llvm-project/clang/lib/CodeGen/CoverageMappingGen.cpp

1225 lines
45 KiB
C++
Raw Normal View History

//===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Instrumentation-based code coverage mapping generator
//
//===----------------------------------------------------------------------===//
#include "CoverageMappingGen.h"
#include "CodeGenFunction.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/ProfileData/CoverageMapping.h"
#include "llvm/ProfileData/CoverageMappingWriter.h"
#include "llvm/ProfileData/CoverageMappingReader.h"
#include "llvm/Support/FileSystem.h"
using namespace clang;
using namespace CodeGen;
using namespace llvm::coverage;
void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range) {
SkippedRanges.push_back(Range);
}
namespace {
/// \brief A region of source code that can be mapped to a counter.
class SourceMappingRegion {
public:
enum RegionFlags {
/// \brief This region won't be emitted if it wasn't extended.
/// This is useful so that we won't emit source ranges for single tokens
/// that we don't really care that much about, like:
/// the '(' token in #define MACRO (
IgnoreIfNotExtended = 0x0001,
};
private:
FileID File, MacroArgumentFile;
Counter Count;
/// \brief A statement that initiated the count of Zero.
///
/// This initiator statement is useful to prevent merging of unreachable
/// regions with different statements that caused the counter to become
/// unreachable.
const Stmt *UnreachableInitiator;
/// \brief A statement that separates certain mapping regions into groups.
///
/// The group statement is sometimes useful when we are emitting the source
/// regions not in their correct lexical order, e.g. the regions for the
/// incrementation expression in the 'for' construct. By marking the regions
/// in the incrementation expression with the group statement, we avoid the
/// merging of the regions from the incrementation expression and the loop's
/// body.
const Stmt *Group;
/// \brief The region's starting location.
SourceLocation LocStart;
/// \brief The region's ending location.
SourceLocation LocEnd, AlternativeLocEnd;
unsigned Flags;
public:
SourceMappingRegion(FileID File, FileID MacroArgumentFile, Counter Count,
const Stmt *UnreachableInitiator, const Stmt *Group,
SourceLocation LocStart, SourceLocation LocEnd,
unsigned Flags = 0)
: File(File), MacroArgumentFile(MacroArgumentFile), Count(Count),
UnreachableInitiator(UnreachableInitiator), Group(Group),
LocStart(LocStart), LocEnd(LocEnd), AlternativeLocEnd(LocStart),
Flags(Flags) {}
const FileID &getFile() const { return File; }
const Counter &getCounter() const { return Count; }
const SourceLocation &getStartLoc() const { return LocStart; }
const SourceLocation &getEndLoc(const SourceManager &SM) const {
if (SM.getFileID(LocEnd) != File)
return AlternativeLocEnd;
return LocEnd;
}
bool hasFlag(RegionFlags Flag) const { return (Flags & Flag) != 0; }
void setFlag(RegionFlags Flag) { Flags |= Flag; }
void clearFlag(RegionFlags Flag) { Flags &= ~Flag; }
/// \brief Return true if two regions can be merged together.
bool isMergeable(SourceMappingRegion &R) {
// FIXME: We allow merging regions with a gap in between them. Should we?
return File == R.File && MacroArgumentFile == R.MacroArgumentFile &&
Count == R.Count && UnreachableInitiator == R.UnreachableInitiator &&
Group == R.Group;
}
/// \brief A comparison that sorts such that mergeable regions are adjacent.
friend bool operator<(const SourceMappingRegion &LHS,
const SourceMappingRegion &RHS) {
return std::tie(LHS.File, LHS.MacroArgumentFile, LHS.Count,
LHS.UnreachableInitiator, LHS.Group) <
std::tie(RHS.File, RHS.MacroArgumentFile, RHS.Count,
RHS.UnreachableInitiator, RHS.Group);
}
};
/// \brief The state of the coverage mapping builder.
struct SourceMappingState {
Counter CurrentRegionCount;
const Stmt *CurrentSourceGroup;
const Stmt *CurrentUnreachableRegionInitiator;
SourceMappingState(Counter CurrentRegionCount, const Stmt *CurrentSourceGroup,
const Stmt *CurrentUnreachableRegionInitiator)
: CurrentRegionCount(CurrentRegionCount),
CurrentSourceGroup(CurrentSourceGroup),
CurrentUnreachableRegionInitiator(CurrentUnreachableRegionInitiator) {}
};
/// \brief Provides the common functionality for the different
/// coverage mapping region builders.
class CoverageMappingBuilder {
public:
CoverageMappingModuleGen &CVM;
SourceManager &SM;
const LangOptions &LangOpts;
private:
struct FileInfo {
/// \brief The file id that will be used by the coverage mapping system.
unsigned CovMappingFileID;
const FileEntry *Entry;
FileInfo(unsigned CovMappingFileID, const FileEntry *Entry)
: CovMappingFileID(CovMappingFileID), Entry(Entry) {}
};
/// \brief This mapping maps clang's FileIDs to file ids used
/// by the coverage mapping system and clang's file entries.
llvm::SmallDenseMap<FileID, FileInfo, 8> FileIDMapping;
public:
/// \brief The statement that corresponds to the current source group.
const Stmt *CurrentSourceGroup;
/// \brief The statement the initiated the current unreachable region.
const Stmt *CurrentUnreachableRegionInitiator;
/// \brief The coverage mapping regions for this function
llvm::SmallVector<CounterMappingRegion, 32> MappingRegions;
/// \brief The source mapping regions for this function.
std::vector<SourceMappingRegion> SourceRegions;
CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CVM(CVM), SM(SM), LangOpts(LangOpts),
CurrentSourceGroup(nullptr),
CurrentUnreachableRegionInitiator(nullptr) {}
/// \brief Return the precise end location for the given token.
SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) {
return Lexer::getLocForEndOfToken(SM.getSpellingLoc(Loc), 0, SM, LangOpts);
}
/// \brief Create the mapping that maps from the function's file ids to
/// the indices for the translation unit's filenames.
void createFileIDMapping(SmallVectorImpl<unsigned> &Mapping) {
Mapping.resize(FileIDMapping.size(), 0);
for (const auto &I : FileIDMapping)
Mapping[I.second.CovMappingFileID] = CVM.getFileID(I.second.Entry);
}
/// \brief Get the coverage mapping file id that corresponds to the given
/// clang file id. If such file id doesn't exist, it gets added to the
/// mapping that maps from clang's file ids to coverage mapping file ids.
/// Return true if there was an error getting the coverage mapping file id.
/// An example of an when this function fails is when the region tries
/// to get a coverage file id for a location in a built-in macro.
bool getCoverageFileID(SourceLocation LocStart, FileID File,
FileID SpellingFile, unsigned &Result) {
auto Mapping = FileIDMapping.find(File);
if (Mapping != FileIDMapping.end()) {
Result = Mapping->second.CovMappingFileID;
return false;
}
auto Entry = SM.getFileEntryForID(SpellingFile);
if (!Entry)
return true;
Result = FileIDMapping.size();
FileIDMapping.insert(std::make_pair(File, FileInfo(Result, Entry)));
createFileExpansionRegion(LocStart, File);
return false;
}
/// \brief Get the coverage mapping file id that corresponds to the given
/// clang file id.
/// Return true if there was an error getting the coverage mapping file id.
bool getExistingCoverageFileID(FileID File, unsigned &Result) {
// Make sure that the file is valid.
if (File.isInvalid())
return true;
auto Mapping = FileIDMapping.find(File);
if (Mapping != FileIDMapping.end()) {
Result = Mapping->second.CovMappingFileID;
return false;
}
return true;
}
/// \brief Return true if the given clang's file id has a corresponding
/// coverage file id.
bool hasExistingCoverageFileID(FileID File) const {
return FileIDMapping.count(File);
}
/// \brief Gather all the regions that were skipped by the preprocessor
/// using the constructs like #if.
void gatherSkippedRegions() {
/// An array of the minimum lineStarts and the maximum lineEnds
/// for mapping regions from the appropriate source files.
llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges;
FileLineRanges.resize(
FileIDMapping.size(),
std::make_pair(std::numeric_limits<unsigned>::max(), 0));
for (const auto &R : MappingRegions) {
FileLineRanges[R.FileID].first =
std::min(FileLineRanges[R.FileID].first, R.LineStart);
FileLineRanges[R.FileID].second =
std::max(FileLineRanges[R.FileID].second, R.LineEnd);
}
auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges();
for (const auto &I : SkippedRanges) {
auto LocStart = I.getBegin();
auto LocEnd = I.getEnd();
auto FileStart = SM.getFileID(LocStart);
if (!hasExistingCoverageFileID(FileStart))
continue;
auto ActualFileStart = SM.getDecomposedSpellingLoc(LocStart).first;
if (ActualFileStart != SM.getDecomposedSpellingLoc(LocEnd).first)
// Ignore regions that span across multiple files.
continue;
unsigned CovFileID;
if (getCoverageFileID(LocStart, FileStart, ActualFileStart, CovFileID))
continue;
unsigned LineStart = SM.getSpellingLineNumber(LocStart);
unsigned ColumnStart = SM.getSpellingColumnNumber(LocStart);
unsigned LineEnd = SM.getSpellingLineNumber(LocEnd);
unsigned ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
CounterMappingRegion Region(Counter(), CovFileID, LineStart, ColumnStart,
LineEnd, ColumnEnd, false,
CounterMappingRegion::SkippedRegion);
// Make sure that we only collect the regions that are inside
// the souce code of this function.
if (Region.LineStart >= FileLineRanges[CovFileID].first &&
Region.LineEnd <= FileLineRanges[CovFileID].second)
MappingRegions.push_back(Region);
}
}
/// \brief Create a mapping region that correponds to an expansion of
/// a macro or an embedded include.
void createFileExpansionRegion(SourceLocation Loc, FileID ExpandedFile) {
SourceLocation LocStart;
if (Loc.isMacroID())
LocStart = SM.getImmediateExpansionRange(Loc).first;
else {
LocStart = SM.getIncludeLoc(ExpandedFile);
if (LocStart.isInvalid())
return; // This file has no expansion region.
}
auto File = SM.getFileID(LocStart);
auto SpellingFile = SM.getDecomposedSpellingLoc(LocStart).first;
unsigned CovFileID, ExpandedFileID;
if (getExistingCoverageFileID(ExpandedFile, ExpandedFileID))
return;
if (getCoverageFileID(LocStart, File, SpellingFile, CovFileID))
return;
unsigned LineStart = SM.getSpellingLineNumber(LocStart);
unsigned ColumnStart = SM.getSpellingColumnNumber(LocStart);
unsigned LineEnd = LineStart;
// Compute the end column manually as Lexer::getLocForEndOfToken doesn't
// give the correct result in all cases.
unsigned ColumnEnd =
ColumnStart +
Lexer::MeasureTokenLength(SM.getSpellingLoc(LocStart), SM, LangOpts);
MappingRegions.push_back(CounterMappingRegion(
Counter(), CovFileID, LineStart, ColumnStart, LineEnd, ColumnEnd,
false, CounterMappingRegion::ExpansionRegion));
MappingRegions.back().ExpandedFileID = ExpandedFileID;
}
/// \brief Enter a source region group that is identified by the given
/// statement.
/// It's not possible to enter a group when there is already
/// another group present.
void beginSourceRegionGroup(const Stmt *Group) {
assert(!CurrentSourceGroup);
CurrentSourceGroup = Group;
}
/// \brief Exit the current source region group.
void endSourceRegionGroup() { CurrentSourceGroup = nullptr; }
/// \brief Associate a counter with a given source code range.
void mapSourceCodeRange(SourceLocation LocStart, SourceLocation LocEnd,
Counter Count, const Stmt *UnreachableInitiator,
const Stmt *SourceGroup, unsigned Flags = 0,
FileID MacroArgumentFile = FileID()) {
if (SM.isMacroArgExpansion(LocStart)) {
// Map the code range with the macro argument's value.
mapSourceCodeRange(SM.getImmediateSpellingLoc(LocStart),
SM.getImmediateSpellingLoc(LocEnd), Count,
UnreachableInitiator, SourceGroup, Flags,
SM.getFileID(LocStart));
// Map the code range where the macro argument is referenced.
SourceLocation RefLocStart(SM.getImmediateExpansionRange(LocStart).first);
SourceLocation RefLocEnd(RefLocStart);
if (SM.isMacroArgExpansion(RefLocStart))
mapSourceCodeRange(RefLocStart, RefLocEnd, Count, UnreachableInitiator,
SourceGroup, 0, SM.getFileID(RefLocStart));
else
mapSourceCodeRange(RefLocStart, RefLocEnd, Count, UnreachableInitiator,
SourceGroup);
return;
}
auto File = SM.getFileID(LocStart);
// Make sure that the file id is valid.
if (File.isInvalid())
return;
SourceRegions.emplace_back(File, MacroArgumentFile, Count,
UnreachableInitiator, SourceGroup, LocStart,
LocEnd, Flags);
}
void mapSourceCodeRange(SourceLocation LocStart, SourceLocation LocEnd,
Counter Count, unsigned Flags = 0) {
mapSourceCodeRange(LocStart, LocEnd, Count,
CurrentUnreachableRegionInitiator, CurrentSourceGroup,
Flags);
}
void mapSourceCodeRange(const SourceMappingState &State,
SourceLocation LocStart, SourceLocation LocEnd,
unsigned Flags = 0) {
mapSourceCodeRange(LocStart, LocEnd, State.CurrentRegionCount,
State.CurrentUnreachableRegionInitiator,
State.CurrentSourceGroup, Flags);
}
/// \brief Generate the coverage counter mapping regions from collected
/// source regions.
void emitSourceRegions() {
std::sort(SourceRegions.begin(), SourceRegions.end());
for (auto I = SourceRegions.begin(), E = SourceRegions.end(); I != E; ++I) {
// Keep the original start location of this region.
SourceLocation LocStart = I->getStartLoc();
SourceLocation LocEnd = I->getEndLoc(SM);
bool Ignore = I->hasFlag(SourceMappingRegion::IgnoreIfNotExtended);
// We need to handle mergeable regions together.
for (auto Next = I + 1; Next != E && Next->isMergeable(*I); ++Next) {
++I;
LocStart = std::min(LocStart, I->getStartLoc());
LocEnd = std::max(LocEnd, I->getEndLoc(SM));
// FIXME: Should we && together the Ignore flag of multiple regions?
Ignore = false;
}
if (Ignore)
continue;
// Find the spilling locations for the mapping region.
LocEnd = getPreciseTokenLocEnd(LocEnd);
unsigned LineStart = SM.getSpellingLineNumber(LocStart);
unsigned ColumnStart = SM.getSpellingColumnNumber(LocStart);
unsigned LineEnd = SM.getSpellingLineNumber(LocEnd);
unsigned ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
auto SpellingFile = SM.getDecomposedSpellingLoc(LocStart).first;
unsigned CovFileID;
if (getCoverageFileID(LocStart, I->getFile(), SpellingFile, CovFileID))
continue;
assert(LineStart <= LineEnd);
MappingRegions.push_back(CounterMappingRegion(
I->getCounter(), CovFileID, LineStart, ColumnStart, LineEnd,
ColumnEnd, false, CounterMappingRegion::CodeRegion));
}
}
};
/// \brief Creates unreachable coverage regions for the functions that
/// are not emitted.
struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder {
EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts) {}
void VisitDecl(const Decl *D) {
if (!D->hasBody())
return;
auto Body = D->getBody();
mapSourceCodeRange(Body->getLocStart(), Body->getLocEnd(), Counter());
}
/// \brief Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
emitSourceRegions();
SmallVector<unsigned, 16> FileIDMapping;
createFileIDMapping(FileIDMapping);
CoverageMappingWriter Writer(FileIDMapping, None, MappingRegions);
Writer.write(OS);
}
};
/// \brief A StmtVisitor that creates coverage mapping regions which map
/// from the source code locations to the PGO counters.
struct CounterCoverageMappingBuilder
: public CoverageMappingBuilder,
public ConstStmtVisitor<CounterCoverageMappingBuilder> {
/// \brief The map of statements to count values.
llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
Counter CurrentRegionCount;
CounterExpressionBuilder Builder;
/// \brief Return a counter that represents the
/// expression that subracts rhs from lhs.
Counter subtractCounters(Counter LHS, Counter RHS) {
return Builder.subtract(LHS, RHS);
}
/// \brief Return a counter that represents the
/// the exression that adds lhs and rhs.
Counter addCounters(Counter LHS, Counter RHS) {
return Builder.add(LHS, RHS);
}
/// \brief Return the region counter for the given statement.
/// This should only be called on statements that have a dedicated counter.
unsigned getRegionCounter(const Stmt *S) { return CounterMap[S]; }
/// \brief Return the region count for the counter at the given index.
Counter getRegionCount(unsigned CounterId) {
return Counter::getCounter(CounterId);
}
/// \brief Return the counter value of the current region.
Counter getCurrentRegionCount() { return CurrentRegionCount; }
/// \brief Set the counter value for the current region.
/// This is used to keep track of changes to the most recent counter
/// from control flow and non-local exits.
void setCurrentRegionCount(Counter Count) {
CurrentRegionCount = Count;
CurrentUnreachableRegionInitiator = nullptr;
}
/// \brief Indicate that the current region is never reached,
/// and thus should have a counter value of zero.
/// This is important so that subsequent regions can correctly track
/// their parent counts.
void setCurrentRegionUnreachable(const Stmt *Initiator) {
CurrentRegionCount = Counter::getZero();
CurrentUnreachableRegionInitiator = Initiator;
}
/// \brief A counter for a particular region.
/// This is the primary interface through
/// which the coverage mapping builder manages counters and their values.
class RegionMapper {
CounterCoverageMappingBuilder &Mapping;
Counter Count;
Counter ParentCount;
Counter RegionCount;
Counter Adjust;
public:
RegionMapper(CounterCoverageMappingBuilder *Mapper, const Stmt *S)
: Mapping(*Mapper),
Count(Mapper->getRegionCount(Mapper->getRegionCounter(S))),
ParentCount(Mapper->getCurrentRegionCount()) {}
/// Get the value of the counter. In most cases this is the number of times
/// the region of the counter was entered, but for switch labels it's the
/// number of direct jumps to that label.
Counter getCount() const { return Count; }
/// Get the value of the counter with adjustments applied. Adjustments occur
/// when control enters or leaves the region abnormally; i.e., if there is a
/// jump to a label within the region, or if the function can return from
/// within the region. The adjusted count, then, is the value of the counter
/// at the end of the region.
Counter getAdjustedCount() const {
return Mapping.addCounters(Count, Adjust);
}
/// Get the value of the counter in this region's parent, i.e., the region
/// that was active when this region began. This is useful for deriving
/// counts in implicitly counted regions, like the false case of a condition
/// or the normal exits of a loop.
Counter getParentCount() const { return ParentCount; }
/// Activate the counter by emitting an increment and starting to track
/// adjustments. If AddIncomingFallThrough is true, the current region count
/// will be added to the counter for the purposes of tracking the region.
void beginRegion(bool AddIncomingFallThrough = false) {
RegionCount = Count;
if (AddIncomingFallThrough)
RegionCount =
Mapping.addCounters(RegionCount, Mapping.getCurrentRegionCount());
Mapping.setCurrentRegionCount(RegionCount);
}
/// For counters on boolean branches, begins tracking adjustments for the
/// uncounted path.
void beginElseRegion() {
RegionCount = Mapping.subtractCounters(ParentCount, Count);
Mapping.setCurrentRegionCount(RegionCount);
}
/// Reset the current region count.
void setCurrentRegionCount(Counter CurrentCount) {
RegionCount = CurrentCount;
Mapping.setCurrentRegionCount(RegionCount);
}
/// Adjust for non-local control flow after emitting a subexpression or
/// substatement. This must be called to account for constructs such as
/// gotos,
/// labels, and returns, so that we can ensure that our region's count is
/// correct in the code that follows.
void adjustForControlFlow() {
Adjust = Mapping.addCounters(
Adjust, Mapping.subtractCounters(Mapping.getCurrentRegionCount(),
RegionCount));
// Reset the region count in case this is called again later.
RegionCount = Mapping.getCurrentRegionCount();
}
/// Commit all adjustments to the current region. If the region is a loop,
/// the LoopAdjust value should be the count of all the breaks and continues
/// from the loop, to compensate for those counts being deducted from the
/// adjustments for the body of the loop.
void applyAdjustmentsToRegion() {
Mapping.setCurrentRegionCount(Mapping.addCounters(ParentCount, Adjust));
}
void applyAdjustmentsToRegion(Counter LoopAdjust) {
Mapping.setCurrentRegionCount(Mapping.addCounters(
Mapping.addCounters(ParentCount, Adjust), LoopAdjust));
}
};
/// \brief Keep counts of breaks and continues inside loops.
struct BreakContinue {
Counter BreakCount;
Counter ContinueCount;
};
SmallVector<BreakContinue, 8> BreakContinueStack;
CounterCoverageMappingBuilder(
CoverageMappingModuleGen &CVM,
llvm::DenseMap<const Stmt *, unsigned> &CounterMap, SourceManager &SM,
const LangOptions &LangOpts)
: CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap) {}
/// \brief Write the mapping data to the output stream
void write(llvm::raw_ostream &OS) {
emitSourceRegions();
llvm::SmallVector<unsigned, 8> VirtualFileMapping;
createFileIDMapping(VirtualFileMapping);
gatherSkippedRegions();
CoverageMappingWriter Writer(
VirtualFileMapping, Builder.getExpressions(), MappingRegions);
Writer.write(OS);
}
/// \brief Return the current source mapping state.
SourceMappingState getCurrentState() const {
return SourceMappingState(CurrentRegionCount, CurrentSourceGroup,
CurrentUnreachableRegionInitiator);
}
/// \brief Associate the source code range with the current region count.
void mapSourceCodeRange(SourceLocation LocStart, SourceLocation LocEnd,
unsigned Flags = 0) {
CoverageMappingBuilder::mapSourceCodeRange(LocStart, LocEnd,
CurrentRegionCount, Flags);
}
void mapSourceCodeRange(SourceLocation LocStart) {
CoverageMappingBuilder::mapSourceCodeRange(LocStart, LocStart,
CurrentRegionCount);
}
/// \brief Associate the source range of a token with the current region
/// count.
/// Ignore the source range for this token if it produces a distinct
/// mapping region with no other source ranges.
void mapToken(SourceLocation LocStart) {
CoverageMappingBuilder::mapSourceCodeRange(
LocStart, LocStart, CurrentRegionCount,
SourceMappingRegion::IgnoreIfNotExtended);
}
void mapToken(const SourceMappingState &State, SourceLocation LocStart) {
CoverageMappingBuilder::mapSourceCodeRange(
State, LocStart, LocStart, SourceMappingRegion::IgnoreIfNotExtended);
}
void VisitStmt(const Stmt *S) {
mapSourceCodeRange(S->getLocStart());
for (Stmt::const_child_range I = S->children(); I; ++I) {
if (*I)
this->Visit(*I);
}
}
/// \brief If the given statement is a compound statement,
/// map '}' with the same count as '{'.
void VisitSubStmtRBraceState(const Stmt *S) {
if (!isa<CompoundStmt>(S))
return Visit(S);
const auto *CS = cast<CompoundStmt>(S);
auto State = getCurrentState();
mapSourceCodeRange(CS->getLBracLoc());
for (Stmt::const_child_range I = S->children(); I; ++I) {
if (*I)
this->Visit(*I);
}
CoverageMappingBuilder::mapSourceCodeRange(State, CS->getRBracLoc(),
CS->getRBracLoc());
}
void VisitDecl(const Decl *D) {
if (!D->hasBody())
return;
// Counter tracks entry to the function body.
auto Body = D->getBody();
RegionMapper Cnt(this, Body);
Cnt.beginRegion();
VisitSubStmtRBraceState(Body);
}
void VisitDeclStmt(const DeclStmt *S) {
mapSourceCodeRange(S->getLocStart());
for (Stmt::const_child_range I = static_cast<const Stmt *>(S)->children();
I; ++I) {
if (*I)
this->Visit(*I);
}
}
void VisitCompoundStmt(const CompoundStmt *S) {
mapSourceCodeRange(S->getLBracLoc());
for (Stmt::const_child_range I = S->children(); I; ++I) {
if (*I)
this->Visit(*I);
}
mapSourceCodeRange(S->getRBracLoc(), S->getRBracLoc());
}
void VisitReturnStmt(const ReturnStmt *S) {
mapSourceCodeRange(S->getLocStart());
if (S->getRetValue())
Visit(S->getRetValue());
setCurrentRegionUnreachable(S);
}
void VisitGotoStmt(const GotoStmt *S) {
mapSourceCodeRange(S->getLocStart());
mapToken(S->getLabelLoc());
setCurrentRegionUnreachable(S);
}
void VisitLabelStmt(const LabelStmt *S) {
// Counter tracks the block following the label.
RegionMapper Cnt(this, S);
Cnt.beginRegion();
mapSourceCodeRange(S->getLocStart());
// Can't map the ':' token as its location isn't known.
Visit(S->getSubStmt());
}
void VisitBreakStmt(const BreakStmt *S) {
mapSourceCodeRange(S->getLocStart());
assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
BreakContinueStack.back().BreakCount = addCounters(
BreakContinueStack.back().BreakCount, getCurrentRegionCount());
setCurrentRegionUnreachable(S);
}
void VisitContinueStmt(const ContinueStmt *S) {
mapSourceCodeRange(S->getLocStart());
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, getCurrentRegionCount());
setCurrentRegionUnreachable(S);
}
void VisitWhileStmt(const WhileStmt *S) {
mapSourceCodeRange(S->getLocStart());
// Counter tracks the body of the loop.
RegionMapper Cnt(this, S);
BreakContinueStack.push_back(BreakContinue());
// Visit the body region first so the break/continue adjustments can be
// included when visiting the condition.
Cnt.beginRegion();
VisitSubStmtRBraceState(S->getBody());
Cnt.adjustForControlFlow();
// ...then go back and propagate counts through the condition. The count
// at the start of the condition is the sum of the incoming edges,
// the backedge from the end of the loop body, and the edges from
// continue statements.
BreakContinue BC = BreakContinueStack.pop_back_val();
Cnt.setCurrentRegionCount(
addCounters(Cnt.getParentCount(),
addCounters(Cnt.getAdjustedCount(), BC.ContinueCount)));
beginSourceRegionGroup(S->getCond());
Visit(S->getCond());
endSourceRegionGroup();
Cnt.adjustForControlFlow();
Cnt.applyAdjustmentsToRegion(addCounters(BC.BreakCount, BC.ContinueCount));
}
void VisitDoStmt(const DoStmt *S) {
mapSourceCodeRange(S->getLocStart());
// Counter tracks the body of the loop.
RegionMapper Cnt(this, S);
BreakContinueStack.push_back(BreakContinue());
Cnt.beginRegion(/*AddIncomingFallThrough=*/true);
VisitSubStmtRBraceState(S->getBody());
Cnt.adjustForControlFlow();
BreakContinue BC = BreakContinueStack.pop_back_val();
// The count at the start of the condition is equal to the count at the
// end of the body. The adjusted count does not include either the
// fall-through count coming into the loop or the continue count, so add
// both of those separately. This is coincidentally the same equation as
// with while loops but for different reasons.
Cnt.setCurrentRegionCount(
addCounters(Cnt.getParentCount(),
addCounters(Cnt.getAdjustedCount(), BC.ContinueCount)));
Visit(S->getCond());
Cnt.adjustForControlFlow();
Cnt.applyAdjustmentsToRegion(addCounters(BC.BreakCount, BC.ContinueCount));
}
void VisitForStmt(const ForStmt *S) {
mapSourceCodeRange(S->getLocStart());
if (S->getInit())
Visit(S->getInit());
// Counter tracks the body of the loop.
RegionMapper Cnt(this, S);
BreakContinueStack.push_back(BreakContinue());
// Visit the body region first. (This is basically the same as a while
// loop; see further comments in VisitWhileStmt.)
Cnt.beginRegion();
VisitSubStmtRBraceState(S->getBody());
Cnt.adjustForControlFlow();
// The increment is essentially part of the body but it needs to include
// the count for all the continue statements.
if (S->getInc()) {
Cnt.setCurrentRegionCount(addCounters(
getCurrentRegionCount(), BreakContinueStack.back().ContinueCount));
beginSourceRegionGroup(S->getInc());
Visit(S->getInc());
endSourceRegionGroup();
Cnt.adjustForControlFlow();
}
BreakContinue BC = BreakContinueStack.pop_back_val();
// ...then go back and propagate counts through the condition.
if (S->getCond()) {
Cnt.setCurrentRegionCount(
addCounters(addCounters(Cnt.getParentCount(), Cnt.getAdjustedCount()),
BC.ContinueCount));
beginSourceRegionGroup(S->getCond());
Visit(S->getCond());
endSourceRegionGroup();
Cnt.adjustForControlFlow();
}
Cnt.applyAdjustmentsToRegion(addCounters(BC.BreakCount, BC.ContinueCount));
}
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
mapSourceCodeRange(S->getLocStart());
Visit(S->getRangeStmt());
Visit(S->getBeginEndStmt());
// Counter tracks the body of the loop.
RegionMapper Cnt(this, S);
BreakContinueStack.push_back(BreakContinue());
// Visit the body region first. (This is basically the same as a while
// loop; see further comments in VisitWhileStmt.)
Cnt.beginRegion();
VisitSubStmtRBraceState(S->getBody());
Cnt.adjustForControlFlow();
BreakContinue BC = BreakContinueStack.pop_back_val();
Cnt.applyAdjustmentsToRegion(addCounters(BC.BreakCount, BC.ContinueCount));
}
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
mapSourceCodeRange(S->getLocStart());
Visit(S->getElement());
// Counter tracks the body of the loop.
RegionMapper Cnt(this, S);
BreakContinueStack.push_back(BreakContinue());
Cnt.beginRegion();
VisitSubStmtRBraceState(S->getBody());
BreakContinue BC = BreakContinueStack.pop_back_val();
Cnt.adjustForControlFlow();
Cnt.applyAdjustmentsToRegion(addCounters(BC.BreakCount, BC.ContinueCount));
}
void VisitSwitchStmt(const SwitchStmt *S) {
mapSourceCodeRange(S->getLocStart());
Visit(S->getCond());
BreakContinueStack.push_back(BreakContinue());
// Map the '}' for the body to have the same count as the regions after
// the switch.
SourceLocation RBracLoc;
if (const auto *CS = dyn_cast<CompoundStmt>(S->getBody())) {
mapSourceCodeRange(CS->getLBracLoc());
setCurrentRegionUnreachable(S);
for (Stmt::const_child_range I = CS->children(); I; ++I) {
if (*I)
this->Visit(*I);
}
RBracLoc = CS->getRBracLoc();
} else {
setCurrentRegionUnreachable(S);
Visit(S->getBody());
}
// If the switch is inside a loop, add the continue counts.
BreakContinue BC = BreakContinueStack.pop_back_val();
if (!BreakContinueStack.empty())
BreakContinueStack.back().ContinueCount = addCounters(
BreakContinueStack.back().ContinueCount, BC.ContinueCount);
// Counter tracks the exit block of the switch.
RegionMapper ExitCnt(this, S);
ExitCnt.beginRegion();
if (RBracLoc.isValid())
mapSourceCodeRange(RBracLoc);
}
void VisitCaseStmt(const CaseStmt *S) {
// Counter for this particular case. This counts only jumps from the
// switch header and does not include fallthrough from the case before
// this one.
RegionMapper Cnt(this, S);
Cnt.beginRegion(/*AddIncomingFallThrough=*/true);
mapSourceCodeRange(S->getLocStart());
mapToken(S->getColonLoc());
Visit(S->getSubStmt());
}
void VisitDefaultStmt(const DefaultStmt *S) {
// Counter for this default case. This does not include fallthrough from
// the previous case.
RegionMapper Cnt(this, S);
Cnt.beginRegion(/*AddIncomingFallThrough=*/true);
mapSourceCodeRange(S->getLocStart());
mapToken(S->getColonLoc());
Visit(S->getSubStmt());
}
void VisitIfStmt(const IfStmt *S) {
mapSourceCodeRange(S->getLocStart());
Visit(S->getCond());
mapToken(S->getElseLoc());
// Counter tracks the "then" part of an if statement. The count for
// the "else" part, if it exists, will be calculated from this counter.
RegionMapper Cnt(this, S);
Cnt.beginRegion();
VisitSubStmtRBraceState(S->getThen());
Cnt.adjustForControlFlow();
if (S->getElse()) {
Cnt.beginElseRegion();
VisitSubStmtRBraceState(S->getElse());
Cnt.adjustForControlFlow();
}
Cnt.applyAdjustmentsToRegion();
}
void VisitCXXTryStmt(const CXXTryStmt *S) {
mapSourceCodeRange(S->getLocStart());
Visit(S->getTryBlock());
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
Visit(S->getHandler(I));
// Counter tracks the continuation block of the try statement.
RegionMapper Cnt(this, S);
Cnt.beginRegion();
}
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
mapSourceCodeRange(S->getLocStart());
// Counter tracks the catch statement's handler block.
RegionMapper Cnt(this, S);
Cnt.beginRegion();
VisitSubStmtRBraceState(S->getHandlerBlock());
}
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
Visit(E->getCond());
mapToken(E->getQuestionLoc());
auto State = getCurrentState();
// Counter tracks the "true" part of a conditional operator. The
// count in the "false" part will be calculated from this counter.
RegionMapper Cnt(this, E);
Cnt.beginRegion();
Visit(E->getTrueExpr());
Cnt.adjustForControlFlow();
mapToken(State, E->getColonLoc());
Cnt.beginElseRegion();
Visit(E->getFalseExpr());
Cnt.adjustForControlFlow();
Cnt.applyAdjustmentsToRegion();
}
void VisitBinLAnd(const BinaryOperator *E) {
Visit(E->getLHS());
mapToken(E->getOperatorLoc());
// Counter tracks the right hand side of a logical and operator.
RegionMapper Cnt(this, E);
Cnt.beginRegion();
Visit(E->getRHS());
Cnt.adjustForControlFlow();
Cnt.applyAdjustmentsToRegion();
}
void VisitBinLOr(const BinaryOperator *E) {
Visit(E->getLHS());
mapToken(E->getOperatorLoc());
// Counter tracks the right hand side of a logical or operator.
RegionMapper Cnt(this, E);
Cnt.beginRegion();
Visit(E->getRHS());
Cnt.adjustForControlFlow();
Cnt.applyAdjustmentsToRegion();
}
void VisitParenExpr(const ParenExpr *E) {
mapToken(E->getLParen());
Visit(E->getSubExpr());
mapToken(E->getRParen());
}
void VisitBinaryOperator(const BinaryOperator *E) {
Visit(E->getLHS());
mapToken(E->getOperatorLoc());
Visit(E->getRHS());
}
void VisitUnaryOperator(const UnaryOperator *E) {
bool Postfix = E->isPostfix();
if (!Postfix)
mapToken(E->getOperatorLoc());
Visit(E->getSubExpr());
if (Postfix)
mapToken(E->getOperatorLoc());
}
void VisitMemberExpr(const MemberExpr *E) {
Visit(E->getBase());
mapToken(E->getMemberLoc());
}
void VisitCallExpr(const CallExpr *E) {
Visit(E->getCallee());
for (const auto &Arg : E->arguments())
Visit(Arg);
mapToken(E->getRParenLoc());
}
void VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
Visit(E->getLHS());
Visit(E->getRHS());
mapToken(E->getRBracketLoc());
}
void VisitCStyleCastExpr(const CStyleCastExpr *E) {
mapToken(E->getLParenLoc());
mapToken(E->getRParenLoc());
Visit(E->getSubExpr());
}
// Map literals as tokens so that the macros like #define PI 3.14
// won't generate coverage mapping regions.
void VisitIntegerLiteral(const IntegerLiteral *E) {
mapToken(E->getLocStart());
}
void VisitFloatingLiteral(const FloatingLiteral *E) {
mapToken(E->getLocStart());
}
void VisitCharacterLiteral(const CharacterLiteral *E) {
mapToken(E->getLocStart());
}
void VisitStringLiteral(const StringLiteral *E) {
mapToken(E->getLocStart());
}
void VisitImaginaryLiteral(const ImaginaryLiteral *E) {
mapToken(E->getLocStart());
}
void VisitObjCMessageExpr(const ObjCMessageExpr *E) {
mapToken(E->getLeftLoc());
for (Stmt::const_child_range I = static_cast<const Stmt*>(E)->children(); I;
++I) {
if (*I)
this->Visit(*I);
}
mapToken(E->getRightLoc());
}
};
}
static bool isMachO(const CodeGenModule &CGM) {
return CGM.getTarget().getTriple().isOSBinFormatMachO();
}
static StringRef getCoverageSection(const CodeGenModule &CGM) {
return isMachO(CGM) ? "__DATA,__llvm_covmap" : "__llvm_covmap";
}
static void dump(llvm::raw_ostream &OS, const CoverageMappingRecord &Function) {
OS << Function.FunctionName << ":\n";
CounterMappingContext Ctx(Function.Expressions);
for (const auto &R : Function.MappingRegions) {
OS.indent(2);
switch (R.Kind) {
case CounterMappingRegion::CodeRegion:
break;
case CounterMappingRegion::ExpansionRegion:
OS << "Expansion,";
break;
case CounterMappingRegion::SkippedRegion:
OS << "Skipped,";
break;
}
OS << "File " << R.FileID << ", " << R.LineStart << ":"
<< R.ColumnStart << " -> " << R.LineEnd << ":" << R.ColumnEnd
<< " = ";
Ctx.dump(R.Count);
OS << " (HasCodeBefore = " << R.HasCodeBefore;
if (R.Kind == CounterMappingRegion::ExpansionRegion)
OS << ", Expanded file = " << R.ExpandedFileID;
OS << ")\n";
}
}
void CoverageMappingModuleGen::addFunctionMappingRecord(
llvm::GlobalVariable *FunctionName, StringRef FunctionNameValue,
uint64_t FunctionHash, const std::string &CoverageMapping) {
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
auto *Int64Ty = llvm::Type::getInt64Ty(Ctx);
auto *Int8PtrTy = llvm::Type::getInt8PtrTy(Ctx);
if (!FunctionRecordTy) {
llvm::Type *FunctionRecordTypes[] = {Int8PtrTy, Int32Ty, Int32Ty, Int64Ty};
FunctionRecordTy =
llvm::StructType::get(Ctx, makeArrayRef(FunctionRecordTypes));
}
llvm::Constant *FunctionRecordVals[] = {
llvm::ConstantExpr::getBitCast(FunctionName, Int8PtrTy),
llvm::ConstantInt::get(Int32Ty, FunctionNameValue.size()),
llvm::ConstantInt::get(Int32Ty, CoverageMapping.size()),
llvm::ConstantInt::get(Int64Ty, FunctionHash)};
FunctionRecords.push_back(llvm::ConstantStruct::get(
FunctionRecordTy, makeArrayRef(FunctionRecordVals)));
CoverageMappings += CoverageMapping;
if (CGM.getCodeGenOpts().DumpCoverageMapping) {
// Dump the coverage mapping data for this function by decoding the
// encoded data. This allows us to dump the mapping regions which were
// also processed by the CoverageMappingWriter which performs
// additional minimization operations such as reducing the number of
// expressions.
std::vector<StringRef> Filenames;
std::vector<CounterExpression> Expressions;
std::vector<CounterMappingRegion> Regions;
llvm::SmallVector<StringRef, 16> FilenameRefs;
FilenameRefs.resize(FileEntries.size());
for (const auto &Entry : FileEntries)
FilenameRefs[Entry.second] = Entry.first->getName();
RawCoverageMappingReader Reader(FunctionNameValue, CoverageMapping,
FilenameRefs,
Filenames, Expressions, Regions);
CoverageMappingRecord FunctionRecord;
if (Reader.read(FunctionRecord))
return;
dump(llvm::outs(), FunctionRecord);
}
}
void CoverageMappingModuleGen::emit() {
if (FunctionRecords.empty())
return;
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
// Create the filenames and merge them with coverage mappings
llvm::SmallVector<std::string, 16> FilenameStrs;
llvm::SmallVector<StringRef, 16> FilenameRefs;
FilenameStrs.resize(FileEntries.size());
FilenameRefs.resize(FileEntries.size());
for (const auto &Entry : FileEntries) {
llvm::SmallString<256> Path(Entry.first->getName());
llvm::sys::fs::make_absolute(Path);
auto I = Entry.second;
FilenameStrs[I] = std::move(std::string(Path.begin(), Path.end()));
FilenameRefs[I] = FilenameStrs[I];
}
std::string FilenamesAndCoverageMappings;
llvm::raw_string_ostream OS(FilenamesAndCoverageMappings);
CoverageFilenamesSectionWriter(FilenameRefs).write(OS);
OS << CoverageMappings;
size_t CoverageMappingSize = CoverageMappings.size();
size_t FilenamesSize = OS.str().size() - CoverageMappingSize;
// Append extra zeroes if necessary to ensure that the size of the filenames
// and coverage mappings is a multiple of 8.
if (size_t Rem = OS.str().size() % 8) {
CoverageMappingSize += 8 - Rem;
for (size_t I = 0, S = 8 - Rem; I < S; ++I)
OS << '\0';
}
auto *FilenamesAndMappingsVal =
llvm::ConstantDataArray::getString(Ctx, OS.str(), false);
// Create the deferred function records array
auto RecordsTy =
llvm::ArrayType::get(FunctionRecordTy, FunctionRecords.size());
auto RecordsVal = llvm::ConstantArray::get(RecordsTy, FunctionRecords);
// Create the coverage data record
llvm::Type *CovDataTypes[] = {Int32Ty, Int32Ty,
Int32Ty, Int32Ty,
RecordsTy, FilenamesAndMappingsVal->getType()};
auto CovDataTy = llvm::StructType::get(Ctx, makeArrayRef(CovDataTypes));
llvm::Constant *TUDataVals[] = {
llvm::ConstantInt::get(Int32Ty, FunctionRecords.size()),
llvm::ConstantInt::get(Int32Ty, FilenamesSize),
llvm::ConstantInt::get(Int32Ty, CoverageMappingSize),
llvm::ConstantInt::get(Int32Ty,
/*Version=*/CoverageMappingVersion1),
RecordsVal, FilenamesAndMappingsVal};
auto CovDataVal =
llvm::ConstantStruct::get(CovDataTy, makeArrayRef(TUDataVals));
auto CovData = new llvm::GlobalVariable(CGM.getModule(), CovDataTy, true,
llvm::GlobalValue::InternalLinkage,
CovDataVal,
"__llvm_coverage_mapping");
CovData->setSection(getCoverageSection(CGM));
CovData->setAlignment(8);
// Make sure the data doesn't get deleted.
CGM.addUsedGlobal(CovData);
}
unsigned CoverageMappingModuleGen::getFileID(const FileEntry *File) {
auto It = FileEntries.find(File);
if (It != FileEntries.end())
return It->second;
unsigned FileID = FileEntries.size();
FileEntries.insert(std::make_pair(File, FileID));
return FileID;
}
void CoverageMappingGen::emitCounterMapping(const Decl *D,
llvm::raw_ostream &OS) {
assert(CounterMap);
CounterCoverageMappingBuilder Walker(CVM, *CounterMap, SM, LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}
void CoverageMappingGen::emitEmptyMapping(const Decl *D,
llvm::raw_ostream &OS) {
EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts);
Walker.VisitDecl(D);
Walker.write(OS);
}