llvm-project/llvm/lib/Target/Hexagon/HexagonSplitConst32AndConst...

172 lines
5.9 KiB
C++
Raw Normal View History

//=== HexagonSplitConst32AndConst64.cpp - split CONST32/Const64 into HI/LO ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// When the compiler is invoked with no small data, for instance, with the -G0
// command line option, then all CONST32_* opcodes should be broken down into
// appropriate LO and HI instructions. This splitting is done by this pass.
// The only reason this is not done in the DAG lowering itself is that there
// is no simple way of getting the register allocator to allot the same hard
// register to the result of LO and HI instructions. This pass is always
// scheduled after register allocation.
//
//===----------------------------------------------------------------------===//
#include "HexagonMachineFunctionInfo.h"
#include "HexagonSubtarget.h"
#include "HexagonTargetMachine.h"
#include "HexagonTargetObjectFile.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "xfer"
namespace llvm {
FunctionPass *createHexagonSplitConst32AndConst64();
void initializeHexagonSplitConst32AndConst64Pass(PassRegistry&);
}
namespace {
class HexagonSplitConst32AndConst64 : public MachineFunctionPass {
public:
static char ID;
HexagonSplitConst32AndConst64() : MachineFunctionPass(ID) {}
const char *getPassName() const override {
return "Hexagon Split Const32s and Const64s";
}
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::AllVRegsAllocated);
}
};
char HexagonSplitConst32AndConst64::ID = 0;
bool HexagonSplitConst32AndConst64::runOnMachineFunction(MachineFunction &Fn) {
const HexagonTargetObjectFile &TLOF =
*static_cast<const HexagonTargetObjectFile *>(
Fn.getTarget().getObjFileLowering());
if (TLOF.isSmallDataEnabled())
return true;
const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
// Loop over all of the basic blocks
for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
MBBb != MBBe; ++MBBb) {
MachineBasicBlock *MBB = &*MBBb;
// Traverse the basic block
MachineBasicBlock::iterator MII = MBB->begin();
MachineBasicBlock::iterator MIE = MBB->end ();
while (MII != MIE) {
MachineInstr &MI = *MII;
int Opc = MI.getOpcode();
if (Opc == Hexagon::CONST32_Int_Real &&
MI.getOperand(1).isBlockAddress()) {
int DestReg = MI.getOperand(0).getReg();
MachineOperand &Symbol = MI.getOperand(1);
BuildMI(*MBB, MII, MI.getDebugLoc(), TII->get(Hexagon::LO), DestReg)
.addOperand(Symbol);
BuildMI(*MBB, MII, MI.getDebugLoc(), TII->get(Hexagon::HI), DestReg)
.addOperand(Symbol);
// MBB->erase returns the iterator to the next instruction, which is the
// one we want to process next
MII = MBB->erase(&MI);
continue;
}
else if (Opc == Hexagon::CONST32_Int_Real ||
Opc == Hexagon::CONST32_Float_Real) {
int DestReg = MI.getOperand(0).getReg();
// We have to convert an FP immediate into its corresponding integer
// representation
int64_t ImmValue;
if (Opc == Hexagon::CONST32_Float_Real) {
APFloat Val = MI.getOperand(1).getFPImm()->getValueAPF();
ImmValue = *Val.bitcastToAPInt().getRawData();
}
else
ImmValue = MI.getOperand(1).getImm();
BuildMI(*MBB, MII, MI.getDebugLoc(), TII->get(Hexagon::A2_tfrsi),
DestReg)
.addImm(ImmValue);
MII = MBB->erase(&MI);
continue;
}
else if (Opc == Hexagon::CONST64_Int_Real ||
Opc == Hexagon::CONST64_Float_Real) {
int DestReg = MI.getOperand(0).getReg();
// We have to convert an FP immediate into its corresponding integer
// representation
int64_t ImmValue;
if (Opc == Hexagon::CONST64_Float_Real) {
APFloat Val = MI.getOperand(1).getFPImm()->getValueAPF();
ImmValue = *Val.bitcastToAPInt().getRawData();
}
else
ImmValue = MI.getOperand(1).getImm();
unsigned DestLo = TRI->getSubReg(DestReg, Hexagon::subreg_loreg);
unsigned DestHi = TRI->getSubReg(DestReg, Hexagon::subreg_hireg);
int32_t LowWord = (ImmValue & 0xFFFFFFFF);
int32_t HighWord = (ImmValue >> 32) & 0xFFFFFFFF;
BuildMI(*MBB, MII, MI.getDebugLoc(), TII->get(Hexagon::A2_tfrsi),
DestLo)
.addImm(LowWord);
BuildMI(*MBB, MII, MI.getDebugLoc(), TII->get(Hexagon::A2_tfrsi),
DestHi)
.addImm(HighWord);
MII = MBB->erase(&MI);
continue;
}
++MII;
}
}
return true;
}
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *
llvm::createHexagonSplitConst32AndConst64() {
return new HexagonSplitConst32AndConst64();
}