forked from OSchip/llvm-project
123 lines
4.8 KiB
C++
123 lines
4.8 KiB
C++
|
//===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Generates code for built-in GPU calls which are not runtime-specific.
|
||
|
// (Runtime-specific codegen lives in programming model specific files.)
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "CodeGenFunction.h"
|
||
|
#include "clang/Basic/Builtins.h"
|
||
|
#include "llvm/IR/DataLayout.h"
|
||
|
#include "llvm/IR/Instruction.h"
|
||
|
#include "llvm/Support/MathExtras.h"
|
||
|
|
||
|
using namespace clang;
|
||
|
using namespace CodeGen;
|
||
|
|
||
|
static llvm::Function *GetVprintfDeclaration(llvm::Module &M) {
|
||
|
llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()),
|
||
|
llvm::Type::getInt8PtrTy(M.getContext())};
|
||
|
llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get(
|
||
|
llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false);
|
||
|
|
||
|
if (auto* F = M.getFunction("vprintf")) {
|
||
|
// Our CUDA system header declares vprintf with the right signature, so
|
||
|
// nobody else should have been able to declare vprintf with a bogus
|
||
|
// signature.
|
||
|
assert(F->getFunctionType() == VprintfFuncType);
|
||
|
return F;
|
||
|
}
|
||
|
|
||
|
// vprintf doesn't already exist; create a declaration and insert it into the
|
||
|
// module.
|
||
|
return llvm::Function::Create(
|
||
|
VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M);
|
||
|
}
|
||
|
|
||
|
// Transforms a call to printf into a call to the NVPTX vprintf syscall (which
|
||
|
// isn't particularly special; it's invoked just like a regular function).
|
||
|
// vprintf takes two args: A format string, and a pointer to a buffer containing
|
||
|
// the varargs.
|
||
|
//
|
||
|
// For example, the call
|
||
|
//
|
||
|
// printf("format string", arg1, arg2, arg3);
|
||
|
//
|
||
|
// is converted into something resembling
|
||
|
//
|
||
|
// struct Tmp {
|
||
|
// Arg1 a1;
|
||
|
// Arg2 a2;
|
||
|
// Arg3 a3;
|
||
|
// };
|
||
|
// char* buf = alloca(sizeof(Tmp));
|
||
|
// *(Tmp*)buf = {a1, a2, a3};
|
||
|
// vprintf("format string", buf);
|
||
|
//
|
||
|
// buf is aligned to the max of {alignof(Arg1), ...}. Furthermore, each of the
|
||
|
// args is itself aligned to its preferred alignment.
|
||
|
//
|
||
|
// Note that by the time this function runs, E's args have already undergone the
|
||
|
// standard C vararg promotion (short -> int, float -> double, etc.).
|
||
|
RValue
|
||
|
CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
|
||
|
ReturnValueSlot ReturnValue) {
|
||
|
assert(getTarget().getTriple().isNVPTX());
|
||
|
assert(E->getBuiltinCallee() == Builtin::BIprintf);
|
||
|
assert(E->getNumArgs() >= 1); // printf always has at least one arg.
|
||
|
|
||
|
const llvm::DataLayout &DL = CGM.getDataLayout();
|
||
|
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
|
||
|
|
||
|
CallArgList Args;
|
||
|
EmitCallArgs(Args,
|
||
|
E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
|
||
|
E->arguments(), E->getDirectCallee(),
|
||
|
/* ParamsToSkip = */ 0);
|
||
|
|
||
|
// We don't know how to emit non-scalar varargs.
|
||
|
if (std::any_of(Args.begin() + 1, Args.end(),
|
||
|
[](const CallArg &A) { return !A.RV.isScalar(); })) {
|
||
|
CGM.ErrorUnsupported(E, "non-scalar arg to printf");
|
||
|
return RValue::get(llvm::ConstantInt::get(IntTy, 0));
|
||
|
}
|
||
|
|
||
|
// Construct and fill the args buffer that we'll pass to vprintf.
|
||
|
llvm::Value *BufferPtr;
|
||
|
if (Args.size() <= 1) {
|
||
|
// If there are no args, pass a null pointer to vprintf.
|
||
|
BufferPtr = llvm::ConstantPointerNull::get(llvm::Type::getInt8PtrTy(Ctx));
|
||
|
} else {
|
||
|
llvm::SmallVector<llvm::Type *, 8> ArgTypes;
|
||
|
for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I)
|
||
|
ArgTypes.push_back(Args[I].RV.getScalarVal()->getType());
|
||
|
|
||
|
// Using llvm::StructType is correct only because printf doesn't accept
|
||
|
// aggregates. If we had to handle aggregates here, we'd have to manually
|
||
|
// compute the offsets within the alloca -- we wouldn't be able to assume
|
||
|
// that the alignment of the llvm type was the same as the alignment of the
|
||
|
// clang type.
|
||
|
llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args");
|
||
|
llvm::Value *Alloca = CreateTempAlloca(AllocaTy);
|
||
|
|
||
|
for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) {
|
||
|
llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1);
|
||
|
llvm::Value *Arg = Args[I].RV.getScalarVal();
|
||
|
Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlignment(Arg->getType()));
|
||
|
}
|
||
|
BufferPtr = Builder.CreatePointerCast(Alloca, llvm::Type::getInt8PtrTy(Ctx));
|
||
|
}
|
||
|
|
||
|
// Invoke vprintf and return.
|
||
|
llvm::Function* VprintfFunc = GetVprintfDeclaration(CGM.getModule());
|
||
|
return RValue::get(
|
||
|
Builder.CreateCall(VprintfFunc, {Args[0].RV.getScalarVal(), BufferPtr}));
|
||
|
}
|