module &Src, unsigned Flags) {
Linker L(Dest);
return L.linkInModule(Src, Flags);
}
//===----------------------------------------------------------------------===//
// C API.
//===----------------------------------------------------------------------===//
LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
LLVMLinkerMode Unused, char **OutMessages) {
Module *D = unwrap(Dest);
std::string Message;
raw_string_ostream Stream(Message);
DiagnosticPrinterRawOStream DP(Stream);
LLVMBool Result = Linker::linkModules(
*D, *unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
if (OutMessages && Result) {
Stream.flush();
*OutMessages = strdup(Message.c_str());
}
return Result;
}