llvm-project/llvm/test/CodeGen/ARM/2013-10-11-select-stalls.ll

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

22 lines
871 B
LLVM
Raw Normal View History

MachineSink: Fix and tweak critical-edge breaking heuristic. Per original comment, the intention of this loop is to go ahead and break the critical edge (in order to sink this instruction) if there's reason to believe doing so might "unblock" the sinking of additional instructions that define registers used by this one. The idea is that if we have a few instructions to sink "together" breaking the edge might be worthwhile. This commit makes a few small changes to help better realize this goal: First, modify the loop to ignore registers defined by this instruction. We don't sink definitions of physical registers, and sinking an SSA definition isn't going to unblock an upstream instruction. Second, ignore uses of physical registers. Instructions that define physical registers are rejected for sinking, and so moving this one won't enable moving any defining instructions. As an added bonus, while virtual register use-def chains are generally small due to SSA goodness, iteration over the uses and definitions (used by hasOneNonDBGUse) for physical registers like EFLAGS can be rather expensive in practice. (This is the original reason for looking at this) Finally, to keep things simple continue to only consider this trick for registers that have a single use (via hasOneNonDBGUse), but to avoid spuriously breaking critical edges only do so if the definition resides in the same MBB and therefore this one directly blocks it from being sunk as well. If sinking them together is meant to be, let the iterative nature of this pass sink the definition into this block first. Update tests to accomodate this change, add new testcase where sinking avoids pipeline stalls. llvm-svn: 192608
2013-10-15 00:57:17 +08:00
; REQUIRES: asserts
; RUN: llc < %s -mtriple=thumbv7-apple-ios -disable-ifcvt-diamond -stats 2>&1 | FileCheck %s
MachineSink: Fix and tweak critical-edge breaking heuristic. Per original comment, the intention of this loop is to go ahead and break the critical edge (in order to sink this instruction) if there's reason to believe doing so might "unblock" the sinking of additional instructions that define registers used by this one. The idea is that if we have a few instructions to sink "together" breaking the edge might be worthwhile. This commit makes a few small changes to help better realize this goal: First, modify the loop to ignore registers defined by this instruction. We don't sink definitions of physical registers, and sinking an SSA definition isn't going to unblock an upstream instruction. Second, ignore uses of physical registers. Instructions that define physical registers are rejected for sinking, and so moving this one won't enable moving any defining instructions. As an added bonus, while virtual register use-def chains are generally small due to SSA goodness, iteration over the uses and definitions (used by hasOneNonDBGUse) for physical registers like EFLAGS can be rather expensive in practice. (This is the original reason for looking at this) Finally, to keep things simple continue to only consider this trick for registers that have a single use (via hasOneNonDBGUse), but to avoid spuriously breaking critical edges only do so if the definition resides in the same MBB and therefore this one directly blocks it from being sunk as well. If sinking them together is meant to be, let the iterative nature of this pass sink the definition into this block first. Update tests to accomodate this change, add new testcase where sinking avoids pipeline stalls. llvm-svn: 192608
2013-10-15 00:57:17 +08:00
; Evaluate the two vld1.8 instructions in separate MBB's,
; instead of stalling on one and conditionally overwriting its result.
;
; Update: After if-conversion the two vld1.8 instructions are in the same MBB
; again. So we disable this if-conversion to eliminate its influence to this
; test.
MachineSink: Fix and tweak critical-edge breaking heuristic. Per original comment, the intention of this loop is to go ahead and break the critical edge (in order to sink this instruction) if there's reason to believe doing so might "unblock" the sinking of additional instructions that define registers used by this one. The idea is that if we have a few instructions to sink "together" breaking the edge might be worthwhile. This commit makes a few small changes to help better realize this goal: First, modify the loop to ignore registers defined by this instruction. We don't sink definitions of physical registers, and sinking an SSA definition isn't going to unblock an upstream instruction. Second, ignore uses of physical registers. Instructions that define physical registers are rejected for sinking, and so moving this one won't enable moving any defining instructions. As an added bonus, while virtual register use-def chains are generally small due to SSA goodness, iteration over the uses and definitions (used by hasOneNonDBGUse) for physical registers like EFLAGS can be rather expensive in practice. (This is the original reason for looking at this) Finally, to keep things simple continue to only consider this trick for registers that have a single use (via hasOneNonDBGUse), but to avoid spuriously breaking critical edges only do so if the definition resides in the same MBB and therefore this one directly blocks it from being sunk as well. If sinking them together is meant to be, let the iterative nature of this pass sink the definition into this block first. Update tests to accomodate this change, add new testcase where sinking avoids pipeline stalls. llvm-svn: 192608
2013-10-15 00:57:17 +08:00
; CHECK-NOT: Number of pipeline stalls
MachineSink: Fix and tweak critical-edge breaking heuristic. Per original comment, the intention of this loop is to go ahead and break the critical edge (in order to sink this instruction) if there's reason to believe doing so might "unblock" the sinking of additional instructions that define registers used by this one. The idea is that if we have a few instructions to sink "together" breaking the edge might be worthwhile. This commit makes a few small changes to help better realize this goal: First, modify the loop to ignore registers defined by this instruction. We don't sink definitions of physical registers, and sinking an SSA definition isn't going to unblock an upstream instruction. Second, ignore uses of physical registers. Instructions that define physical registers are rejected for sinking, and so moving this one won't enable moving any defining instructions. As an added bonus, while virtual register use-def chains are generally small due to SSA goodness, iteration over the uses and definitions (used by hasOneNonDBGUse) for physical registers like EFLAGS can be rather expensive in practice. (This is the original reason for looking at this) Finally, to keep things simple continue to only consider this trick for registers that have a single use (via hasOneNonDBGUse), but to avoid spuriously breaking critical edges only do so if the definition resides in the same MBB and therefore this one directly blocks it from being sunk as well. If sinking them together is meant to be, let the iterative nature of this pass sink the definition into this block first. Update tests to accomodate this change, add new testcase where sinking avoids pipeline stalls. llvm-svn: 192608
2013-10-15 00:57:17 +08:00
define <16 x i8> @multiselect(i32 %avail, i8* %foo, i8* %bar) {
entry:
%vld1 = call <16 x i8> @llvm.arm.neon.vld1.v16i8.p0i8(i8* %foo, i32 1)
%vld2 = call <16 x i8> @llvm.arm.neon.vld1.v16i8.p0i8(i8* %bar, i32 1)
%and = and i32 %avail, 3
MachineSink: Fix and tweak critical-edge breaking heuristic. Per original comment, the intention of this loop is to go ahead and break the critical edge (in order to sink this instruction) if there's reason to believe doing so might "unblock" the sinking of additional instructions that define registers used by this one. The idea is that if we have a few instructions to sink "together" breaking the edge might be worthwhile. This commit makes a few small changes to help better realize this goal: First, modify the loop to ignore registers defined by this instruction. We don't sink definitions of physical registers, and sinking an SSA definition isn't going to unblock an upstream instruction. Second, ignore uses of physical registers. Instructions that define physical registers are rejected for sinking, and so moving this one won't enable moving any defining instructions. As an added bonus, while virtual register use-def chains are generally small due to SSA goodness, iteration over the uses and definitions (used by hasOneNonDBGUse) for physical registers like EFLAGS can be rather expensive in practice. (This is the original reason for looking at this) Finally, to keep things simple continue to only consider this trick for registers that have a single use (via hasOneNonDBGUse), but to avoid spuriously breaking critical edges only do so if the definition resides in the same MBB and therefore this one directly blocks it from being sunk as well. If sinking them together is meant to be, let the iterative nature of this pass sink the definition into this block first. Update tests to accomodate this change, add new testcase where sinking avoids pipeline stalls. llvm-svn: 192608
2013-10-15 00:57:17 +08:00
%tobool = icmp eq i32 %and, 0
%retv = select i1 %tobool, <16 x i8> %vld1, <16 x i8> %vld2
ret <16 x i8> %retv
}
declare <16 x i8> @llvm.arm.neon.vld1.v16i8.p0i8(i8* , i32 )