2020-06-10 05:50:50 +08:00
|
|
|
//===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file implements the interface between the inliner and a learned model.
|
|
|
|
// It delegates model evaluation to either the AOT compiled model (the
|
|
|
|
// 'release' mode) or a runtime-loaded model (the 'development' case).
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
2022-01-20 13:19:53 +08:00
|
|
|
#include "llvm/Analysis/MLInlineAdvisor.h"
|
2020-06-10 05:50:50 +08:00
|
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
|
|
#include "llvm/Analysis/CallGraph.h"
|
2020-07-23 00:52:53 +08:00
|
|
|
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
|
2020-06-10 05:50:50 +08:00
|
|
|
#include "llvm/Analysis/InlineCost.h"
|
2022-01-20 13:19:53 +08:00
|
|
|
#include "llvm/Analysis/InlineModelFeatureMaps.h"
|
2022-01-11 03:18:04 +08:00
|
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
2020-06-10 05:50:50 +08:00
|
|
|
#include "llvm/Analysis/MLModelRunner.h"
|
|
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
2022-01-20 13:19:53 +08:00
|
|
|
#include "llvm/Analysis/ReleaseModeModelRunner.h"
|
2020-06-10 05:50:50 +08:00
|
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
2022-01-20 13:19:53 +08:00
|
|
|
#include "llvm/Config/config.h"
|
2020-06-10 05:50:50 +08:00
|
|
|
#include "llvm/IR/InstIterator.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/PassManager.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#include "llvm/Support/Path.h"
|
|
|
|
|
2022-01-20 13:19:53 +08:00
|
|
|
#include <limits>
|
|
|
|
#include <unordered_map>
|
|
|
|
#include <unordered_set>
|
|
|
|
|
2020-06-10 05:50:50 +08:00
|
|
|
using namespace llvm;
|
|
|
|
|
2022-01-25 03:18:02 +08:00
|
|
|
#if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL)
|
2021-12-15 08:15:32 +08:00
|
|
|
// codegen-ed file
|
|
|
|
#include "InlinerSizeModel.h" // NOLINT
|
|
|
|
|
|
|
|
std::unique_ptr<InlineAdvisor>
|
|
|
|
llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM) {
|
|
|
|
auto AOTRunner =
|
|
|
|
std::make_unique<ReleaseModeModelRunner<llvm::InlinerSizeModel>>(
|
|
|
|
M.getContext(), FeatureNameMap, DecisionName);
|
|
|
|
return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2020-06-10 05:50:50 +08:00
|
|
|
#define DEBUG_TYPE "inline-ml"
|
|
|
|
|
|
|
|
static cl::opt<float> SizeIncreaseThreshold(
|
|
|
|
"ml-advisor-size-increase-threshold", cl::Hidden,
|
|
|
|
cl::desc("Maximum factor by which expected native size may increase before "
|
|
|
|
"blocking any further inlining."),
|
|
|
|
cl::init(2.0));
|
|
|
|
|
2021-06-10 10:16:04 +08:00
|
|
|
// clang-format off
|
2020-06-10 05:50:50 +08:00
|
|
|
const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{
|
2021-06-10 10:16:04 +08:00
|
|
|
// InlineCost features - these must come first
|
|
|
|
#define POPULATE_NAMES(INDEX_NAME, NAME) NAME,
|
|
|
|
INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES)
|
|
|
|
#undef POPULATE_NAMES
|
|
|
|
|
|
|
|
// Non-cost features
|
2020-06-10 05:50:50 +08:00
|
|
|
#define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME,
|
2021-06-10 10:16:04 +08:00
|
|
|
INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
|
2020-06-10 05:50:50 +08:00
|
|
|
#undef POPULATE_NAMES
|
|
|
|
};
|
2021-06-10 10:16:04 +08:00
|
|
|
// clang-format on
|
2020-06-10 05:50:50 +08:00
|
|
|
|
|
|
|
const char *const llvm::DecisionName = "inlining_decision";
|
|
|
|
const char *const llvm::DefaultDecisionName = "inlining_default";
|
|
|
|
const char *const llvm::RewardName = "delta_size";
|
|
|
|
|
|
|
|
CallBase *getInlinableCS(Instruction &I) {
|
|
|
|
if (auto *CS = dyn_cast<CallBase>(&I))
|
|
|
|
if (Function *Callee = CS->getCalledFunction()) {
|
|
|
|
if (!Callee->isDeclaration()) {
|
|
|
|
return CS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM,
|
|
|
|
std::unique_ptr<MLModelRunner> Runner)
|
|
|
|
: InlineAdvisor(
|
2021-01-21 03:25:43 +08:00
|
|
|
M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
|
2022-01-11 03:18:04 +08:00
|
|
|
ModelRunner(std::move(Runner)),
|
|
|
|
CG(MAM.getResult<LazyCallGraphAnalysis>(M)),
|
2020-06-10 05:50:50 +08:00
|
|
|
InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
|
|
|
|
assert(ModelRunner);
|
|
|
|
|
|
|
|
// Extract the 'call site height' feature - the position of a call site
|
|
|
|
// relative to the farthest statically reachable SCC node. We don't mutate
|
|
|
|
// this value while inlining happens. Empirically, this feature proved
|
|
|
|
// critical in behavioral cloning - i.e. training a model to mimic the manual
|
|
|
|
// heuristic's decisions - and, thus, equally important for training for
|
|
|
|
// improvement.
|
2022-01-11 03:18:04 +08:00
|
|
|
CallGraph CGraph(M);
|
|
|
|
for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) {
|
2020-06-10 05:50:50 +08:00
|
|
|
const std::vector<CallGraphNode *> &CGNodes = *I;
|
|
|
|
unsigned Level = 0;
|
|
|
|
for (auto *CGNode : CGNodes) {
|
|
|
|
Function *F = CGNode->getFunction();
|
|
|
|
if (!F || F->isDeclaration())
|
|
|
|
continue;
|
|
|
|
for (auto &I : instructions(F)) {
|
|
|
|
if (auto *CS = getInlinableCS(I)) {
|
|
|
|
auto *Called = CS->getCalledFunction();
|
2022-01-11 03:18:04 +08:00
|
|
|
auto Pos = FunctionLevels.find(&CG.get(*Called));
|
2020-06-10 05:50:50 +08:00
|
|
|
// In bottom up traversal, an inlinable callee is either in the
|
|
|
|
// same SCC, or to a function in a visited SCC. So not finding its
|
|
|
|
// level means we haven't visited it yet, meaning it's in this SCC.
|
|
|
|
if (Pos == FunctionLevels.end())
|
|
|
|
continue;
|
|
|
|
Level = std::max(Level, Pos->second + 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (auto *CGNode : CGNodes) {
|
|
|
|
Function *F = CGNode->getFunction();
|
|
|
|
if (F && !F->isDeclaration())
|
2022-01-11 03:18:04 +08:00
|
|
|
FunctionLevels[&CG.get(*F)] = Level;
|
2020-06-10 05:50:50 +08:00
|
|
|
}
|
|
|
|
}
|
2022-01-13 08:56:24 +08:00
|
|
|
for (auto KVP : FunctionLevels) {
|
|
|
|
AllNodes.insert(KVP.first);
|
|
|
|
EdgeCount += getLocalCalls(KVP.first->getFunction());
|
|
|
|
}
|
|
|
|
NodeCount = AllNodes.size();
|
2020-06-10 05:50:50 +08:00
|
|
|
}
|
|
|
|
|
2022-01-11 03:18:04 +08:00
|
|
|
unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const {
|
|
|
|
return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0;
|
|
|
|
}
|
|
|
|
|
2020-06-10 05:50:50 +08:00
|
|
|
void MLInlineAdvisor::onPassEntry() {
|
|
|
|
// Function passes executed between InlinerPass runs may have changed the
|
|
|
|
// module-wide features.
|
2022-01-13 08:56:24 +08:00
|
|
|
// The cgscc pass manager rules are such that:
|
|
|
|
// - if a pass leads to merging SCCs, then the pipeline is restarted on the
|
|
|
|
// merged SCC
|
|
|
|
// - if a pass leads to splitting the SCC, then we continue with one of the
|
|
|
|
// splits
|
|
|
|
// This means that the NodesInLastSCC is a superset (not strict) of the nodes
|
|
|
|
// that subsequent passes would have processed
|
|
|
|
// - in addition, if new Nodes were created by a pass (e.g. CoroSplit),
|
|
|
|
// they'd be adjacent to Nodes in the last SCC. So we just need to check the
|
|
|
|
// boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't
|
|
|
|
// care about the nature of the Edge (call or ref).
|
|
|
|
NodeCount -= static_cast<int64_t>(NodesInLastSCC.size());
|
|
|
|
while (!NodesInLastSCC.empty()) {
|
|
|
|
const auto *N = NodesInLastSCC.front();
|
|
|
|
NodesInLastSCC.pop_front();
|
|
|
|
// The Function wrapped by N could have been deleted since we last saw it.
|
|
|
|
if (N->isDead()) {
|
|
|
|
assert(!N->getFunction().isDeclaration());
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
++NodeCount;
|
|
|
|
EdgeCount += getLocalCalls(N->getFunction());
|
|
|
|
for (const auto &E : *(*N)) {
|
|
|
|
const auto *AdjNode = &E.getNode();
|
|
|
|
assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
|
|
|
|
auto I = AllNodes.insert(AdjNode);
|
|
|
|
if (I.second)
|
|
|
|
NodesInLastSCC.push_back(AdjNode);
|
2020-06-10 05:50:50 +08:00
|
|
|
}
|
2022-01-13 08:56:24 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
EdgeCount -= EdgesOfLastSeenNodes;
|
|
|
|
EdgesOfLastSeenNodes = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *LastSCC) {
|
|
|
|
if (!LastSCC)
|
|
|
|
return;
|
|
|
|
// Keep track of the nodes and edges we last saw. Then, in onPassEntry,
|
|
|
|
// we update the node count and edge count from the subset of these nodes that
|
|
|
|
// survived.
|
|
|
|
assert(NodesInLastSCC.empty());
|
|
|
|
assert(NodeCount >= LastSCC->size());
|
|
|
|
EdgesOfLastSeenNodes = 0;
|
|
|
|
for (const auto &N : *LastSCC) {
|
|
|
|
assert(!N.isDead());
|
|
|
|
EdgesOfLastSeenNodes += getLocalCalls(N.getFunction());
|
|
|
|
NodesInLastSCC.push_back(&N);
|
|
|
|
}
|
|
|
|
assert(EdgeCount >= EdgesOfLastSeenNodes);
|
2020-06-10 05:50:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
|
2020-07-23 00:52:53 +08:00
|
|
|
return FAM.getResult<FunctionPropertiesAnalysis>(F)
|
|
|
|
.DirectCallsToDefinedFunctions;
|
2020-06-10 05:50:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
// Update the internal state of the advisor, and force invalidate feature
|
|
|
|
// analysis. Currently, we maintain minimal (and very simple) global state - the
|
|
|
|
// number of functions and the number of static calls. We also keep track of the
|
|
|
|
// total IR size in this module, to stop misbehaving policies at a certain bloat
|
|
|
|
// factor (SizeIncreaseThreshold)
|
|
|
|
void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
|
|
|
|
bool CalleeWasDeleted) {
|
|
|
|
assert(!ForceStop);
|
|
|
|
Function *Caller = Advice.getCaller();
|
|
|
|
Function *Callee = Advice.getCallee();
|
|
|
|
|
|
|
|
// The caller features aren't valid anymore.
|
2021-04-16 09:43:40 +08:00
|
|
|
{
|
|
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
|
|
PA.abandon<FunctionPropertiesAnalysis>();
|
|
|
|
FAM.invalidate(*Caller, PA);
|
|
|
|
}
|
2020-06-10 05:50:50 +08:00
|
|
|
int64_t IRSizeAfter =
|
|
|
|
getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
|
|
|
|
CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
|
|
|
|
if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
|
|
|
|
ForceStop = true;
|
|
|
|
|
|
|
|
// We can delta-update module-wide features. We know the inlining only changed
|
|
|
|
// the caller, and maybe the callee (by deleting the latter).
|
|
|
|
// Nodes are simple to update.
|
|
|
|
// For edges, we 'forget' the edges that the caller and callee used to have
|
|
|
|
// before inlining, and add back what they currently have together.
|
|
|
|
int64_t NewCallerAndCalleeEdges =
|
2020-07-23 00:52:53 +08:00
|
|
|
FAM.getResult<FunctionPropertiesAnalysis>(*Caller)
|
2020-06-10 05:50:50 +08:00
|
|
|
.DirectCallsToDefinedFunctions;
|
|
|
|
|
|
|
|
if (CalleeWasDeleted)
|
|
|
|
--NodeCount;
|
|
|
|
else
|
2020-07-23 00:52:53 +08:00
|
|
|
NewCallerAndCalleeEdges +=
|
|
|
|
FAM.getResult<FunctionPropertiesAnalysis>(*Callee)
|
|
|
|
.DirectCallsToDefinedFunctions;
|
2020-06-10 05:50:50 +08:00
|
|
|
EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
|
|
|
|
assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t MLInlineAdvisor::getModuleIRSize() const {
|
|
|
|
int64_t Ret = 0;
|
2022-01-11 03:18:04 +08:00
|
|
|
for (auto &F : M)
|
2020-06-10 05:50:50 +08:00
|
|
|
if (!F.isDeclaration())
|
|
|
|
Ret += getIRSize(F);
|
|
|
|
return Ret;
|
|
|
|
}
|
|
|
|
|
2021-01-16 05:56:57 +08:00
|
|
|
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
|
2020-06-10 05:50:50 +08:00
|
|
|
auto &Caller = *CB.getCaller();
|
|
|
|
auto &Callee = *CB.getCalledFunction();
|
|
|
|
|
|
|
|
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
|
|
|
|
return FAM.getResult<AssumptionAnalysis>(F);
|
|
|
|
};
|
|
|
|
auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
|
|
|
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
|
|
|
|
|
2021-01-16 05:56:57 +08:00
|
|
|
auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
|
2020-06-10 05:50:50 +08:00
|
|
|
// If this is a "never inline" case, there won't be any changes to internal
|
|
|
|
// state we need to track, so we can just return the base InlineAdvice, which
|
|
|
|
// will do nothing interesting.
|
|
|
|
// Same thing if this is a recursive case.
|
2021-01-16 05:56:57 +08:00
|
|
|
if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
|
2020-06-10 05:50:50 +08:00
|
|
|
&Caller == &Callee)
|
2021-01-16 05:56:57 +08:00
|
|
|
return getMandatoryAdvice(CB, false);
|
2020-06-10 05:50:50 +08:00
|
|
|
|
2020-11-17 06:01:53 +08:00
|
|
|
bool Mandatory =
|
2021-01-16 05:56:57 +08:00
|
|
|
MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
|
2020-06-10 05:50:50 +08:00
|
|
|
|
|
|
|
// If we need to stop, we won't want to track anymore any state changes, so
|
|
|
|
// we just return the base InlineAdvice, which acts as a noop.
|
|
|
|
if (ForceStop) {
|
|
|
|
ORE.emit([&] {
|
|
|
|
return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
|
|
|
|
<< "Won't attempt inlining because module size grew too much.";
|
|
|
|
});
|
|
|
|
return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
|
|
|
|
}
|
|
|
|
|
|
|
|
int CostEstimate = 0;
|
|
|
|
if (!Mandatory) {
|
|
|
|
auto IsCallSiteInlinable =
|
|
|
|
llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
|
|
|
|
if (!IsCallSiteInlinable) {
|
|
|
|
// We can't inline this for correctness reasons, so return the base
|
|
|
|
// InlineAdvice, as we don't care about tracking any state changes (which
|
|
|
|
// won't happen).
|
|
|
|
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
|
|
|
|
}
|
|
|
|
CostEstimate = *IsCallSiteInlinable;
|
|
|
|
}
|
|
|
|
|
2021-06-10 10:16:04 +08:00
|
|
|
const auto CostFeatures =
|
|
|
|
llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache);
|
|
|
|
if (!CostFeatures) {
|
|
|
|
return std::make_unique<InlineAdvice>(this, CB, ORE, false);
|
|
|
|
}
|
|
|
|
|
2020-06-10 05:50:50 +08:00
|
|
|
if (Mandatory)
|
2021-01-16 05:56:57 +08:00
|
|
|
return getMandatoryAdvice(CB, true);
|
2020-06-10 05:50:50 +08:00
|
|
|
|
|
|
|
auto NrCtantParams = 0;
|
|
|
|
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
|
|
|
|
NrCtantParams += (isa<Constant>(*I));
|
|
|
|
}
|
|
|
|
|
2020-07-23 00:52:53 +08:00
|
|
|
auto &CallerBefore = FAM.getResult<FunctionPropertiesAnalysis>(Caller);
|
|
|
|
auto &CalleeBefore = FAM.getResult<FunctionPropertiesAnalysis>(Callee);
|
2020-06-10 05:50:50 +08:00
|
|
|
|
2021-12-08 07:07:39 +08:00
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeBasicBlockCount) =
|
|
|
|
CalleeBefore.BasicBlockCount;
|
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::CallSiteHeight) =
|
2022-01-11 03:18:04 +08:00
|
|
|
getInitialFunctionLevel(Caller);
|
2021-12-08 07:07:39 +08:00
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::NodeCount) = NodeCount;
|
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::NrCtantParams) = NrCtantParams;
|
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::EdgeCount) = EdgeCount;
|
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::CallerUsers) =
|
|
|
|
CallerBefore.Uses;
|
|
|
|
*ModelRunner->getTensor<int64_t>(
|
|
|
|
FeatureIndex::CallerConditionallyExecutedBlocks) =
|
|
|
|
CallerBefore.BlocksReachedFromConditionalInstruction;
|
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::CallerBasicBlockCount) =
|
|
|
|
CallerBefore.BasicBlockCount;
|
|
|
|
*ModelRunner->getTensor<int64_t>(
|
|
|
|
FeatureIndex::CalleeConditionallyExecutedBlocks) =
|
|
|
|
CalleeBefore.BlocksReachedFromConditionalInstruction;
|
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::CalleeUsers) =
|
|
|
|
CalleeBefore.Uses;
|
|
|
|
*ModelRunner->getTensor<int64_t>(FeatureIndex::CostEstimate) = CostEstimate;
|
2021-06-10 10:16:04 +08:00
|
|
|
|
|
|
|
// Add the cost features
|
|
|
|
for (size_t I = 0;
|
|
|
|
I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) {
|
2021-12-08 07:07:39 +08:00
|
|
|
*ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature(
|
|
|
|
static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I);
|
2021-06-10 10:16:04 +08:00
|
|
|
}
|
|
|
|
|
2020-06-10 05:50:50 +08:00
|
|
|
return getAdviceFromModel(CB, ORE);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<MLInlineAdvice>
|
|
|
|
MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
|
|
|
|
OptimizationRemarkEmitter &ORE) {
|
2021-12-08 07:07:39 +08:00
|
|
|
return std::make_unique<MLInlineAdvice>(
|
|
|
|
this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>()));
|
2020-06-10 05:50:50 +08:00
|
|
|
}
|
|
|
|
|
2021-01-16 05:56:57 +08:00
|
|
|
std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
|
|
|
|
bool Advice) {
|
|
|
|
// Make sure we track inlinings in all cases - mandatory or not.
|
|
|
|
if (Advice && !ForceStop)
|
|
|
|
return getMandatoryAdviceImpl(CB);
|
|
|
|
|
|
|
|
// If this is a "never inline" case, there won't be any changes to internal
|
|
|
|
// state we need to track, so we can just return the base InlineAdvice, which
|
|
|
|
// will do nothing interesting.
|
|
|
|
// Same if we are forced to stop - we don't track anymore.
|
|
|
|
return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
|
|
|
|
}
|
|
|
|
|
2020-06-10 05:50:50 +08:00
|
|
|
std::unique_ptr<MLInlineAdvice>
|
2021-01-16 05:56:57 +08:00
|
|
|
MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
|
|
|
|
return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
|
2020-06-10 05:50:50 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void MLInlineAdvice::reportContextForRemark(
|
|
|
|
DiagnosticInfoOptimizationBase &OR) {
|
|
|
|
using namespace ore;
|
|
|
|
OR << NV("Callee", Callee->getName());
|
|
|
|
for (size_t I = 0; I < NumberOfFeatures; ++I)
|
2021-12-08 07:07:39 +08:00
|
|
|
OR << NV(FeatureNameMap[I],
|
|
|
|
*getAdvisor()->getModelRunner().getTensor<int64_t>(I));
|
2020-06-10 05:50:50 +08:00
|
|
|
OR << NV("ShouldInline", isInliningRecommended());
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLInlineAdvice::recordInliningImpl() {
|
|
|
|
ORE.emit([&]() {
|
|
|
|
OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
|
|
|
|
reportContextForRemark(R);
|
|
|
|
return R;
|
|
|
|
});
|
|
|
|
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
|
|
|
|
ORE.emit([&]() {
|
|
|
|
OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
|
|
|
|
Block);
|
|
|
|
reportContextForRemark(R);
|
|
|
|
return R;
|
|
|
|
});
|
|
|
|
getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
|
|
|
|
}
|
|
|
|
|
|
|
|
void MLInlineAdvice::recordUnsuccessfulInliningImpl(
|
|
|
|
const InlineResult &Result) {
|
|
|
|
ORE.emit([&]() {
|
|
|
|
OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
|
|
|
|
DLoc, Block);
|
|
|
|
reportContextForRemark(R);
|
|
|
|
return R;
|
|
|
|
});
|
|
|
|
}
|
|
|
|
void MLInlineAdvice::recordUnattemptedInliningImpl() {
|
|
|
|
ORE.emit([&]() {
|
|
|
|
OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
|
|
|
|
reportContextForRemark(R);
|
|
|
|
return R;
|
|
|
|
});
|
2020-07-21 23:44:47 +08:00
|
|
|
}
|