llvm-project/llvm/test/CodeGen/X86/vector-shuffle-128-v8.ll

2400 lines
92 KiB
LLVM
Raw Normal View History

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=x86-64 | FileCheck %s --check-prefix=ALL --check-prefix=SSE --check-prefix=SSE2
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=+ssse3 | FileCheck %s --check-prefix=ALL --check-prefix=SSE --check-prefix=SSSE3
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=+sse4.1 | FileCheck %s --check-prefix=ALL --check-prefix=SSE --check-prefix=SSE41
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=+avx | FileCheck %s --check-prefix=ALL --check-prefix=AVX --check-prefix=AVX1
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -mcpu=x86-64 -mattr=+avx2 | FileCheck %s --check-prefix=ALL --check-prefix=AVX --check-prefix=AVX2
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-unknown"
define <8 x i16> @shuffle_v8i16_01012323(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_01012323:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,0,1,1]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_01012323:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,0,1,1]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 1, i32 0, i32 1, i32 2, i32 3, i32 2, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_67452301(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_67452301:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[3,2,1,0]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_67452301:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[3,2,1,0]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 6, i32 7, i32 4, i32 5, i32 2, i32 3, i32 0, i32 1>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_456789AB(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_456789AB:
; SSE2: # BB#0:
; SSE2-NEXT: shufpd {{.*#+}} xmm0 = xmm0[1],xmm1[0]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_456789AB:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm1 = xmm0[8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7]
; SSSE3-NEXT: movdqa %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_456789AB:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm1 = xmm0[8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7]
; SSE41-NEXT: movdqa %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_456789AB:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 7, i32 8, i32 9, i32 10, i32 11>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_00000000(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_00000000:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,0,0,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_00000000:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_00000000:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; SSE41-NEXT: retq
;
; AVX1-LABEL: shuffle_v8i16_00000000:
; AVX1: # BB#0:
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8i16_00000000:
; AVX2: # BB#0:
; AVX2-NEXT: vpbroadcastw %xmm0, %xmm0
; AVX2-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 0, i32 0, i32 0, i32 0, i32 0, i32 0, i32 0>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_00004444(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_00004444:
; SSE: # BB#0:
; SSE-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,0,0,0,4,5,6,7]
; SSE-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_00004444:
; AVX: # BB#0:
; AVX-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[0,0,0,0,4,5,6,7]
; AVX-NEXT: vpshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 0, i32 0, i32 0, i32 4, i32 4, i32 4, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_u0u1u2u3(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_u0u1u2u3:
; SSE: # BB#0:
; SSE-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_u0u1u2u3:
; AVX: # BB#0:
; AVX-NEXT: vpunpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 0, i32 undef, i32 1, i32 undef, i32 2, i32 undef, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_u4u5u6u7(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_u4u5u6u7:
; SSE: # BB#0:
; SSE-NEXT: punpckhwd {{.*#+}} xmm0 = xmm0[4,4,5,5,6,6,7,7]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_u4u5u6u7:
; AVX: # BB#0:
; AVX-NEXT: vpunpckhwd {{.*#+}} xmm0 = xmm0[4,4,5,5,6,6,7,7]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 4, i32 undef, i32 5, i32 undef, i32 6, i32 undef, i32 7>
ret <8 x i16> %shuffle
}
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
define <8 x i16> @shuffle_v8i16_31206745(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_31206745:
; SSE: # BB#0:
; SSE-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,1,2,0,4,5,6,7]
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,3,2]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_31206745:
; AVX: # BB#0:
; AVX-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[3,1,2,0,4,5,6,7]
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,1,3,2]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 3, i32 1, i32 2, i32 0, i32 6, i32 7, i32 4, i32 5>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_44440000(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_44440000:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,1,0,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,0,0,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_44440000:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,8,9,8,9,0,1,0,1,0,1,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_44440000:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,8,9,8,9,0,1,0,1,0,1,0,1]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_44440000:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,8,9,8,9,0,1,0,1,0,1,0,1]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 4, i32 4, i32 4, i32 0, i32 0, i32 0, i32 0>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_23016745(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_23016745:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[1,0,3,2]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_23016745:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[1,0,3,2]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 2, i32 3, i32 0, i32 1, i32 6, i32 7, i32 4, i32 5>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_23026745(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_23026745:
; SSE: # BB#0:
; SSE-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[2,3,0,2,4,5,6,7]
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,3,2]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_23026745:
; AVX: # BB#0:
; AVX-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[2,3,0,2,4,5,6,7]
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,1,3,2]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 2, i32 3, i32 0, i32 2, i32 6, i32 7, i32 4, i32 5>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_23016747(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_23016747:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[1,0,2,3]
; SSE-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,7,4,7]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_23016747:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[1,0,2,3]
; AVX-NEXT: vpshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,7,4,7]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 2, i32 3, i32 0, i32 1, i32 6, i32 7, i32 4, i32 7>
ret <8 x i16> %shuffle
}
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
define <8 x i16> @shuffle_v8i16_75643120(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_75643120:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,3,0,1]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,1,2,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,5,6,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_75643120:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[14,15,10,11,12,13,8,9,6,7,2,3,4,5,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_75643120:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[14,15,10,11,12,13,8,9,6,7,2,3,4,5,0,1]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_75643120:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[14,15,10,11,12,13,8,9,6,7,2,3,4,5,0,1]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 7, i32 5, i32 6, i32 4, i32 3, i32 1, i32 2, i32 0>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_10545410(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_10545410:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[1,0,3,2,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,5,4,7,6]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_10545410:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,0,1,10,11,8,9,10,11,8,9,2,3,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_10545410:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,0,1,10,11,8,9,10,11,8,9,2,3,0,1]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_10545410:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[2,3,0,1,10,11,8,9,10,11,8,9,2,3,0,1]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 1, i32 0, i32 5, i32 4, i32 5, i32 4, i32 1, i32 0>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_54105410(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_54105410:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,2,1,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,5,4,7,6]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_54105410:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[10,11,8,9,2,3,0,1,10,11,8,9,2,3,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_54105410:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[10,11,8,9,2,3,0,1,10,11,8,9,2,3,0,1]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_54105410:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[10,11,8,9,2,3,0,1,10,11,8,9,2,3,0,1]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 5, i32 4, i32 1, i32 0, i32 5, i32 4, i32 1, i32 0>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_54101054(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_54101054:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,2,1,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,6,5,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_54101054:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[10,11,8,9,2,3,0,1,2,3,0,1,10,11,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_54101054:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[10,11,8,9,2,3,0,1,2,3,0,1,10,11,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_54101054:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[10,11,8,9,2,3,0,1,2,3,0,1,10,11,8,9]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 5, i32 4, i32 1, i32 0, i32 1, i32 0, i32 5, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_04400440(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_04400440:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,4,4,6]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_04400440:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,0,1,8,9,8,9,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_04400440:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,0,1,8,9,8,9,0,1]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_04400440:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,0,1,8,9,8,9,0,1]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 4, i32 4, i32 0, i32 0, i32 4, i32 4, i32 0>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_40044004(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_40044004:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[2,0,0,2,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,6,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_40044004:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,0,1,0,1,8,9,8,9,0,1,0,1,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_40044004:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,0,1,0,1,8,9,8,9,0,1,0,1,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_40044004:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[8,9,0,1,0,1,8,9,8,9,0,1,0,1,8,9]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 0, i32 0, i32 4, i32 4, i32 0, i32 0, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_26405173(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_26405173:
; SSE2: # BB#0:
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,1,3,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,5,6,4]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,3,2,1]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[1,2,3,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,5,6,4,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_26405173:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[4,5,12,13,8,9,0,1,10,11,2,3,14,15,6,7]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_26405173:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[4,5,12,13,8,9,0,1,10,11,2,3,14,15,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_26405173:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[4,5,12,13,8,9,0,1,10,11,2,3,14,15,6,7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 2, i32 6, i32 4, i32 0, i32 5, i32 1, i32 7, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_20645173(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_20645173:
; SSE2: # BB#0:
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,1,3,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,5,6,4]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,3,2,1]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[1,0,2,3,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,5,6,4,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_20645173:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[4,5,0,1,12,13,8,9,10,11,2,3,14,15,6,7]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_20645173:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[4,5,0,1,12,13,8,9,10,11,2,3,14,15,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_20645173:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[4,5,0,1,12,13,8,9,10,11,2,3,14,15,6,7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 2, i32 0, i32 6, i32 4, i32 5, i32 1, i32 7, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_26401375(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_26401375:
; SSE2: # BB#0:
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,1,3,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,5,6,4]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,3,1,2]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[1,2,3,0,4,5,6,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_26401375:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[4,5,12,13,8,9,0,1,2,3,6,7,14,15,10,11]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_26401375:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[4,5,12,13,8,9,0,1,2,3,6,7,14,15,10,11]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_26401375:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[4,5,12,13,8,9,0,1,2,3,6,7,14,15,10,11]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 2, i32 6, i32 4, i32 0, i32 1, i32 3, i32 7, i32 5>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_66751643(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_66751643:
; SSE2: # BB#0:
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,1,2,3,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,5,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,3,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[1,1,3,2,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,5,4,6]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_66751643:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[12,13,12,13,14,15,10,11,2,3,12,13,8,9,6,7]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_66751643:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[12,13,12,13,14,15,10,11,2,3,12,13,8,9,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_66751643:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[12,13,12,13,14,15,10,11,2,3,12,13,8,9,6,7]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 6, i32 6, i32 7, i32 5, i32 1, i32 6, i32 4, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_60514754(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_60514754:
; SSE2: # BB#0:
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,5,4,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[2,0,3,1,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,7,5,6]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_60514754:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[12,13,0,1,10,11,2,3,8,9,14,15,10,11,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_60514754:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[12,13,0,1,10,11,2,3,8,9,14,15,10,11,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_60514754:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[12,13,0,1,10,11,2,3,8,9,14,15,10,11,8,9]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> undef, <8 x i32> <i32 6, i32 0, i32 5, i32 1, i32 4, i32 7, i32 5, i32 4>
ret <8 x i16> %shuffle
}
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
define <8 x i16> @shuffle_v8i16_00444444(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_00444444:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,0,2,2,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_00444444:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,8,9,8,9,8,9,8,9,8,9,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_00444444:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,8,9,8,9,8,9,8,9,8,9,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_00444444:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,8,9,8,9,8,9,8,9,8,9,8,9]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 0, i32 4, i32 4, i32 4, i32 4, i32 4, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_44004444(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_44004444:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[2,2,0,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_44004444:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,0,1,0,1,8,9,8,9,8,9,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_44004444:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,0,1,0,1,8,9,8,9,8,9,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_44004444:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,0,1,0,1,8,9,8,9,8,9,8,9]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 4, i32 0, i32 0, i32 4, i32 4, i32 4, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_04404444(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_04404444:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_04404444:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_04404444:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_04404444:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 4, i32 4, i32 0, i32 4, i32 4, i32 4, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_04400000(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_04400000:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,0,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_04400000:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,0,1,0,1,0,1,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_04400000:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,0,1,0,1,0,1,0,1]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_04400000:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,0,1,0,1,0,1,0,1]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 4, i32 4, i32 0, i32 0, i32 0, i32 0, i32 0>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_04404567(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_04404567:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,0,4,5,6,7]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_04404567:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; AVX-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[0,2,2,0,4,5,6,7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 4, i32 4, i32 0, i32 4, i32 5, i32 6, i32 7>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0X444444(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_0X444444:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,1,2,2,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0X444444:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,8,9,8,9,8,9,8,9,8,9,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0X444444:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,8,9,8,9,8,9,8,9,8,9,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0X444444:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,8,9,8,9,8,9,8,9,8,9,8,9]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 undef, i32 4, i32 4, i32 4, i32 4, i32 4, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_44X04444(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_44X04444:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[2,2,2,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_44X04444:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_44X04444:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_44X04444:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 4, i32 undef, i32 0, i32 4, i32 4, i32 4, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_X4404444(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_X4404444:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,2,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_X4404444:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_X4404444:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_X4404444:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,8,9,8,9,0,1,8,9,8,9,8,9,8,9]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 4, i32 4, i32 0, i32 4, i32 4, i32 4, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0127XXXX(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_0127XXXX:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,1,3]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,7,6,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0127XXXX:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,14,15,4,5,14,15,12,13,14,15]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0127XXXX:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,14,15,4,5,14,15,12,13,14,15]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0127XXXX:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,14,15,4,5,14,15,12,13,14,15]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 7, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_XXXX4563(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_XXXX4563:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[3,1,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,3,2,3,4,5,6,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,2,0]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_XXXX4563:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[12,13,6,7,4,5,6,7,8,9,10,11,12,13,6,7]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_XXXX4563:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[12,13,6,7,4,5,6,7,8,9,10,11,12,13,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_XXXX4563:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[12,13,6,7,4,5,6,7,8,9,10,11,12,13,6,7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 undef, i32 undef, i32 undef, i32 4, i32 5, i32 6, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_4563XXXX(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_4563XXXX:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[3,1,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,3,2,3,4,5,6,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,0,2,3]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_4563XXXX:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,10,11,12,13,6,7,8,9,10,11,0,1,2,3]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_4563XXXX:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,10,11,12,13,6,7,8,9,10,11,0,1,2,3]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_4563XXXX:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[8,9,10,11,12,13,6,7,8,9,10,11,0,1,2,3]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_01274563(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_01274563:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,1,3]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,5,4,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,3,1,2]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_01274563:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,14,15,8,9,10,11,12,13,6,7]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_01274563:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,14,15,8,9,10,11,12,13,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_01274563:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,14,15,8,9,10,11,12,13,6,7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 7, i32 4, i32 5, i32 6, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_45630127(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_45630127:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[3,1,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,3,2,1,4,5,6,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,0,3,1]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_45630127:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,10,11,12,13,6,7,0,1,2,3,4,5,14,15]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_45630127:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,10,11,12,13,6,7,0,1,2,3,4,5,14,15]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_45630127:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[8,9,10,11,12,13,6,7,0,1,2,3,4,5,14,15]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 5, i32 6, i32 3, i32 0, i32 1, i32 2, i32 7>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_37102735(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_37102735:
; SSE2: # BB#0:
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,6,5,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,1,3]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,5,6,4]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,2,1,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,4,5,6]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_37102735:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[6,7,14,15,2,3,0,1,4,5,14,15,6,7,10,11]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_37102735:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[6,7,14,15,2,3,0,1,4,5,14,15,6,7,10,11]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_37102735:
; AVX: # BB#0:
; AVX-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[6,7,14,15,2,3,0,1,4,5,14,15,6,7,10,11]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 3, i32 7, i32 1, i32 0, i32 2, i32 7, i32 3, i32 5>
ret <8 x i16> %shuffle
}
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
define <8 x i16> @shuffle_v8i16_08192a3b(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_08192a3b:
; SSE: # BB#0:
; SSE-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_08192a3b:
; AVX: # BB#0:
; AVX-NEXT: vpunpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 8, i32 1, i32 9, i32 2, i32 10, i32 3, i32 11>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0c1d2e3f(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_0c1d2e3f:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm1 = xmm1[2,3,0,1]
; SSE-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0c1d2e3f:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm1 = xmm1[2,3,0,1]
; AVX-NEXT: vpunpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 12, i32 1, i32 13, i32 2, i32 14, i32 3, i32 15>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_4c5d6e7f(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_4c5d6e7f:
; SSE: # BB#0:
; SSE-NEXT: punpckhwd {{.*#+}} xmm0 = xmm0[4],xmm1[4],xmm0[5],xmm1[5],xmm0[6],xmm1[6],xmm0[7],xmm1[7]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_4c5d6e7f:
; AVX: # BB#0:
; AVX-NEXT: vpunpckhwd {{.*#+}} xmm0 = xmm0[4],xmm1[4],xmm0[5],xmm1[5],xmm0[6],xmm1[6],xmm0[7],xmm1[7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 12, i32 5, i32 13, i32 6, i32 14, i32 7, i32 15>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_48596a7b(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_48596a7b:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,3,0,1]
; SSE-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_48596a7b:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[2,3,0,1]
; AVX-NEXT: vpunpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 8, i32 5, i32 9, i32 6, i32 10, i32 7, i32 11>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_08196e7f(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_08196e7f:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm1 = xmm1[0,3,2,3]
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,3,2,3]
; SSE-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_08196e7f:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm1 = xmm1[0,3,2,3]
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,3,2,3]
; AVX-NEXT: vpunpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 8, i32 1, i32 9, i32 6, i32 14, i32 7, i32 15>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0c1d6879(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_0c1d6879:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm1 = xmm1[2,0,2,3]
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,3,2,3]
; SSE-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0c1d6879:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm1 = xmm1[2,0,2,3]
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,3,2,3]
; AVX-NEXT: vpunpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 12, i32 1, i32 13, i32 6, i32 8, i32 7, i32 9>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_109832ba(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_109832ba:
; SSE: # BB#0:
; SSE-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSE-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[2,0,3,1,4,5,6,7]
; SSE-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,4,7,5]
; SSE-NEXT: retq
[x86] Teach the 128-bit vector shuffle lowering routines to take advantage of the existence of a reasonable blend instruction. The 256-bit vector shuffle lowering has leveraged the general technique of decomposed shuffles and blends for quite some time, but this never made it back into the 128-bit code, and there are a large number of patterns where this is substantially better. For example, this removes almost all domain crossing in vector shuffles that involve some blend and some permutation with SSE4.1 and later. See the massive reduction in 'shufps' for integer test cases in this commit. This isn't perfect yet for a few reasons: 1) The v8i16 shuffle lowering continues to plague me. We don't always form an unpack-based blend when that would be better. But the wins pretty drastically outstrip the losses here. 2) The v16i8 shuffle lowering is just a disaster here. I never went and implemented blend support here for some terrible reason. I'll do that next probably. I've not updated it for now. More variations on this technique are coming as well -- we don't shuffle-into-unpack or shuffle-into-palignr, both of which would also be profitable. Note that some test cases grow significantly in the number of instructions, but I expect to actually be faster. We use pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are very likely to pipeline well (two ports on most modern intel chips) and the blend is a *very* fast instruction. The domain switch penalty will essentially always be more than a blend instruction, which is the only increase in tree height. llvm-svn: 229350
2015-02-16 09:52:02 +08:00
;
; AVX-LABEL: shuffle_v8i16_109832ba:
; AVX: # BB#0:
; AVX-NEXT: vpunpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; AVX-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[2,0,3,1,4,5,6,7]
; AVX-NEXT: vpshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,4,7,5]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 1, i32 0, i32 9, i32 8, i32 3, i32 2, i32 11, i32 10>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_8091a2b3(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_8091a2b3:
; SSE: # BB#0:
; SSE-NEXT: punpcklwd {{.*#+}} xmm1 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; SSE-NEXT: movdqa %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_8091a2b3:
; AVX: # BB#0:
; AVX-NEXT: vpunpcklwd {{.*#+}} xmm0 = xmm1[0],xmm0[0],xmm1[1],xmm0[1],xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 8, i32 0, i32 9, i32 1, i32 10, i32 2, i32 11, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_c4d5e6f7(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_c4d5e6f7:
; SSE: # BB#0:
; SSE-NEXT: punpckhwd {{.*#+}} xmm1 = xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; SSE-NEXT: movdqa %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_c4d5e6f7:
; AVX: # BB#0:
; AVX-NEXT: vpunpckhwd {{.*#+}} xmm0 = xmm1[4],xmm0[4],xmm1[5],xmm0[5],xmm1[6],xmm0[6],xmm1[7],xmm0[7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 12, i32 4, i32 13, i32 5, i32 14, i32 6, i32 15, i32 7>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0213cedf(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_0213cedf:
; SSE: # BB#0:
; SSE-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,2,1,3,4,5,6,7]
; SSE-NEXT: pshufd {{.*#+}} xmm1 = xmm1[2,3,2,3]
; SSE-NEXT: pshuflw {{.*#+}} xmm1 = xmm1[0,2,1,3,4,5,6,7]
; SSE-NEXT: punpcklqdq {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; SSE-NEXT: retq
[x86] Teach the 128-bit vector shuffle lowering routines to take advantage of the existence of a reasonable blend instruction. The 256-bit vector shuffle lowering has leveraged the general technique of decomposed shuffles and blends for quite some time, but this never made it back into the 128-bit code, and there are a large number of patterns where this is substantially better. For example, this removes almost all domain crossing in vector shuffles that involve some blend and some permutation with SSE4.1 and later. See the massive reduction in 'shufps' for integer test cases in this commit. This isn't perfect yet for a few reasons: 1) The v8i16 shuffle lowering continues to plague me. We don't always form an unpack-based blend when that would be better. But the wins pretty drastically outstrip the losses here. 2) The v16i8 shuffle lowering is just a disaster here. I never went and implemented blend support here for some terrible reason. I'll do that next probably. I've not updated it for now. More variations on this technique are coming as well -- we don't shuffle-into-unpack or shuffle-into-palignr, both of which would also be profitable. Note that some test cases grow significantly in the number of instructions, but I expect to actually be faster. We use pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are very likely to pipeline well (two ports on most modern intel chips) and the blend is a *very* fast instruction. The domain switch penalty will essentially always be more than a blend instruction, which is the only increase in tree height. llvm-svn: 229350
2015-02-16 09:52:02 +08:00
;
; AVX-LABEL: shuffle_v8i16_0213cedf:
; AVX: # BB#0:
; AVX-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[0,2,1,3,4,5,6,7]
; AVX-NEXT: vpshufd {{.*#+}} xmm1 = xmm1[2,3,2,3]
; AVX-NEXT: vpshuflw {{.*#+}} xmm1 = xmm1[0,2,1,3,4,5,6,7]
; AVX-NEXT: vpunpcklqdq {{.*#+}} xmm0 = xmm0[0],xmm1[0]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 2, i32 1, i32 3, i32 12, i32 14, i32 13, i32 15>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_443aXXXX(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_443aXXXX:
; SSE2: # BB#0:
; SSE2-NEXT: movdqa {{.*#+}} xmm2 = [65535,65535,0,65535,65535,65535,65535,65535]
; SSE2-NEXT: pand %xmm2, %xmm0
; SSE2-NEXT: pandn %xmm1, %xmm2
; SSE2-NEXT: por %xmm0, %xmm2
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm2[2,1,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,0,3,2,4,5,6,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_443aXXXX:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm1 = zero,zero,zero,zero,zero,zero,xmm1[4,5,u,u,u,u,u,u,u,u]
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[8,9,8,9,6,7],zero,zero,xmm0[u,u,u,u,u,u,u,u]
; SSSE3-NEXT: por %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_443aXXXX:
; SSE41: # BB#0:
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1],xmm1[2],xmm0[3,4,5,6,7]
; SSE41-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,1,2,3]
; SSE41-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,0,3,2,4,5,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_443aXXXX:
; AVX: # BB#0:
; AVX-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0,1],xmm1[2],xmm0[3,4,5,6,7]
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[2,1,2,3]
; AVX-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[0,0,3,2,4,5,6,7]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 4, i32 4, i32 3, i32 10, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
define <8 x i16> @shuffle_v8i16_032dXXXX(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_032dXXXX:
; SSE2: # BB#0:
; SSE2-NEXT: movsd {{.*#+}} xmm1 = xmm0[0],xmm1[1]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm1[3,1,2,0]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,5,6,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,1,2,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,3,2,1,4,5,6,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_032dXXXX:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm1 = zero,zero,zero,zero,zero,zero,xmm1[10,11,u,u,u,u,u,u,u,u]
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,6,7,4,5],zero,zero,xmm0[u,u,u,u,u,u,u,u]
; SSSE3-NEXT: por %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_032dXXXX:
; SSE41: # BB#0:
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,6,7,4,5,10,11,0,1,10,11,0,1,2,3]
; SSE41-NEXT: retq
;
; AVX1-LABEL: shuffle_v8i16_032dXXXX:
; AVX1: # BB#0:
; AVX1-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,6,7,4,5,10,11,0,1,10,11,0,1,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8i16_032dXXXX:
; AVX2: # BB#0:
; AVX2-NEXT: vpblendd {{.*#+}} xmm0 = xmm0[0,1],xmm1[2,3]
; AVX2-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,6,7,4,5,10,11,0,1,10,11,0,1,2,3]
; AVX2-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 3, i32 2, i32 13, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_XXXdXXXX(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_XXXdXXXX:
; SSE: # BB#0:
; SSE-NEXT: pshufd {{.*#+}} xmm0 = xmm1[2,2,3,3]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_XXXdXXXX:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm0 = xmm1[2,2,3,3]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 undef, i32 undef, i32 13, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_012dXXXX(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_012dXXXX:
; SSE2: # BB#0:
; SSE2-NEXT: movdqa {{.*#+}} xmm2 = [65535,65535,65535,0,65535,65535,65535,65535]
; SSE2-NEXT: pand %xmm2, %xmm0
; SSE2-NEXT: pshufd {{.*#+}} xmm1 = xmm1[2,2,3,3]
; SSE2-NEXT: pandn %xmm1, %xmm2
; SSE2-NEXT: por %xmm2, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_012dXXXX:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm1 = zero,zero,zero,zero,zero,zero,xmm1[10,11,u,u,u,u,u,u,u,u]
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5],zero,zero,xmm0[u,u,u,u,u,u,u,u]
; SSSE3-NEXT: por %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_012dXXXX:
; SSE41: # BB#0:
; SSE41-NEXT: pshufd {{.*#+}} xmm1 = xmm1[2,2,3,3]
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2],xmm1[3],xmm0[4,5,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_012dXXXX:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm1 = xmm1[2,2,3,3]
; AVX-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0,1,2],xmm1[3],xmm0[4,5,6,7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 13, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_XXXXcde3(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_XXXXcde3:
; SSE2: # BB#0:
; SSE2-NEXT: movdqa {{.*#+}} xmm2 = [65535,65535,65535,65535,65535,65535,65535,0]
; SSE2-NEXT: pand %xmm2, %xmm1
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,1]
; SSE2-NEXT: pandn %xmm0, %xmm2
; SSE2-NEXT: por %xmm1, %xmm2
; SSE2-NEXT: movdqa %xmm2, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_XXXXcde3:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[u,u,u,u,u,u,u,u],zero,zero,zero,zero,zero,zero,xmm0[6,7]
; SSSE3-NEXT: pshufb {{.*#+}} xmm1 = xmm1[u,u,u,u,u,u,u,u,8,9,10,11,12,13],zero,zero
; SSSE3-NEXT: por %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_XXXXcde3:
; SSE41: # BB#0:
; SSE41-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,1]
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm1[0,1,2,3,4,5,6],xmm0[7]
; SSE41-NEXT: retq
;
; AVX1-LABEL: shuffle_v8i16_XXXXcde3:
; AVX1: # BB#0:
; AVX1-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[0,1,0,1]
; AVX1-NEXT: vpblendw {{.*#+}} xmm0 = xmm1[0,1,2,3,4,5,6],xmm0[7]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8i16_XXXXcde3:
; AVX2: # BB#0:
; AVX2-NEXT: vpbroadcastq %xmm0, %xmm0
; AVX2-NEXT: vpblendw {{.*#+}} xmm0 = xmm1[0,1,2,3,4,5,6],xmm0[7]
; AVX2-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 undef, i32 undef, i32 undef, i32 12, i32 13, i32 14, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_cde3XXXX(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_cde3XXXX:
; SSE2: # BB#0:
; SSE2-NEXT: movdqa {{.*#+}} xmm2 = [65535,65535,65535,0,65535,65535,65535,65535]
; SSE2-NEXT: pshufd {{.*#+}} xmm1 = xmm1[2,3,0,1]
; SSE2-NEXT: pand %xmm2, %xmm1
; SSE2-NEXT: pandn %xmm0, %xmm2
; SSE2-NEXT: por %xmm1, %xmm2
; SSE2-NEXT: movdqa %xmm2, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_cde3XXXX:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,xmm0[6,7,u,u,u,u,u,u,u,u]
; SSSE3-NEXT: pshufb {{.*#+}} xmm1 = xmm1[8,9,10,11,12,13],zero,zero,xmm1[u,u,u,u,u,u,u,u]
; SSSE3-NEXT: por %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_cde3XXXX:
; SSE41: # BB#0:
; SSE41-NEXT: pshufd {{.*#+}} xmm1 = xmm1[2,3,0,1]
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm1[0,1,2],xmm0[3],xmm1[4,5,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_cde3XXXX:
; AVX: # BB#0:
; AVX-NEXT: vpshufd {{.*#+}} xmm1 = xmm1[2,3,0,1]
; AVX-NEXT: vpblendw {{.*#+}} xmm0 = xmm1[0,1,2],xmm0[3],xmm1[4,5,6,7]
; AVX-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 12, i32 13, i32 14, i32 3, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_012dcde3(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_012dcde3:
; SSE2: # BB#0:
; SSE2-NEXT: movsd {{.*#+}} xmm1 = xmm0[0],xmm1[1]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm1[0,3,2,1]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,1,2,0,4,5,6,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[3,1,2,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,3,2,1,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,5,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,3,2,1]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[1,3,0,2,4,5,6,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_012dcde3:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm1 = zero,zero,zero,zero,zero,zero,xmm1[10,11,8,9,10,11,12,13],zero,zero
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5],zero,zero,zero,zero,zero,zero,zero,zero,xmm0[6,7]
; SSSE3-NEXT: por %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_012dcde3:
; SSE41: # BB#0:
[x86] Teach the 128-bit vector shuffle lowering routines to take advantage of the existence of a reasonable blend instruction. The 256-bit vector shuffle lowering has leveraged the general technique of decomposed shuffles and blends for quite some time, but this never made it back into the 128-bit code, and there are a large number of patterns where this is substantially better. For example, this removes almost all domain crossing in vector shuffles that involve some blend and some permutation with SSE4.1 and later. See the massive reduction in 'shufps' for integer test cases in this commit. This isn't perfect yet for a few reasons: 1) The v8i16 shuffle lowering continues to plague me. We don't always form an unpack-based blend when that would be better. But the wins pretty drastically outstrip the losses here. 2) The v16i8 shuffle lowering is just a disaster here. I never went and implemented blend support here for some terrible reason. I'll do that next probably. I've not updated it for now. More variations on this technique are coming as well -- we don't shuffle-into-unpack or shuffle-into-palignr, both of which would also be profitable. Note that some test cases grow significantly in the number of instructions, but I expect to actually be faster. We use pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are very likely to pipeline well (two ports on most modern intel chips) and the blend is a *very* fast instruction. The domain switch penalty will essentially always be more than a blend instruction, which is the only increase in tree height. llvm-svn: 229350
2015-02-16 09:52:02 +08:00
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,10,11,8,9,10,11,12,13,6,7]
; SSE41-NEXT: retq
;
; AVX1-LABEL: shuffle_v8i16_012dcde3:
; AVX1: # BB#0:
[x86] Teach the 128-bit vector shuffle lowering routines to take advantage of the existence of a reasonable blend instruction. The 256-bit vector shuffle lowering has leveraged the general technique of decomposed shuffles and blends for quite some time, but this never made it back into the 128-bit code, and there are a large number of patterns where this is substantially better. For example, this removes almost all domain crossing in vector shuffles that involve some blend and some permutation with SSE4.1 and later. See the massive reduction in 'shufps' for integer test cases in this commit. This isn't perfect yet for a few reasons: 1) The v8i16 shuffle lowering continues to plague me. We don't always form an unpack-based blend when that would be better. But the wins pretty drastically outstrip the losses here. 2) The v16i8 shuffle lowering is just a disaster here. I never went and implemented blend support here for some terrible reason. I'll do that next probably. I've not updated it for now. More variations on this technique are coming as well -- we don't shuffle-into-unpack or shuffle-into-palignr, both of which would also be profitable. Note that some test cases grow significantly in the number of instructions, but I expect to actually be faster. We use pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are very likely to pipeline well (two ports on most modern intel chips) and the blend is a *very* fast instruction. The domain switch penalty will essentially always be more than a blend instruction, which is the only increase in tree height. llvm-svn: 229350
2015-02-16 09:52:02 +08:00
; AVX1-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,10,11,8,9,10,11,12,13,6,7]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8i16_012dcde3:
; AVX2: # BB#0:
[x86] Teach the 128-bit vector shuffle lowering routines to take advantage of the existence of a reasonable blend instruction. The 256-bit vector shuffle lowering has leveraged the general technique of decomposed shuffles and blends for quite some time, but this never made it back into the 128-bit code, and there are a large number of patterns where this is substantially better. For example, this removes almost all domain crossing in vector shuffles that involve some blend and some permutation with SSE4.1 and later. See the massive reduction in 'shufps' for integer test cases in this commit. This isn't perfect yet for a few reasons: 1) The v8i16 shuffle lowering continues to plague me. We don't always form an unpack-based blend when that would be better. But the wins pretty drastically outstrip the losses here. 2) The v16i8 shuffle lowering is just a disaster here. I never went and implemented blend support here for some terrible reason. I'll do that next probably. I've not updated it for now. More variations on this technique are coming as well -- we don't shuffle-into-unpack or shuffle-into-palignr, both of which would also be profitable. Note that some test cases grow significantly in the number of instructions, but I expect to actually be faster. We use pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are very likely to pipeline well (two ports on most modern intel chips) and the blend is a *very* fast instruction. The domain switch penalty will essentially always be more than a blend instruction, which is the only increase in tree height. llvm-svn: 229350
2015-02-16 09:52:02 +08:00
; AVX2-NEXT: vpblendd {{.*#+}} xmm0 = xmm0[0,1],xmm1[2,3]
; AVX2-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,10,11,8,9,10,11,12,13,6,7]
; AVX2-NEXT: retq
[x86] Begin a significant overhaul of how vector lowering is done in the x86 backend. This sketches out a new code path for vector lowering, hidden behind an off-by-default flag while it is under development. The fundamental idea behind the new code path is to aggressively break down the problem space in ways that ease selecting the odd set of instructions available on x86, and carefully avoid scalarizing code even when forced to use older ISAs. Notably, this starts off restricting itself to SSE2 and implements the complete vector shuffle and blend space for 128-bit vectors in SSE2 without scalarizing. The plan is to layer on top of this ISA extensions where we can bail out of the complex SSE2 lowering and opt for a cheaper, specialized instruction (or set of instructions). It also needs to be generalized to AVX and AVX512 vector widths. Currently, this does a decent but not perfect job for SSE2. There are some specific shortcomings that I plan to address: - We need a peephole combine to fold together shuffles where possible. There are cases where a previous shuffle could be modified slightly to arrange for elements to be in the correct position and a later shuffle eliminated. Doing this eagerly added quite a bit of complexity, and so my plan is to combine away these redundancies afterward. - There are a lot more clever ways to use unpck and pack that need to be added. This is essential for real world shuffles as it turns out... Once SSE2 is polished a bit I should be able to get interesting numbers on performance improvements on benchmarks conducive to vectorization. All of this will be off by default until it is functionally equivalent of course. Differential Revision: http://reviews.llvm.org/D4225 llvm-svn: 211888
2014-06-27 19:23:44 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 1, i32 2, i32 13, i32 12, i32 13, i32 14, i32 3>
ret <8 x i16> %shuffle
}
[x86] Fix a crash and wrong-code bug in the new vector lowering all found by a single test reduced out of a failure on llvm-stress. The start of the problem (and the crash) came when we tried to use a find of a non-used slot in the move-to half of the move-mask as the target for two bad-half inputs. While if lucky this will be the first of a pair of slots which we can place the bad-half inputs into, it isn't actually guaranteed. This really isn't surprising, not sure what I was thinking. The correct way to find the two unused slots is to look for one of the *used* slots. We know it isn't that pair, and we can use some modular arithmetic to find the other pair by masking off the odd bit and adding 2 modulo 4. With this, we reliably found a viable pair of slots for the bad-half inputs. Sadly, that wasn't enough. We also had a wrong code bug that surfaced when I reduced the test case for this where we would use the same slot twice for the two bad inputs. This is because both of the bad inputs could be in odd slots originally and thus the mod-2 mapping would actually be the same. The whole point of the weird indexing into the pair of empty slots was to try to leverage when the end result needed the two bad-half inputs to be paired in a dword and pre-pair them in the correct orrientation. This is less important with the powerful combining we're now doing, and also easier and more reliable to achieve be noting that we add the bad-half inputs in order. Thus, if they are in a dword pair, the low part of that will be the first input in the sequence. Always putting that in the low element will just do the right thing in addition to computing the correct result. Test case added. =] llvm-svn: 214849
2014-08-05 16:19:21 +08:00
define <8 x i16> @shuffle_v8i16_0923cde7(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_0923cde7:
; SSE2: # BB#0:
; SSE2-NEXT: movaps {{.*#+}} xmm2 = [65535,0,65535,65535,0,0,0,65535]
; SSE2-NEXT: andps %xmm2, %xmm0
; SSE2-NEXT: andnps %xmm1, %xmm2
; SSE2-NEXT: orps %xmm2, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0923cde7:
; SSSE3: # BB#0:
; SSSE3-NEXT: movaps {{.*#+}} xmm2 = [65535,0,65535,65535,0,0,0,65535]
; SSSE3-NEXT: andps %xmm2, %xmm0
; SSSE3-NEXT: andnps %xmm1, %xmm2
; SSSE3-NEXT: orps %xmm2, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0923cde7:
; SSE41: # BB#0:
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1],xmm0[2,3],xmm1[4,5,6],xmm0[7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0923cde7:
; AVX: # BB#0:
; AVX-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1],xmm0[2,3],xmm1[4,5,6],xmm0[7]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 0, i32 9, i32 2, i32 3, i32 12, i32 13, i32 14, i32 7>
ret <8 x i16> %shuffle
}
[x86] Fix a crash and wrong-code bug in the new vector lowering all found by a single test reduced out of a failure on llvm-stress. The start of the problem (and the crash) came when we tried to use a find of a non-used slot in the move-to half of the move-mask as the target for two bad-half inputs. While if lucky this will be the first of a pair of slots which we can place the bad-half inputs into, it isn't actually guaranteed. This really isn't surprising, not sure what I was thinking. The correct way to find the two unused slots is to look for one of the *used* slots. We know it isn't that pair, and we can use some modular arithmetic to find the other pair by masking off the odd bit and adding 2 modulo 4. With this, we reliably found a viable pair of slots for the bad-half inputs. Sadly, that wasn't enough. We also had a wrong code bug that surfaced when I reduced the test case for this where we would use the same slot twice for the two bad inputs. This is because both of the bad inputs could be in odd slots originally and thus the mod-2 mapping would actually be the same. The whole point of the weird indexing into the pair of empty slots was to try to leverage when the end result needed the two bad-half inputs to be paired in a dword and pre-pair them in the correct orrientation. This is less important with the powerful combining we're now doing, and also easier and more reliable to achieve be noting that we add the bad-half inputs in order. Thus, if they are in a dword pair, the low part of that will be the first input in the sequence. Always putting that in the low element will just do the right thing in addition to computing the correct result. Test case added. =] llvm-svn: 214849
2014-08-05 16:19:21 +08:00
define <8 x i16> @shuffle_v8i16_XXX1X579(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_XXX1X579:
[x86] Fix a crash and wrong-code bug in the new vector lowering all found by a single test reduced out of a failure on llvm-stress. The start of the problem (and the crash) came when we tried to use a find of a non-used slot in the move-to half of the move-mask as the target for two bad-half inputs. While if lucky this will be the first of a pair of slots which we can place the bad-half inputs into, it isn't actually guaranteed. This really isn't surprising, not sure what I was thinking. The correct way to find the two unused slots is to look for one of the *used* slots. We know it isn't that pair, and we can use some modular arithmetic to find the other pair by masking off the odd bit and adding 2 modulo 4. With this, we reliably found a viable pair of slots for the bad-half inputs. Sadly, that wasn't enough. We also had a wrong code bug that surfaced when I reduced the test case for this where we would use the same slot twice for the two bad inputs. This is because both of the bad inputs could be in odd slots originally and thus the mod-2 mapping would actually be the same. The whole point of the weird indexing into the pair of empty slots was to try to leverage when the end result needed the two bad-half inputs to be paired in a dword and pre-pair them in the correct orrientation. This is less important with the powerful combining we're now doing, and also easier and more reliable to achieve be noting that we add the bad-half inputs in order. Thus, if they are in a dword pair, the low part of that will be the first input in the sequence. Always putting that in the low element will just do the right thing in addition to computing the correct result. Test case added. =] llvm-svn: 214849
2014-08-05 16:19:21 +08:00
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm2 = xmm1[0,1,2,0]
; SSE2-NEXT: movdqa {{.*#+}} xmm1 = [65535,65535,65535,65535,65535,65535,65535,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,1,2,1,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,7,7]
; SSE2-NEXT: pand %xmm1, %xmm0
; SSE2-NEXT: pandn %xmm2, %xmm1
; SSE2-NEXT: por %xmm0, %xmm1
; SSE2-NEXT: movdqa %xmm1, %xmm0
[x86] Fix a crash and wrong-code bug in the new vector lowering all found by a single test reduced out of a failure on llvm-stress. The start of the problem (and the crash) came when we tried to use a find of a non-used slot in the move-to half of the move-mask as the target for two bad-half inputs. While if lucky this will be the first of a pair of slots which we can place the bad-half inputs into, it isn't actually guaranteed. This really isn't surprising, not sure what I was thinking. The correct way to find the two unused slots is to look for one of the *used* slots. We know it isn't that pair, and we can use some modular arithmetic to find the other pair by masking off the odd bit and adding 2 modulo 4. With this, we reliably found a viable pair of slots for the bad-half inputs. Sadly, that wasn't enough. We also had a wrong code bug that surfaced when I reduced the test case for this where we would use the same slot twice for the two bad inputs. This is because both of the bad inputs could be in odd slots originally and thus the mod-2 mapping would actually be the same. The whole point of the weird indexing into the pair of empty slots was to try to leverage when the end result needed the two bad-half inputs to be paired in a dword and pre-pair them in the correct orrientation. This is less important with the powerful combining we're now doing, and also easier and more reliable to achieve be noting that we add the bad-half inputs in order. Thus, if they are in a dword pair, the low part of that will be the first input in the sequence. Always putting that in the low element will just do the right thing in addition to computing the correct result. Test case added. =] llvm-svn: 214849
2014-08-05 16:19:21 +08:00
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_XXX1X579:
[x86] Fix a crash and wrong-code bug in the new vector lowering all found by a single test reduced out of a failure on llvm-stress. The start of the problem (and the crash) came when we tried to use a find of a non-used slot in the move-to half of the move-mask as the target for two bad-half inputs. While if lucky this will be the first of a pair of slots which we can place the bad-half inputs into, it isn't actually guaranteed. This really isn't surprising, not sure what I was thinking. The correct way to find the two unused slots is to look for one of the *used* slots. We know it isn't that pair, and we can use some modular arithmetic to find the other pair by masking off the odd bit and adding 2 modulo 4. With this, we reliably found a viable pair of slots for the bad-half inputs. Sadly, that wasn't enough. We also had a wrong code bug that surfaced when I reduced the test case for this where we would use the same slot twice for the two bad inputs. This is because both of the bad inputs could be in odd slots originally and thus the mod-2 mapping would actually be the same. The whole point of the weird indexing into the pair of empty slots was to try to leverage when the end result needed the two bad-half inputs to be paired in a dword and pre-pair them in the correct orrientation. This is less important with the powerful combining we're now doing, and also easier and more reliable to achieve be noting that we add the bad-half inputs in order. Thus, if they are in a dword pair, the low part of that will be the first input in the sequence. Always putting that in the low element will just do the right thing in addition to computing the correct result. Test case added. =] llvm-svn: 214849
2014-08-05 16:19:21 +08:00
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm1 = xmm1[u,u,u,u,u,u],zero,zero,xmm1[u,u],zero,zero,zero,zero,xmm1[2,3]
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[u,u,u,u,u,u,2,3,u,u,10,11,14,15],zero,zero
; SSSE3-NEXT: por %xmm1, %xmm0
[x86] Fix a crash and wrong-code bug in the new vector lowering all found by a single test reduced out of a failure on llvm-stress. The start of the problem (and the crash) came when we tried to use a find of a non-used slot in the move-to half of the move-mask as the target for two bad-half inputs. While if lucky this will be the first of a pair of slots which we can place the bad-half inputs into, it isn't actually guaranteed. This really isn't surprising, not sure what I was thinking. The correct way to find the two unused slots is to look for one of the *used* slots. We know it isn't that pair, and we can use some modular arithmetic to find the other pair by masking off the odd bit and adding 2 modulo 4. With this, we reliably found a viable pair of slots for the bad-half inputs. Sadly, that wasn't enough. We also had a wrong code bug that surfaced when I reduced the test case for this where we would use the same slot twice for the two bad inputs. This is because both of the bad inputs could be in odd slots originally and thus the mod-2 mapping would actually be the same. The whole point of the weird indexing into the pair of empty slots was to try to leverage when the end result needed the two bad-half inputs to be paired in a dword and pre-pair them in the correct orrientation. This is less important with the powerful combining we're now doing, and also easier and more reliable to achieve be noting that we add the bad-half inputs in order. Thus, if they are in a dword pair, the low part of that will be the first input in the sequence. Always putting that in the low element will just do the right thing in addition to computing the correct result. Test case added. =] llvm-svn: 214849
2014-08-05 16:19:21 +08:00
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_XXX1X579:
; SSE41: # BB#0:
; SSE41-NEXT: pshufd {{.*#+}} xmm1 = xmm1[0,1,2,0]
; SSE41-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,1,2,1,4,5,6,7]
; SSE41-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,7,7]
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,6],xmm1[7]
; SSE41-NEXT: retq
;
; AVX1-LABEL: shuffle_v8i16_XXX1X579:
; AVX1: # BB#0:
; AVX1-NEXT: vpshufd {{.*#+}} xmm1 = xmm1[0,1,2,0]
; AVX1-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[0,1,2,1,4,5,6,7]
; AVX1-NEXT: vpshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,7,7]
; AVX1-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,6],xmm1[7]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8i16_XXX1X579:
; AVX2: # BB#0:
; AVX2-NEXT: vpbroadcastd %xmm1, %xmm1
; AVX2-NEXT: vpshuflw {{.*#+}} xmm0 = xmm0[0,1,2,1,4,5,6,7]
; AVX2-NEXT: vpshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,7,7]
; AVX2-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,5,6],xmm1[7]
; AVX2-NEXT: retq
[x86] Fix a crash and wrong-code bug in the new vector lowering all found by a single test reduced out of a failure on llvm-stress. The start of the problem (and the crash) came when we tried to use a find of a non-used slot in the move-to half of the move-mask as the target for two bad-half inputs. While if lucky this will be the first of a pair of slots which we can place the bad-half inputs into, it isn't actually guaranteed. This really isn't surprising, not sure what I was thinking. The correct way to find the two unused slots is to look for one of the *used* slots. We know it isn't that pair, and we can use some modular arithmetic to find the other pair by masking off the odd bit and adding 2 modulo 4. With this, we reliably found a viable pair of slots for the bad-half inputs. Sadly, that wasn't enough. We also had a wrong code bug that surfaced when I reduced the test case for this where we would use the same slot twice for the two bad inputs. This is because both of the bad inputs could be in odd slots originally and thus the mod-2 mapping would actually be the same. The whole point of the weird indexing into the pair of empty slots was to try to leverage when the end result needed the two bad-half inputs to be paired in a dword and pre-pair them in the correct orrientation. This is less important with the powerful combining we're now doing, and also easier and more reliable to achieve be noting that we add the bad-half inputs in order. Thus, if they are in a dword pair, the low part of that will be the first input in the sequence. Always putting that in the low element will just do the right thing in addition to computing the correct result. Test case added. =] llvm-svn: 214849
2014-08-05 16:19:21 +08:00
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 undef, i32 undef, i32 1, i32 undef, i32 5, i32 7, i32 9>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_XX4X8acX(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_XX4X8acX:
2014-08-06 18:16:36 +08:00
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm2 = xmm0[2,2,3,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm1[0,2,2,3,4,5,6,7]
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,2,0]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,6,7,4,7]
; SSE2-NEXT: movsd {{.*#+}} xmm0 = xmm2[0],xmm0[1]
2014-08-06 18:16:36 +08:00
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_XX4X8acX:
2014-08-06 18:16:36 +08:00
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[u,u,u,u,8,9,u,u],zero,zero,zero,zero,zero,zero,xmm0[u,u]
; SSSE3-NEXT: pshufb {{.*#+}} xmm1 = xmm1[u,u,u,u],zero,zero,xmm1[u,u,0,1,4,5,8,9,u,u]
; SSSE3-NEXT: por %xmm1, %xmm0
2014-08-06 18:16:36 +08:00
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_XX4X8acX:
; SSE41: # BB#0:
; SSE41-NEXT: pshufb {{.*#+}} xmm1 = xmm1[0,1,4,5,4,5,6,7,0,1,4,5,8,9,4,5]
; SSE41-NEXT: pshufd {{.*#+}} xmm0 = xmm0[2,2,3,3]
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
; SSE41-NEXT: retq
;
; AVX1-LABEL: shuffle_v8i16_XX4X8acX:
; AVX1: # BB#0:
; AVX1-NEXT: vpshufb {{.*#+}} xmm1 = xmm1[0,1,4,5,4,5,6,7,0,1,4,5,8,9,4,5]
; AVX1-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[2,2,3,3]
; AVX1-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
; AVX1-NEXT: retq
;
; AVX2-LABEL: shuffle_v8i16_XX4X8acX:
; AVX2: # BB#0:
; AVX2-NEXT: vpshufb {{.*#+}} xmm1 = xmm1[0,1,4,5,4,5,6,7,0,1,4,5,8,9,4,5]
; AVX2-NEXT: vpshufd {{.*#+}} xmm0 = xmm0[2,2,3,3]
; AVX2-NEXT: vpblendd {{.*#+}} xmm0 = xmm0[0,1],xmm1[2,3]
; AVX2-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 undef, i32 4, i32 undef, i32 8, i32 10, i32 12, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_8zzzzzzz(i16 %i) {
; SSE-LABEL: shuffle_v8i16_8zzzzzzz:
; SSE: # BB#0:
; SSE-NEXT: movzwl %di, %eax
; SSE-NEXT: movd %eax, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_8zzzzzzz:
; AVX: # BB#0:
; AVX-NEXT: movzwl %di, %eax
; AVX-NEXT: vmovd %eax, %xmm0
; AVX-NEXT: retq
%a = insertelement <8 x i16> undef, i16 %i, i32 0
%shuffle = shufflevector <8 x i16> zeroinitializer, <8 x i16> %a, <8 x i32> <i32 8, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_z8zzzzzz(i16 %i) {
; SSE-LABEL: shuffle_v8i16_z8zzzzzz:
; SSE: # BB#0:
; SSE-NEXT: pxor %xmm0, %xmm0
; SSE-NEXT: pinsrw $1, %edi, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_z8zzzzzz:
; AVX: # BB#0:
; AVX-NEXT: vpxor %xmm0, %xmm0, %xmm0
; AVX-NEXT: vpinsrw $1, %edi, %xmm0, %xmm0
; AVX-NEXT: retq
%a = insertelement <8 x i16> undef, i16 %i, i32 0
%shuffle = shufflevector <8 x i16> zeroinitializer, <8 x i16> %a, <8 x i32> <i32 2, i32 8, i32 3, i32 7, i32 6, i32 5, i32 4, i32 3>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_zzzzz8zz(i16 %i) {
; SSE-LABEL: shuffle_v8i16_zzzzz8zz:
; SSE: # BB#0:
; SSE-NEXT: pxor %xmm0, %xmm0
; SSE-NEXT: pinsrw $5, %edi, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_zzzzz8zz:
; AVX: # BB#0:
; AVX-NEXT: vpxor %xmm0, %xmm0, %xmm0
; AVX-NEXT: vpinsrw $5, %edi, %xmm0, %xmm0
; AVX-NEXT: retq
%a = insertelement <8 x i16> undef, i16 %i, i32 0
%shuffle = shufflevector <8 x i16> zeroinitializer, <8 x i16> %a, <8 x i32> <i32 0, i32 0, i32 0, i32 0, i32 0, i32 8, i32 0, i32 0>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_zuuzuuz8(i16 %i) {
; SSE-LABEL: shuffle_v8i16_zuuzuuz8:
; SSE: # BB#0:
; SSE-NEXT: pxor %xmm0, %xmm0
; SSE-NEXT: pinsrw $7, %edi, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_zuuzuuz8:
; AVX: # BB#0:
; AVX-NEXT: vpxor %xmm0, %xmm0, %xmm0
; AVX-NEXT: vpinsrw $7, %edi, %xmm0, %xmm0
; AVX-NEXT: retq
%a = insertelement <8 x i16> undef, i16 %i, i32 0
%shuffle = shufflevector <8 x i16> zeroinitializer, <8 x i16> %a, <8 x i32> <i32 0, i32 undef, i32 undef, i32 3, i32 undef, i32 undef, i32 6, i32 8>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_zzBzzzzz(i16 %i) {
; SSE-LABEL: shuffle_v8i16_zzBzzzzz:
; SSE: # BB#0:
; SSE-NEXT: pxor %xmm0, %xmm0
; SSE-NEXT: pinsrw $2, %edi, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_zzBzzzzz:
; AVX: # BB#0:
; AVX-NEXT: vpxor %xmm0, %xmm0, %xmm0
; AVX-NEXT: vpinsrw $2, %edi, %xmm0, %xmm0
; AVX-NEXT: retq
%a = insertelement <8 x i16> undef, i16 %i, i32 3
%shuffle = shufflevector <8 x i16> zeroinitializer, <8 x i16> %a, <8 x i32> <i32 0, i32 1, i32 11, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_def01234(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_def01234:
; SSE2: # BB#0:
; SSE2-NEXT: psrldq {{.*#+}} xmm1 = xmm1[10,11,12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_def01234:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm0 = xmm1[10,11,12,13,14,15],xmm0[0,1,2,3,4,5,6,7,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_def01234:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm0 = xmm1[10,11,12,13,14,15],xmm0[0,1,2,3,4,5,6,7,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_def01234:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm1[10,11,12,13,14,15],xmm0[0,1,2,3,4,5,6,7,8,9]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 13, i32 14, i32 15, i32 0, i32 1, i32 2, i32 3, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_ueuu123u(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_ueuu123u:
; SSE2: # BB#0:
; SSE2-NEXT: psrldq {{.*#+}} xmm1 = xmm1[10,11,12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_ueuu123u:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm0 = xmm1[10,11,12,13,14,15],xmm0[0,1,2,3,4,5,6,7,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_ueuu123u:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm0 = xmm1[10,11,12,13,14,15],xmm0[0,1,2,3,4,5,6,7,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_ueuu123u:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm1[10,11,12,13,14,15],xmm0[0,1,2,3,4,5,6,7,8,9]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 14, i32 undef, i32 undef, i32 1, i32 2, i32 3, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_56701234(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_56701234:
; SSE2: # BB#0:
; SSE2-NEXT: movdqa %xmm0, %xmm1
; SSE2-NEXT: psrldq {{.*#+}} xmm1 = xmm1[10,11,12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_56701234:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_56701234:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_56701234:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 5, i32 6, i32 7, i32 0, i32 1, i32 2, i32 3, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_u6uu123u(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_u6uu123u:
; SSE2: # BB#0:
; SSE2-NEXT: movdqa %xmm0, %xmm1
; SSE2-NEXT: psrldq {{.*#+}} xmm1 = xmm1[10,11,12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_u6uu123u:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_u6uu123u:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_u6uu123u:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 6, i32 undef, i32 undef, i32 1, i32 2, i32 3, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_uuuu123u(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_uuuu123u:
; SSE: # BB#0:
; SSE-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_uuuu123u:
; AVX: # BB#0:
; AVX-NEXT: vpslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 undef, i32 undef, i32 undef, i32 1, i32 2, i32 3, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_bcdef012(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_bcdef012:
; SSE2: # BB#0:
; SSE2-NEXT: psrldq {{.*#+}} xmm1 = xmm1[6,7,8,9,10,11,12,13,14,15],zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_bcdef012:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm0 = xmm1[6,7,8,9,10,11,12,13,14,15],xmm0[0,1,2,3,4,5]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_bcdef012:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm0 = xmm1[6,7,8,9,10,11,12,13,14,15],xmm0[0,1,2,3,4,5]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_bcdef012:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm1[6,7,8,9,10,11,12,13,14,15],xmm0[0,1,2,3,4,5]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 11, i32 12, i32 13, i32 14, i32 15, i32 0, i32 1, i32 2>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_ucdeuu1u(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_ucdeuu1u:
; SSE2: # BB#0:
; SSE2-NEXT: psrldq {{.*#+}} xmm1 = xmm1[6,7,8,9,10,11,12,13,14,15],zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_ucdeuu1u:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm0 = xmm1[6,7,8,9,10,11,12,13,14,15],xmm0[0,1,2,3,4,5]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_ucdeuu1u:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm0 = xmm1[6,7,8,9,10,11,12,13,14,15],xmm0[0,1,2,3,4,5]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_ucdeuu1u:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm1[6,7,8,9,10,11,12,13,14,15],xmm0[0,1,2,3,4,5]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 12, i32 13, i32 14, i32 undef, i32 undef, i32 1, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_34567012(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_34567012:
; SSE2: # BB#0:
; SSE2-NEXT: movdqa %xmm0, %xmm1
; SSE2-NEXT: psrldq {{.*#+}} xmm1 = xmm1[6,7,8,9,10,11,12,13,14,15],zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_34567012:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_34567012:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_34567012:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 3, i32 4, i32 5, i32 6, i32 7, i32 0, i32 1, i32 2>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_u456uu1u(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_u456uu1u:
; SSE2: # BB#0:
; SSE2-NEXT: movdqa %xmm0, %xmm1
; SSE2-NEXT: psrldq {{.*#+}} xmm1 = xmm1[6,7,8,9,10,11,12,13,14,15],zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm0[0,1,2,3,4,5]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_u456uu1u:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_u456uu1u:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_u456uu1u:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 4, i32 5, i32 6, i32 undef, i32 undef, i32 1, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_u456uuuu(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_u456uuuu:
; SSE: # BB#0:
; SSE-NEXT: psrldq {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15],zero,zero,zero,zero,zero,zero
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_u456uuuu:
; AVX: # BB#0:
; AVX-NEXT: vpsrldq {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15],zero,zero,zero,zero,zero,zero
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 4, i32 5, i32 6, i32 undef, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_3456789a(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_3456789a:
; SSE2: # BB#0:
; SSE2-NEXT: psrldq {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15],zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm1 = zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm1[0,1,2,3,4,5]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_3456789a:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm1 = xmm0[6,7,8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5]
; SSSE3-NEXT: movdqa %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_3456789a:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm1 = xmm0[6,7,8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5]
; SSE41-NEXT: movdqa %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_3456789a:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 3, i32 4, i32 5, i32 6, i32 7, i32 8, i32 9, i32 10>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_u456uu9u(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_u456uu9u:
; SSE2: # BB#0:
; SSE2-NEXT: psrldq {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15],zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm1 = zero,zero,zero,zero,zero,zero,zero,zero,zero,zero,xmm1[0,1,2,3,4,5]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_u456uu9u:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm1 = xmm0[6,7,8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5]
; SSSE3-NEXT: movdqa %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_u456uu9u:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm1 = xmm0[6,7,8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5]
; SSE41-NEXT: movdqa %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_u456uu9u:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[6,7,8,9,10,11,12,13,14,15],xmm1[0,1,2,3,4,5]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 4, i32 5, i32 6, i32 undef, i32 undef, i32 9, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_56789abc(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_56789abc:
; SSE2: # BB#0:
; SSE2-NEXT: psrldq {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm1 = zero,zero,zero,zero,zero,zero,xmm1[0,1,2,3,4,5,6,7,8,9]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_56789abc:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm1 = xmm0[10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7,8,9]
; SSSE3-NEXT: movdqa %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_56789abc:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm1 = xmm0[10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7,8,9]
; SSE41-NEXT: movdqa %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_56789abc:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7,8,9]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 5, i32 6, i32 7, i32 8, i32 9, i32 10, i32 11, i32 12>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_u6uu9abu(<8 x i16> %a, <8 x i16> %b) {
; SSE2-LABEL: shuffle_v8i16_u6uu9abu:
; SSE2: # BB#0:
; SSE2-NEXT: psrldq {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15],zero,zero,zero,zero,zero,zero,zero,zero,zero,zero
; SSE2-NEXT: pslldq {{.*#+}} xmm1 = zero,zero,zero,zero,zero,zero,xmm1[0,1,2,3,4,5,6,7,8,9]
; SSE2-NEXT: por %xmm1, %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_u6uu9abu:
; SSSE3: # BB#0:
; SSSE3-NEXT: palignr {{.*#+}} xmm1 = xmm0[10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7,8,9]
; SSSE3-NEXT: movdqa %xmm1, %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_u6uu9abu:
; SSE41: # BB#0:
; SSE41-NEXT: palignr {{.*#+}} xmm1 = xmm0[10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7,8,9]
; SSE41-NEXT: movdqa %xmm1, %xmm0
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_u6uu9abu:
; AVX: # BB#0:
; AVX-NEXT: vpalignr {{.*#+}} xmm0 = xmm0[10,11,12,13,14,15],xmm1[0,1,2,3,4,5,6,7,8,9]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 undef, i32 6, i32 undef, i32 undef, i32 9, i32 10, i32 11, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0uuu1uuu(<8 x i16> %a) {
; SSE2-LABEL: shuffle_v8i16_0uuu1uuu:
; SSE2: # BB#0:
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,3]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,5,5,6,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0uuu1uuu:
; SSSE3: # BB#0:
; SSSE3-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,3]
; SSSE3-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,5,5,6,7]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0uuu1uuu:
; SSE41: # BB#0:
; SSE41-NEXT: pmovzxwq {{.*#+}} xmm0 = xmm0[0],zero,zero,zero,xmm0[1],zero,zero,zero
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0uuu1uuu:
; AVX: # BB#0:
; AVX-NEXT: vpmovzxwq {{.*#+}} xmm0 = xmm0[0],zero,zero,zero,xmm0[1],zero,zero,zero
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 0, i32 undef, i32 undef, i32 undef, i32 1, i32 undef, i32 undef, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0zzz1zzz(<8 x i16> %a) {
; SSE2-LABEL: shuffle_v8i16_0zzz1zzz:
; SSE2: # BB#0:
; SSE2-NEXT: pxor %xmm1, %xmm1
; SSE2-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSE2-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0zzz1zzz:
; SSSE3: # BB#0:
; SSSE3-NEXT: pxor %xmm1, %xmm1
; SSSE3-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSSE3-NEXT: punpckldq {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0zzz1zzz:
; SSE41: # BB#0:
; SSE41-NEXT: pmovzxwq {{.*#+}} xmm0 = xmm0[0],zero,zero,zero,xmm0[1],zero,zero,zero
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0zzz1zzz:
; AVX: # BB#0:
; AVX-NEXT: vpmovzxwq {{.*#+}} xmm0 = xmm0[0],zero,zero,zero,xmm0[1],zero,zero,zero
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 0, i32 9, i32 10, i32 11, i32 1, i32 13, i32 14, i32 15>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0u1u2u3u(<8 x i16> %a) {
; SSE2-LABEL: shuffle_v8i16_0u1u2u3u:
; SSE2: # BB#0:
; SSE2-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0u1u2u3u:
; SSSE3: # BB#0:
; SSSE3-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0u1u2u3u:
; SSE41: # BB#0:
; SSE41-NEXT: pmovzxwd {{.*#+}} xmm0 = xmm0[0],zero,xmm0[1],zero,xmm0[2],zero,xmm0[3],zero
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0u1u2u3u:
; AVX: # BB#0:
; AVX-NEXT: vpmovzxwd {{.*#+}} xmm0 = xmm0[0],zero,xmm0[1],zero,xmm0[2],zero,xmm0[3],zero
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 0, i32 undef, i32 1, i32 undef, i32 2, i32 undef, i32 3, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0z1z2z3z(<8 x i16> %a) {
; SSE2-LABEL: shuffle_v8i16_0z1z2z3z:
; SSE2: # BB#0:
; SSE2-NEXT: pxor %xmm1, %xmm1
; SSE2-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0z1z2z3z:
; SSSE3: # BB#0:
; SSSE3-NEXT: pxor %xmm1, %xmm1
; SSSE3-NEXT: punpcklwd {{.*#+}} xmm0 = xmm0[0],xmm1[0],xmm0[1],xmm1[1],xmm0[2],xmm1[2],xmm0[3],xmm1[3]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0z1z2z3z:
; SSE41: # BB#0:
; SSE41-NEXT: pmovzxwd {{.*#+}} xmm0 = xmm0[0],zero,xmm0[1],zero,xmm0[2],zero,xmm0[3],zero
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0z1z2z3z:
; AVX: # BB#0:
; AVX-NEXT: vpmovzxwd {{.*#+}} xmm0 = xmm0[0],zero,xmm0[1],zero,xmm0[2],zero,xmm0[3],zero
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 0, i32 9, i32 1, i32 11, i32 2, i32 13, i32 3, i32 15>
ret <8 x i16> %shuffle
}
;
; Shuffle to logical bit shifts
;
define <8 x i16> @shuffle_v8i16_z0z2z4z6(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_z0z2z4z6:
; SSE: # BB#0:
; SSE-NEXT: pslld $16, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_z0z2z4z6:
; AVX: # BB#0:
; AVX-NEXT: vpslld $16, %xmm0, %xmm0
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32><i32 8, i32 0, i32 8, i32 2, i32 8, i32 4, i32 8, i32 6>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_zzz0zzz4(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_zzz0zzz4:
; SSE: # BB#0:
; SSE-NEXT: psllq $48, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_zzz0zzz4:
; AVX: # BB#0:
; AVX-NEXT: vpsllq $48, %xmm0, %xmm0
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32><i32 8, i32 8, i32 8, i32 0, i32 8, i32 8, i32 8, i32 4>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_zz01zX4X(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_zz01zX4X:
; SSE: # BB#0:
; SSE-NEXT: psllq $32, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_zz01zX4X:
; AVX: # BB#0:
; AVX-NEXT: vpsllq $32, %xmm0, %xmm0
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32><i32 8, i32 8, i32 0, i32 1, i32 8, i32 undef, i32 4, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_z0X2z456(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_z0X2z456:
; SSE: # BB#0:
; SSE-NEXT: psllq $16, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_z0X2z456:
; AVX: # BB#0:
; AVX-NEXT: vpsllq $16, %xmm0, %xmm0
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32><i32 8, i32 0, i32 undef, i32 2, i32 8, i32 4, i32 5, i32 6>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_1z3zXz7z(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_1z3zXz7z:
; SSE: # BB#0:
; SSE-NEXT: psrld $16, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_1z3zXz7z:
; AVX: # BB#0:
; AVX-NEXT: vpsrld $16, %xmm0, %xmm0
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32><i32 1, i32 8, i32 3, i32 8, i32 undef, i32 8, i32 7, i32 8>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_1X3z567z(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_1X3z567z:
; SSE: # BB#0:
; SSE-NEXT: psrlq $16, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_1X3z567z:
; AVX: # BB#0:
; AVX-NEXT: vpsrlq $16, %xmm0, %xmm0
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32><i32 1, i32 undef, i32 3, i32 8, i32 5, i32 6, i32 7, i32 8>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_23zz67zz(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_23zz67zz:
; SSE: # BB#0:
; SSE-NEXT: psrlq $32, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_23zz67zz:
; AVX: # BB#0:
; AVX-NEXT: vpsrlq $32, %xmm0, %xmm0
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32><i32 2, i32 3, i32 8, i32 8, i32 6, i32 7, i32 8, i32 8>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_3zXXXzzz(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_3zXXXzzz:
; SSE: # BB#0:
; SSE-NEXT: psrlq $48, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_3zXXXzzz:
; AVX: # BB#0:
; AVX-NEXT: vpsrlq $48, %xmm0, %xmm0
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32><i32 3, i32 8, i32 undef, i32 undef, i32 undef, i32 8, i32 8, i32 8>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_01u3zzuz(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_01u3zzuz:
; SSE: # BB#0:
; SSE-NEXT: movq {{.*#+}} xmm0 = xmm0[0],zero
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_01u3zzuz:
; AVX: # BB#0:
; AVX-NEXT: vmovq {{.*#+}} xmm0 = xmm0[0],zero
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 0, i32 1, i32 undef, i32 3, i32 8, i32 8, i32 undef, i32 8>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0z234567(<8 x i16> %a) {
; SSE2-LABEL: shuffle_v8i16_0z234567:
; SSE2: # BB#0:
; SSE2-NEXT: andps {{.*}}(%rip), %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0z234567:
; SSSE3: # BB#0:
; SSSE3-NEXT: andps {{.*}}(%rip), %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0z234567:
; SSE41: # BB#0:
; SSE41-NEXT: pxor %xmm1, %xmm1
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1],xmm0[2,3,4,5,6,7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0z234567:
; AVX: # BB#0:
; AVX-NEXT: vpxor %xmm1, %xmm1, %xmm1
; AVX-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1],xmm0[2,3,4,5,6,7]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 0, i32 9, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0zzzz5z7(<8 x i16> %a) {
; SSE2-LABEL: shuffle_v8i16_0zzzz5z7:
; SSE2: # BB#0:
; SSE2-NEXT: andps {{.*}}(%rip), %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0zzzz5z7:
; SSSE3: # BB#0:
; SSSE3-NEXT: andps {{.*}}(%rip), %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0zzzz5z7:
; SSE41: # BB#0:
; SSE41-NEXT: pxor %xmm1, %xmm1
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1,2,3,4],xmm0[5],xmm1[6],xmm0[7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0zzzz5z7:
; AVX: # BB#0:
; AVX-NEXT: vpxor %xmm1, %xmm1, %xmm1
; AVX-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1,2,3,4],xmm0[5],xmm1[6],xmm0[7]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 0, i32 8, i32 8, i32 8, i32 8, i32 5, i32 8, i32 7>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_0123456z(<8 x i16> %a) {
; SSE2-LABEL: shuffle_v8i16_0123456z:
; SSE2: # BB#0:
; SSE2-NEXT: andps {{.*}}(%rip), %xmm0
; SSE2-NEXT: retq
;
; SSSE3-LABEL: shuffle_v8i16_0123456z:
; SSSE3: # BB#0:
; SSSE3-NEXT: andps {{.*}}(%rip), %xmm0
; SSSE3-NEXT: retq
;
; SSE41-LABEL: shuffle_v8i16_0123456z:
; SSE41: # BB#0:
; SSE41-NEXT: pxor %xmm1, %xmm1
; SSE41-NEXT: pblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1],xmm0[2,3,4,5,6],xmm1[7]
; SSE41-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_0123456z:
; AVX: # BB#0:
; AVX-NEXT: vpxor %xmm1, %xmm1, %xmm1
; AVX-NEXT: vpblendw {{.*#+}} xmm0 = xmm0[0],xmm1[1],xmm0[2,3,4,5,6],xmm1[7]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 0, i32 9, i32 2, i32 3, i32 4, i32 5, i32 6, i32 15>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_fu3ucc5u(<8 x i16> %a, <8 x i16> %b) {
; SSE-LABEL: shuffle_v8i16_fu3ucc5u:
; SSE: # BB#0:
; SSE-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
; SSE-NEXT: pshufhw {{.*#+}} xmm1 = xmm1[0,1,2,3,7,5,4,4]
; SSE-NEXT: punpckhdq {{.*#+}} xmm1 = xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; SSE-NEXT: movdqa %xmm1, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_fu3ucc5u:
; AVX: # BB#0:
; AVX-NEXT: vpslldq {{.*#+}} xmm0 = zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
; AVX-NEXT: vpshufhw {{.*#+}} xmm1 = xmm1[0,1,2,3,7,5,4,4]
; AVX-NEXT: vpunpckhdq {{.*#+}} xmm0 = xmm1[2],xmm0[2],xmm1[3],xmm0[3]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> %b, <8 x i32> <i32 15, i32 undef, i32 3, i32 undef, i32 12, i32 12, i32 5, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @shuffle_v8i16_8012345u(<8 x i16> %a) {
; SSE-LABEL: shuffle_v8i16_8012345u:
; SSE: # BB#0:
; SSE-NEXT: pslldq {{.*#+}} xmm0 = zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
; SSE-NEXT: retq
;
; AVX-LABEL: shuffle_v8i16_8012345u:
; AVX: # BB#0:
; AVX-NEXT: vpslldq {{.*#+}} xmm0 = zero,zero,xmm0[0,1,2,3,4,5,6,7,8,9,10,11,12,13]
; AVX-NEXT: retq
%shuffle = shufflevector <8 x i16> %a, <8 x i16> zeroinitializer, <8 x i32> <i32 8, i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 undef>
ret <8 x i16> %shuffle
}
define <8 x i16> @insert_dup_mem_v8i16_i32(i32* %ptr) {
; SSE2-LABEL: insert_dup_mem_v8i16_i32:
; SSE2: # BB#0:
; SSE2-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,0,0,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: insert_dup_mem_v8i16_i32:
; SSSE3: # BB#0:
; SSSE3-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: insert_dup_mem_v8i16_i32:
; SSE41: # BB#0:
; SSE41-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; SSE41-NEXT: retq
;
; AVX1-LABEL: insert_dup_mem_v8i16_i32:
; AVX1: # BB#0:
; AVX1-NEXT: vmovd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; AVX1-NEXT: retq
;
; AVX2-LABEL: insert_dup_mem_v8i16_i32:
; AVX2: # BB#0:
; AVX2-NEXT: vpbroadcastw (%rdi), %xmm0
; AVX2-NEXT: retq
%tmp = load i32, i32* %ptr, align 4
%tmp1 = insertelement <4 x i32> zeroinitializer, i32 %tmp, i32 0
%tmp2 = bitcast <4 x i32> %tmp1 to <8 x i16>
%tmp3 = shufflevector <8 x i16> %tmp2, <8 x i16> undef, <8 x i32> zeroinitializer
ret <8 x i16> %tmp3
}
define <8 x i16> @insert_dup_mem_v8i16_sext_i16(i16* %ptr) {
; SSE2-LABEL: insert_dup_mem_v8i16_sext_i16:
; SSE2: # BB#0:
; SSE2-NEXT: movswl (%rdi), %eax
; SSE2-NEXT: movd %eax, %xmm0
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[0,0,0,0,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,4,4,4,4]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: insert_dup_mem_v8i16_sext_i16:
; SSSE3: # BB#0:
; SSSE3-NEXT: movswl (%rdi), %eax
; SSSE3-NEXT: movd %eax, %xmm0
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: insert_dup_mem_v8i16_sext_i16:
; SSE41: # BB#0:
; SSE41-NEXT: movswl (%rdi), %eax
; SSE41-NEXT: movd %eax, %xmm0
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; SSE41-NEXT: retq
;
; AVX1-LABEL: insert_dup_mem_v8i16_sext_i16:
; AVX1: # BB#0:
; AVX1-NEXT: movswl (%rdi), %eax
; AVX1-NEXT: vmovd %eax, %xmm0
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1]
; AVX1-NEXT: retq
;
; AVX2-LABEL: insert_dup_mem_v8i16_sext_i16:
; AVX2: # BB#0:
; AVX2-NEXT: movswl (%rdi), %eax
; AVX2-NEXT: vmovd %eax, %xmm0
; AVX2-NEXT: vpbroadcastw %xmm0, %xmm0
; AVX2-NEXT: retq
%tmp = load i16, i16* %ptr, align 2
%tmp1 = sext i16 %tmp to i32
%tmp2 = insertelement <4 x i32> zeroinitializer, i32 %tmp1, i32 0
%tmp3 = bitcast <4 x i32> %tmp2 to <8 x i16>
%tmp4 = shufflevector <8 x i16> %tmp3, <8 x i16> undef, <8 x i32> zeroinitializer
ret <8 x i16> %tmp4
}
define <8 x i16> @insert_dup_elt1_mem_v8i16_i32(i32* %ptr) {
; SSE2-LABEL: insert_dup_elt1_mem_v8i16_i32:
; SSE2: # BB#0:
; SSE2-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[1,1,1,1,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,5,5,5,5]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: insert_dup_elt1_mem_v8i16_i32:
; SSSE3: # BB#0:
; SSSE3-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: insert_dup_elt1_mem_v8i16_i32:
; SSE41: # BB#0:
; SSE41-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; SSE41-NEXT: retq
;
; AVX1-LABEL: insert_dup_elt1_mem_v8i16_i32:
; AVX1: # BB#0:
; AVX1-NEXT: vmovd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: insert_dup_elt1_mem_v8i16_i32:
; AVX2: # BB#0:
; AVX2-NEXT: vpbroadcastw 2(%rdi), %xmm0
; AVX2-NEXT: retq
%tmp = load i32, i32* %ptr, align 4
%tmp1 = insertelement <4 x i32> zeroinitializer, i32 %tmp, i32 0
%tmp2 = bitcast <4 x i32> %tmp1 to <8 x i16>
%tmp3 = shufflevector <8 x i16> %tmp2, <8 x i16> undef, <8 x i32> <i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1>
ret <8 x i16> %tmp3
}
define <8 x i16> @insert_dup_elt3_mem_v8i16_i32(i32* %ptr) {
; SSE2-LABEL: insert_dup_elt3_mem_v8i16_i32:
; SSE2: # BB#0:
; SSE2-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[1,0,1,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,3,3,3,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,7,7,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: insert_dup_elt3_mem_v8i16_i32:
; SSSE3: # BB#0:
; SSSE3-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: insert_dup_elt3_mem_v8i16_i32:
; SSE41: # BB#0:
; SSE41-NEXT: movd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; SSE41-NEXT: retq
;
; AVX1-LABEL: insert_dup_elt3_mem_v8i16_i32:
; AVX1: # BB#0:
; AVX1-NEXT: vmovd {{.*#+}} xmm0 = mem[0],zero,zero,zero
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: insert_dup_elt3_mem_v8i16_i32:
; AVX2: # BB#0:
; AVX2-NEXT: vpbroadcastw 2(%rdi), %xmm0
; AVX2-NEXT: retq
%tmp = load i32, i32* %ptr, align 4
%tmp1 = insertelement <4 x i32> zeroinitializer, i32 %tmp, i32 1
%tmp2 = bitcast <4 x i32> %tmp1 to <8 x i16>
%tmp3 = shufflevector <8 x i16> %tmp2, <8 x i16> undef, <8 x i32> <i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3>
ret <8 x i16> %tmp3
}
define <8 x i16> @insert_dup_elt1_mem_v8i16_sext_i16(i16* %ptr) {
; SSE2-LABEL: insert_dup_elt1_mem_v8i16_sext_i16:
; SSE2: # BB#0:
; SSE2-NEXT: movswl (%rdi), %eax
; SSE2-NEXT: movd %eax, %xmm0
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[0,1,0,3]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[1,1,1,1,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,5,5,5,5]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: insert_dup_elt1_mem_v8i16_sext_i16:
; SSSE3: # BB#0:
; SSSE3-NEXT: movswl (%rdi), %eax
; SSSE3-NEXT: movd %eax, %xmm0
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: insert_dup_elt1_mem_v8i16_sext_i16:
; SSE41: # BB#0:
; SSE41-NEXT: movswl (%rdi), %eax
; SSE41-NEXT: movd %eax, %xmm0
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; SSE41-NEXT: retq
;
; AVX1-LABEL: insert_dup_elt1_mem_v8i16_sext_i16:
; AVX1: # BB#0:
; AVX1-NEXT: movswl (%rdi), %eax
; AVX1-NEXT: vmovd %eax, %xmm0
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: insert_dup_elt1_mem_v8i16_sext_i16:
; AVX2: # BB#0:
; AVX2-NEXT: movswl (%rdi), %eax
; AVX2-NEXT: shrl $16, %eax
; AVX2-NEXT: vmovd %eax, %xmm0
; AVX2-NEXT: vpbroadcastw %xmm0, %xmm0
; AVX2-NEXT: retq
%tmp = load i16, i16* %ptr, align 2
%tmp1 = sext i16 %tmp to i32
%tmp2 = insertelement <4 x i32> zeroinitializer, i32 %tmp1, i32 0
%tmp3 = bitcast <4 x i32> %tmp2 to <8 x i16>
%tmp4 = shufflevector <8 x i16> %tmp3, <8 x i16> undef, <8 x i32> <i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1>
ret <8 x i16> %tmp4
}
define <8 x i16> @insert_dup_elt3_mem_v8i16_sext_i16(i16* %ptr) {
; SSE2-LABEL: insert_dup_elt3_mem_v8i16_sext_i16:
; SSE2: # BB#0:
; SSE2-NEXT: movswl (%rdi), %eax
; SSE2-NEXT: movd %eax, %xmm0
; SSE2-NEXT: pshufd {{.*#+}} xmm0 = xmm0[1,0,1,0]
; SSE2-NEXT: pshuflw {{.*#+}} xmm0 = xmm0[3,3,3,3,4,5,6,7]
; SSE2-NEXT: pshufhw {{.*#+}} xmm0 = xmm0[0,1,2,3,7,7,7,7]
; SSE2-NEXT: retq
;
; SSSE3-LABEL: insert_dup_elt3_mem_v8i16_sext_i16:
; SSSE3: # BB#0:
; SSSE3-NEXT: movswl (%rdi), %eax
; SSSE3-NEXT: movd %eax, %xmm0
; SSSE3-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; SSSE3-NEXT: retq
;
; SSE41-LABEL: insert_dup_elt3_mem_v8i16_sext_i16:
; SSE41: # BB#0:
; SSE41-NEXT: movswl (%rdi), %eax
; SSE41-NEXT: movd %eax, %xmm0
; SSE41-NEXT: pshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; SSE41-NEXT: retq
;
; AVX1-LABEL: insert_dup_elt3_mem_v8i16_sext_i16:
; AVX1: # BB#0:
; AVX1-NEXT: movswl (%rdi), %eax
; AVX1-NEXT: vmovd %eax, %xmm0
; AVX1-NEXT: vpshufb {{.*#+}} xmm0 = xmm0[2,3,2,3,2,3,2,3,2,3,2,3,2,3,2,3]
; AVX1-NEXT: retq
;
; AVX2-LABEL: insert_dup_elt3_mem_v8i16_sext_i16:
; AVX2: # BB#0:
; AVX2-NEXT: movswl (%rdi), %eax
; AVX2-NEXT: shrl $16, %eax
; AVX2-NEXT: vmovd %eax, %xmm0
; AVX2-NEXT: vpbroadcastw %xmm0, %xmm0
; AVX2-NEXT: retq
%tmp = load i16, i16* %ptr, align 2
%tmp1 = sext i16 %tmp to i32
%tmp2 = insertelement <4 x i32> zeroinitializer, i32 %tmp1, i32 1
%tmp3 = bitcast <4 x i32> %tmp2 to <8 x i16>
%tmp4 = shufflevector <8 x i16> %tmp3, <8 x i16> undef, <8 x i32> <i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3, i32 3>
ret <8 x i16> %tmp4
}