2010-06-09 00:52:24 +08:00
//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
# include <list>
2010-10-26 20:01:35 +08:00
# include "lldb/Core/Log.h"
2010-09-10 15:49:16 +08:00
# include "lldb/Core/Section.h"
2010-06-09 00:52:24 +08:00
# include "lldb/Core/ArchSpec.h"
# include "lldb/Core/Module.h"
2012-01-05 11:57:59 +08:00
# include "lldb/Core/Section.h"
# include "lldb/Host/Host.h"
# include "lldb/Symbol/DWARFCallFrameInfo.h"
2010-06-09 00:52:24 +08:00
# include "lldb/Symbol/ObjectFile.h"
2012-01-05 11:57:59 +08:00
# include "lldb/Symbol/UnwindPlan.h"
2010-06-09 00:52:24 +08:00
# include "lldb/Target/RegisterContext.h"
# include "lldb/Target/Thread.h"
using namespace lldb ;
using namespace lldb_private ;
2012-02-05 10:38:54 +08:00
DWARFCallFrameInfo : : DWARFCallFrameInfo ( ObjectFile & objfile , SectionSP & section_sp , lldb : : RegisterKind reg_kind , bool is_eh_frame ) :
2010-09-10 15:49:16 +08:00
m_objfile ( objfile ) ,
2012-02-05 10:38:54 +08:00
m_section_sp ( section_sp ) ,
2010-09-10 15:49:16 +08:00
m_reg_kind ( reg_kind ) , // The flavor of registers that the CFI data uses (enum RegisterKind)
2011-04-12 03:41:40 +08:00
m_flags ( ) ,
2010-09-10 15:49:16 +08:00
m_cie_map ( ) ,
m_cfi_data ( ) ,
m_cfi_data_initialized ( false ) ,
m_fde_index ( ) ,
m_fde_index_initialized ( false ) ,
2011-04-12 03:41:40 +08:00
m_is_eh_frame ( is_eh_frame )
2010-06-09 00:52:24 +08:00
{
}
2010-09-10 15:49:16 +08:00
DWARFCallFrameInfo : : ~ DWARFCallFrameInfo ( )
2010-06-09 00:52:24 +08:00
{
}
bool
2010-09-10 15:49:16 +08:00
DWARFCallFrameInfo : : GetAddressRange ( Address addr , AddressRange & range )
2010-06-09 00:52:24 +08:00
{
2010-09-10 15:49:16 +08:00
FDEEntry fde_entry ;
if ( GetFDEEntryByAddress ( addr , fde_entry ) = = false )
2010-06-09 00:52:24 +08:00
return false ;
2010-09-10 15:49:16 +08:00
range = fde_entry . bounds ;
return true ;
2010-06-09 00:52:24 +08:00
}
2010-09-10 15:49:16 +08:00
bool
DWARFCallFrameInfo : : GetUnwindPlan ( Address addr , UnwindPlan & unwind_plan )
2010-06-09 00:52:24 +08:00
{
2010-09-10 15:49:16 +08:00
FDEEntry fde_entry ;
if ( GetFDEEntryByAddress ( addr , fde_entry ) = = false )
return false ;
return FDEToUnwindPlan ( fde_entry . offset , addr , unwind_plan ) ;
2010-06-09 00:52:24 +08:00
}
bool
2010-09-10 15:49:16 +08:00
DWARFCallFrameInfo : : GetFDEEntryByAddress ( Address addr , FDEEntry & fde_entry )
2010-06-09 00:52:24 +08:00
{
2012-02-05 10:38:54 +08:00
if ( m_section_sp . get ( ) = = NULL | | m_section_sp - > IsEncrypted ( ) )
2010-09-10 15:49:16 +08:00
return false ;
GetFDEIndex ( ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
struct FDEEntry searchfde ;
searchfde . bounds = AddressRange ( addr , 1 ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
std : : vector < FDEEntry > : : const_iterator idx ;
if ( m_fde_index . size ( ) = = 0 )
return false ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
idx = std : : lower_bound ( m_fde_index . begin ( ) , m_fde_index . end ( ) , searchfde ) ;
if ( idx = = m_fde_index . end ( ) )
2010-06-09 00:52:24 +08:00
{
2010-09-10 15:49:16 +08:00
- - idx ;
2010-06-09 00:52:24 +08:00
}
2011-01-25 11:12:34 +08:00
if ( idx ! = m_fde_index . begin ( ) & & idx - > bounds . GetBaseAddress ( ) . GetOffset ( ) ! = addr . GetOffset ( ) )
2010-06-09 00:52:24 +08:00
{
2010-09-10 15:49:16 +08:00
- - idx ;
2010-06-09 00:52:24 +08:00
}
2010-09-10 15:49:16 +08:00
if ( idx - > bounds . ContainsFileAddress ( addr ) )
2010-06-09 00:52:24 +08:00
{
2010-09-10 15:49:16 +08:00
fde_entry = * idx ;
return true ;
2010-06-09 00:52:24 +08:00
}
2010-09-10 15:49:16 +08:00
return false ;
2010-06-09 00:52:24 +08:00
}
const DWARFCallFrameInfo : : CIE *
DWARFCallFrameInfo : : GetCIE ( dw_offset_t cie_offset )
{
cie_map_t : : iterator pos = m_cie_map . find ( cie_offset ) ;
if ( pos ! = m_cie_map . end ( ) )
{
// Parse and cache the CIE
if ( pos - > second . get ( ) = = NULL )
pos - > second = ParseCIE ( cie_offset ) ;
return pos - > second . get ( ) ;
}
return NULL ;
}
2010-09-10 15:49:16 +08:00
DWARFCallFrameInfo : : CIESP
2010-06-09 00:52:24 +08:00
DWARFCallFrameInfo : : ParseCIE ( const dw_offset_t cie_offset )
{
2010-09-10 15:49:16 +08:00
CIESP cie_sp ( new CIE ( cie_offset ) ) ;
2013-01-26 02:06:21 +08:00
lldb : : offset_t offset = cie_offset ;
2010-09-10 15:49:16 +08:00
if ( m_cfi_data_initialized = = false )
2011-12-29 08:05:26 +08:00
GetCFIData ( ) ;
2010-06-09 00:52:24 +08:00
const uint32_t length = m_cfi_data . GetU32 ( & offset ) ;
const dw_offset_t cie_id = m_cfi_data . GetU32 ( & offset ) ;
const dw_offset_t end_offset = cie_offset + length + 4 ;
2013-01-26 02:06:21 +08:00
if ( length > 0 & & ( ( ! m_is_eh_frame & & cie_id = = UINT32_MAX ) | | ( m_is_eh_frame & & cie_id = = 0ul ) ) )
2010-06-09 00:52:24 +08:00
{
size_t i ;
// cie.offset = cie_offset;
// cie.length = length;
// cie.cieID = cieID;
2010-07-07 06:38:03 +08:00
cie_sp - > ptr_encoding = DW_EH_PE_absptr ;
2010-06-09 00:52:24 +08:00
cie_sp - > version = m_cfi_data . GetU8 ( & offset ) ;
for ( i = 0 ; i < CFI_AUG_MAX_SIZE ; + + i )
{
cie_sp - > augmentation [ i ] = m_cfi_data . GetU8 ( & offset ) ;
if ( cie_sp - > augmentation [ i ] = = ' \0 ' )
{
// Zero out remaining bytes in augmentation string
for ( size_t j = i + 1 ; j < CFI_AUG_MAX_SIZE ; + + j )
cie_sp - > augmentation [ j ] = ' \0 ' ;
break ;
}
}
if ( i = = CFI_AUG_MAX_SIZE & & cie_sp - > augmentation [ CFI_AUG_MAX_SIZE - 1 ] ! = ' \0 ' )
{
2012-01-05 11:57:59 +08:00
Host : : SystemLog ( Host : : eSystemLogError , " CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes. \n " , CFI_AUG_MAX_SIZE ) ;
2010-06-09 00:52:24 +08:00
return cie_sp ;
}
cie_sp - > code_align = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
cie_sp - > data_align = ( int32_t ) m_cfi_data . GetSLEB128 ( & offset ) ;
cie_sp - > return_addr_reg_num = m_cfi_data . GetU8 ( & offset ) ;
if ( cie_sp - > augmentation [ 0 ] )
{
// Get the length of the eh_frame augmentation data
// which starts with a ULEB128 length in bytes
const size_t aug_data_len = ( size_t ) m_cfi_data . GetULEB128 ( & offset ) ;
const size_t aug_data_end = offset + aug_data_len ;
const size_t aug_str_len = strlen ( cie_sp - > augmentation ) ;
// A 'z' may be present as the first character of the string.
// If present, the Augmentation Data field shall be present.
// The contents of the Augmentation Data shall be intepreted
// according to other characters in the Augmentation String.
if ( cie_sp - > augmentation [ 0 ] = = ' z ' )
{
// Extract the Augmentation Data
size_t aug_str_idx = 0 ;
for ( aug_str_idx = 1 ; aug_str_idx < aug_str_len ; aug_str_idx + + )
{
char aug = cie_sp - > augmentation [ aug_str_idx ] ;
switch ( aug )
{
case ' L ' :
// Indicates the presence of one argument in the
// Augmentation Data of the CIE, and a corresponding
// argument in the Augmentation Data of the FDE. The
// argument in the Augmentation Data of the CIE is
// 1-byte and represents the pointer encoding used
// for the argument in the Augmentation Data of the
// FDE, which is the address of a language-specific
// data area (LSDA). The size of the LSDA pointer is
// specified by the pointer encoding used.
m_cfi_data . GetU8 ( & offset ) ;
break ;
case ' P ' :
// Indicates the presence of two arguments in the
// Augmentation Data of the cie_sp-> The first argument
// is 1-byte and represents the pointer encoding
// used for the second argument, which is the
// address of a personality routine handler. The
// size of the personality routine pointer is
// specified by the pointer encoding used.
{
uint8_t arg_ptr_encoding = m_cfi_data . GetU8 ( & offset ) ;
m_cfi_data . GetGNUEHPointer ( & offset , arg_ptr_encoding , LLDB_INVALID_ADDRESS , LLDB_INVALID_ADDRESS , LLDB_INVALID_ADDRESS ) ;
}
break ;
case ' R ' :
// A 'R' may be present at any position after the
// first character of the string. The Augmentation
// Data shall include a 1 byte argument that
// represents the pointer encoding for the address
// pointers used in the FDE.
cie_sp - > ptr_encoding = m_cfi_data . GetU8 ( & offset ) ;
break ;
}
}
}
else if ( strcmp ( cie_sp - > augmentation , " eh " ) = = 0 )
{
// If the Augmentation string has the value "eh", then
// the EH Data field shall be present
}
// Set the offset to be the end of the augmentation data just in case
// we didn't understand any of the data.
offset = ( uint32_t ) aug_data_end ;
}
if ( end_offset > offset )
{
cie_sp - > inst_offset = offset ;
cie_sp - > inst_length = end_offset - offset ;
}
2010-09-10 15:49:16 +08:00
while ( offset < end_offset )
{
uint8_t inst = m_cfi_data . GetU8 ( & offset ) ;
uint8_t primary_opcode = inst & 0xC0 ;
uint8_t extended_opcode = inst & 0x3F ;
if ( extended_opcode = = DW_CFA_def_cfa )
{
// Takes two unsigned LEB128 operands representing a register
// number and a (non-factored) offset. The required action
// is to define the current CFA rule to use the provided
// register and offset.
uint32_t reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
int op_offset = ( int32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
cie_sp - > initial_row . SetCFARegister ( reg_num ) ;
cie_sp - > initial_row . SetCFAOffset ( op_offset ) ;
continue ;
}
if ( primary_opcode = = DW_CFA_offset )
{
// 0x80 - high 2 bits are 0x2, lower 6 bits are register.
// Takes two arguments: an unsigned LEB128 constant representing a
// factored offset and a register number. The required action is to
// change the rule for the register indicated by the register number
// to be an offset(N) rule with a value of
// (N = factored offset * data_align).
uint32_t reg_num = extended_opcode ;
int op_offset = ( int32_t ) m_cfi_data . GetULEB128 ( & offset ) * cie_sp - > data_align ;
UnwindPlan : : Row : : RegisterLocation reg_location ;
reg_location . SetAtCFAPlusOffset ( op_offset ) ;
cie_sp - > initial_row . SetRegisterInfo ( reg_num , reg_location ) ;
continue ;
}
if ( extended_opcode = = DW_CFA_nop )
{
continue ;
}
break ; // Stop if we hit an unrecognized opcode
}
2010-06-09 00:52:24 +08:00
}
return cie_sp ;
}
2011-12-29 08:05:26 +08:00
void
DWARFCallFrameInfo : : GetCFIData ( )
{
if ( m_cfi_data_initialized = = false )
{
LogSP log ( GetLogIfAllCategoriesSet ( LIBLLDB_LOG_UNWIND ) ) ;
if ( log )
m_objfile . GetModule ( ) - > LogMessage ( log . get ( ) , " Reading EH frame info " ) ;
2012-02-05 10:38:54 +08:00
m_objfile . ReadSectionData ( m_section_sp . get ( ) , m_cfi_data ) ;
2011-12-29 08:05:26 +08:00
m_cfi_data_initialized = true ;
}
}
2010-09-10 15:49:16 +08:00
// Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
// of the functions and a pointer back to the function's FDE for later expansion.
// Internalize CIEs as we come across them.
void
DWARFCallFrameInfo : : GetFDEIndex ( )
2010-06-09 00:52:24 +08:00
{
2012-02-05 10:38:54 +08:00
if ( m_section_sp . get ( ) = = NULL | | m_section_sp - > IsEncrypted ( ) )
2010-09-10 15:49:16 +08:00
return ;
2012-07-12 09:11:40 +08:00
2010-09-10 15:49:16 +08:00
if ( m_fde_index_initialized )
return ;
2012-07-12 09:11:40 +08:00
Mutex : : Locker locker ( m_fde_index_mutex ) ;
if ( m_fde_index_initialized ) // if two threads hit the locker
return ;
2010-10-26 20:01:35 +08:00
2013-01-26 02:06:21 +08:00
lldb : : offset_t offset = 0 ;
2010-09-10 15:49:16 +08:00
if ( m_cfi_data_initialized = = false )
2011-12-29 08:05:26 +08:00
GetCFIData ( ) ;
2010-09-10 15:49:16 +08:00
while ( m_cfi_data . ValidOffsetForDataOfSize ( offset , 8 ) )
{
2011-06-17 09:22:15 +08:00
const dw_offset_t current_entry = offset ;
2010-09-10 15:49:16 +08:00
uint32_t len = m_cfi_data . GetU32 ( & offset ) ;
dw_offset_t next_entry = current_entry + len + 4 ;
dw_offset_t cie_id = m_cfi_data . GetU32 ( & offset ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
if ( cie_id = = 0 | | cie_id = = UINT32_MAX )
{
m_cie_map [ current_entry ] = ParseCIE ( current_entry ) ;
offset = next_entry ;
continue ;
}
2011-06-17 09:22:15 +08:00
const dw_offset_t cie_offset = current_entry + 4 - cie_id ;
const CIE * cie = GetCIE ( cie_offset ) ;
if ( cie )
{
2012-02-05 10:38:54 +08:00
const lldb : : addr_t pc_rel_addr = m_section_sp - > GetFileAddress ( ) ;
2011-06-17 09:22:15 +08:00
const lldb : : addr_t text_addr = LLDB_INVALID_ADDRESS ;
const lldb : : addr_t data_addr = LLDB_INVALID_ADDRESS ;
lldb : : addr_t addr = m_cfi_data . GetGNUEHPointer ( & offset , cie - > ptr_encoding , pc_rel_addr , text_addr , data_addr ) ;
lldb : : addr_t length = m_cfi_data . GetGNUEHPointer ( & offset , cie - > ptr_encoding & DW_EH_PE_MASK_ENCODING , pc_rel_addr , text_addr , data_addr ) ;
FDEEntry fde ;
fde . bounds = AddressRange ( addr , length , m_objfile . GetSectionList ( ) ) ;
fde . offset = current_entry ;
m_fde_index . push_back ( fde ) ;
}
else
{
2012-01-05 11:57:59 +08:00
Host : : SystemLog ( Host : : eSystemLogError ,
" error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x. \n " ,
cie_offset ,
cie_id ,
current_entry ) ;
2011-06-17 09:22:15 +08:00
}
2010-09-10 15:49:16 +08:00
offset = next_entry ;
2010-06-09 00:52:24 +08:00
}
2010-09-10 15:49:16 +08:00
std : : sort ( m_fde_index . begin ( ) , m_fde_index . end ( ) ) ;
m_fde_index_initialized = true ;
2010-06-09 00:52:24 +08:00
}
2010-09-10 15:49:16 +08:00
bool
2013-01-26 02:06:21 +08:00
DWARFCallFrameInfo : : FDEToUnwindPlan ( dw_offset_t dwarf_offset , Address startaddr , UnwindPlan & unwind_plan )
2010-06-09 00:52:24 +08:00
{
2013-01-26 02:06:21 +08:00
lldb : : offset_t offset = dwarf_offset ;
lldb : : offset_t current_entry = offset ;
2010-06-09 00:52:24 +08:00
2012-02-05 10:38:54 +08:00
if ( m_section_sp . get ( ) = = NULL | | m_section_sp - > IsEncrypted ( ) )
2010-09-10 15:49:16 +08:00
return false ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
if ( m_cfi_data_initialized = = false )
2011-12-29 08:05:26 +08:00
GetCFIData ( ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
uint32_t length = m_cfi_data . GetU32 ( & offset ) ;
dw_offset_t cie_offset = m_cfi_data . GetU32 ( & offset ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
assert ( cie_offset ! = 0 & & cie_offset ! = UINT32_MAX ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
// Translate the CIE_id from the eh_frame format, which
// is relative to the FDE offset, into a __eh_frame section
// offset
if ( m_is_eh_frame )
2010-10-25 19:12:07 +08:00
{
unwind_plan . SetSourceName ( " eh_frame CFI " ) ;
2010-09-10 15:49:16 +08:00
cie_offset = current_entry + 4 - cie_offset ;
2012-10-26 14:08:58 +08:00
unwind_plan . SetUnwindPlanValidAtAllInstructions ( eLazyBoolNo ) ;
2010-10-25 19:12:07 +08:00
}
else
{
unwind_plan . SetSourceName ( " DWARF CFI " ) ;
2012-10-26 14:08:58 +08:00
// In theory the debug_frame info should be valid at all call sites
// ("asynchronous unwind info" as it is sometimes called) but in practice
// gcc et al all emit call frame info for the prologue and call sites, but
// not for the epilogue or all the other locations during the function reliably.
unwind_plan . SetUnwindPlanValidAtAllInstructions ( eLazyBoolNo ) ;
2010-10-25 19:12:07 +08:00
}
2012-10-26 14:08:58 +08:00
unwind_plan . SetSourcedFromCompiler ( eLazyBoolYes ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
const CIE * cie = GetCIE ( cie_offset ) ;
assert ( cie ! = NULL ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
const dw_offset_t end_offset = current_entry + length + 4 ;
2010-06-09 00:52:24 +08:00
2012-02-05 10:38:54 +08:00
const lldb : : addr_t pc_rel_addr = m_section_sp - > GetFileAddress ( ) ;
2010-09-10 15:49:16 +08:00
const lldb : : addr_t text_addr = LLDB_INVALID_ADDRESS ;
const lldb : : addr_t data_addr = LLDB_INVALID_ADDRESS ;
lldb : : addr_t range_base = m_cfi_data . GetGNUEHPointer ( & offset , cie - > ptr_encoding , pc_rel_addr , text_addr , data_addr ) ;
lldb : : addr_t range_len = m_cfi_data . GetGNUEHPointer ( & offset , cie - > ptr_encoding & DW_EH_PE_MASK_ENCODING , pc_rel_addr , text_addr , data_addr ) ;
AddressRange range ( range_base , m_objfile . GetAddressByteSize ( ) , m_objfile . GetSectionList ( ) ) ;
range . SetByteSize ( range_len ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
if ( cie - > augmentation [ 0 ] = = ' z ' )
{
uint32_t aug_data_len = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
offset + = aug_data_len ;
2010-06-09 00:52:24 +08:00
}
uint32_t reg_num = 0 ;
int32_t op_offset = 0 ;
uint32_t code_align = cie - > code_align ;
int32_t data_align = cie - > data_align ;
2010-09-10 15:49:16 +08:00
unwind_plan . SetPlanValidAddressRange ( range ) ;
2012-07-14 12:52:53 +08:00
UnwindPlan : : Row * cie_initial_row = new UnwindPlan : : Row ;
* cie_initial_row = cie - > initial_row ;
UnwindPlan : : RowSP row ( cie_initial_row ) ;
2010-09-10 15:49:16 +08:00
unwind_plan . SetRegisterKind ( m_reg_kind ) ;
2012-08-18 14:53:34 +08:00
unwind_plan . SetReturnAddressRegister ( cie - > return_addr_reg_num ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
UnwindPlan : : Row : : RegisterLocation reg_location ;
2010-06-09 00:52:24 +08:00
while ( m_cfi_data . ValidOffset ( offset ) & & offset < end_offset )
{
uint8_t inst = m_cfi_data . GetU8 ( & offset ) ;
uint8_t primary_opcode = inst & 0xC0 ;
uint8_t extended_opcode = inst & 0x3F ;
if ( primary_opcode )
{
switch ( primary_opcode )
{
case DW_CFA_advance_loc : // (Row Creation Instruction)
{ // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
// takes a single argument that represents a constant delta. The
// required action is to create a new table row with a location
// value that is computed by taking the current entry's location
// value and adding (delta * code_align). All other
// values in the new row are initially identical to the current row.
2010-09-10 15:49:16 +08:00
unwind_plan . AppendRow ( row ) ;
2012-08-01 06:42:30 +08:00
UnwindPlan : : Row * newrow = new UnwindPlan : : Row ;
* newrow = * row . get ( ) ;
row . reset ( newrow ) ;
2012-07-14 12:52:53 +08:00
row - > SlideOffset ( extended_opcode * code_align ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_offset :
{ // 0x80 - high 2 bits are 0x2, lower 6 bits are register
// takes two arguments: an unsigned LEB128 constant representing a
// factored offset and a register number. The required action is to
// change the rule for the register indicated by the register number
// to be an offset(N) rule with a value of
// (N = factored offset * data_align).
reg_num = extended_opcode ;
op_offset = ( int32_t ) m_cfi_data . GetULEB128 ( & offset ) * data_align ;
reg_location . SetAtCFAPlusOffset ( op_offset ) ;
2012-07-14 12:52:53 +08:00
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_restore :
{ // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
// takes a single argument that represents a register number. The
// required action is to change the rule for the indicated register
// to the rule assigned it by the initial_instructions in the CIE.
reg_num = extended_opcode ;
// We only keep enough register locations around to
// unwind what is in our thread, and these are organized
// by the register index in that state, so we need to convert our
2010-09-10 15:49:16 +08:00
// GCC register number from the EH frame info, to a register index
2010-06-09 00:52:24 +08:00
2012-07-14 12:52:53 +08:00
if ( unwind_plan . IsValidRowIndex ( 0 ) & & unwind_plan . GetRowAtIndex ( 0 ) - > GetRegisterInfo ( reg_num , reg_location ) )
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
}
}
else
{
switch ( extended_opcode )
{
case DW_CFA_nop : // 0x0
break ;
case DW_CFA_set_loc : // 0x1 (Row Creation Instruction)
{
// DW_CFA_set_loc takes a single argument that represents an address.
// The required action is to create a new table row using the
// specified address as the location. All other values in the new row
// are initially identical to the current row. The new location value
// should always be greater than the current one.
2010-09-10 15:49:16 +08:00
unwind_plan . AppendRow ( row ) ;
2012-08-01 06:42:30 +08:00
UnwindPlan : : Row * newrow = new UnwindPlan : : Row ;
* newrow = * row . get ( ) ;
row . reset ( newrow ) ;
2012-07-14 12:52:53 +08:00
row - > SetOffset ( m_cfi_data . GetPointer ( & offset ) - startaddr . GetFileAddress ( ) ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_advance_loc1 : // 0x2 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
2010-09-10 15:49:16 +08:00
unwind_plan . AppendRow ( row ) ;
2012-08-01 06:42:30 +08:00
UnwindPlan : : Row * newrow = new UnwindPlan : : Row ;
* newrow = * row . get ( ) ;
row . reset ( newrow ) ;
2012-07-14 12:52:53 +08:00
row - > SlideOffset ( m_cfi_data . GetU8 ( & offset ) * code_align ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_advance_loc2 : // 0x3 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
2010-09-10 15:49:16 +08:00
unwind_plan . AppendRow ( row ) ;
2012-08-01 06:42:30 +08:00
UnwindPlan : : Row * newrow = new UnwindPlan : : Row ;
* newrow = * row . get ( ) ;
row . reset ( newrow ) ;
2012-07-14 12:52:53 +08:00
row - > SlideOffset ( m_cfi_data . GetU16 ( & offset ) * code_align ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_advance_loc4 : // 0x4 (Row Creation Instruction)
{
// takes a single uword argument that represents a constant delta.
// This instruction is identical to DW_CFA_advance_loc except for the
// encoding and size of the delta argument.
2010-09-10 15:49:16 +08:00
unwind_plan . AppendRow ( row ) ;
2012-08-01 06:42:30 +08:00
UnwindPlan : : Row * newrow = new UnwindPlan : : Row ;
* newrow = * row . get ( ) ;
row . reset ( newrow ) ;
2012-07-14 12:52:53 +08:00
row - > SlideOffset ( m_cfi_data . GetU32 ( & offset ) * code_align ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_offset_extended : // 0x5
{
// takes two unsigned LEB128 arguments representing a register number
// and a factored offset. This instruction is identical to DW_CFA_offset
// except for the encoding and size of the register argument.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
op_offset = ( int32_t ) m_cfi_data . GetULEB128 ( & offset ) * data_align ;
reg_location . SetAtCFAPlusOffset ( op_offset ) ;
2012-07-14 12:52:53 +08:00
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_restore_extended : // 0x6
{
// takes a single unsigned LEB128 argument that represents a register
// number. This instruction is identical to DW_CFA_restore except for
// the encoding and size of the register argument.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
2012-07-14 12:52:53 +08:00
if ( unwind_plan . IsValidRowIndex ( 0 ) & & unwind_plan . GetRowAtIndex ( 0 ) - > GetRegisterInfo ( reg_num , reg_location ) )
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_undefined : // 0x7
{
// takes a single unsigned LEB128 argument that represents a register
// number. The required action is to set the rule for the specified
// register to undefined.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
reg_location . SetUndefined ( ) ;
2012-07-14 12:52:53 +08:00
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_same_value : // 0x8
{
// takes a single unsigned LEB128 argument that represents a register
// number. The required action is to set the rule for the specified
// register to same value.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
reg_location . SetSame ( ) ;
2012-07-14 12:52:53 +08:00
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_register : // 0x9
{
// takes two unsigned LEB128 arguments representing register numbers.
// The required action is to set the rule for the first register to be
// the second register.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
uint32_t other_reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
reg_location . SetInRegister ( other_reg_num ) ;
2012-07-14 12:52:53 +08:00
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_remember_state : // 0xA
2012-08-01 06:42:30 +08:00
{
// These instructions define a stack of information. Encountering the
// DW_CFA_remember_state instruction means to save the rules for every
// register on the current row on the stack. Encountering the
// DW_CFA_restore_state instruction means to pop the set of rules off
// the stack and place them in the current row. (This operation is
// useful for compilers that move epilogue code into the body of a
// function.)
unwind_plan . AppendRow ( row ) ;
UnwindPlan : : Row * newrow = new UnwindPlan : : Row ;
* newrow = * row . get ( ) ;
row . reset ( newrow ) ;
}
2010-06-09 00:52:24 +08:00
break ;
case DW_CFA_restore_state : // 0xB
// These instructions define a stack of information. Encountering the
// DW_CFA_remember_state instruction means to save the rules for every
// register on the current row on the stack. Encountering the
// DW_CFA_restore_state instruction means to pop the set of rules off
// the stack and place them in the current row. (This operation is
// useful for compilers that move epilogue code into the body of a
// function.)
{
2010-09-10 15:49:16 +08:00
row = unwind_plan . GetRowAtIndex ( unwind_plan . GetRowCount ( ) - 1 ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_def_cfa : // 0xC (CFA Definition Instruction)
{
// Takes two unsigned LEB128 operands representing a register
// number and a (non-factored) offset. The required action
// is to define the current CFA rule to use the provided
// register and offset.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
op_offset = ( int32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
2012-07-14 12:52:53 +08:00
row - > SetCFARegister ( reg_num ) ;
row - > SetCFAOffset ( op_offset ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_def_cfa_register : // 0xD (CFA Definition Instruction)
{
// takes a single unsigned LEB128 argument representing a register
// number. The required action is to define the current CFA rule to
// use the provided register (but to keep the old offset).
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
2012-07-14 12:52:53 +08:00
row - > SetCFARegister ( reg_num ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_def_cfa_offset : // 0xE (CFA Definition Instruction)
{
// Takes a single unsigned LEB128 operand representing a
// (non-factored) offset. The required action is to define
// the current CFA rule to use the provided offset (but
// to keep the old register).
op_offset = ( int32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
2012-07-14 12:52:53 +08:00
row - > SetCFAOffset ( op_offset ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_def_cfa_expression : // 0xF (CFA Definition Instruction)
{
size_t block_len = ( size_t ) m_cfi_data . GetULEB128 ( & offset ) ;
offset + = ( uint32_t ) block_len ;
}
break ;
case DW_CFA_expression : // 0x10
{
// Takes two operands: an unsigned LEB128 value representing
// a register number, and a DW_FORM_block value representing a DWARF
// expression. The required action is to change the rule for the
// register indicated by the register number to be an expression(E)
// rule where E is the DWARF expression. That is, the DWARF
// expression computes the address. The value of the CFA is
// pushed on the DWARF evaluation stack prior to execution of
// the DWARF expression.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
uint32_t block_len = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
const uint8_t * block_data = ( uint8_t * ) m_cfi_data . GetData ( & offset , block_len ) ;
reg_location . SetAtDWARFExpression ( block_data , block_len ) ;
2012-07-14 12:52:53 +08:00
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_offset_extended_sf : // 0x11
{
// takes two operands: an unsigned LEB128 value representing a
// register number and a signed LEB128 factored offset. This
// instruction is identical to DW_CFA_offset_extended except
//that the second operand is signed and factored.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
op_offset = ( int32_t ) m_cfi_data . GetSLEB128 ( & offset ) * data_align ;
reg_location . SetAtCFAPlusOffset ( op_offset ) ;
2012-07-14 12:52:53 +08:00
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_def_cfa_sf : // 0x12 (CFA Definition Instruction)
{
// Takes two operands: an unsigned LEB128 value representing
// a register number and a signed LEB128 factored offset.
// This instruction is identical to DW_CFA_def_cfa except
// that the second operand is signed and factored.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
op_offset = ( int32_t ) m_cfi_data . GetSLEB128 ( & offset ) * data_align ;
2012-07-14 12:52:53 +08:00
row - > SetCFARegister ( reg_num ) ;
row - > SetCFAOffset ( op_offset ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_def_cfa_offset_sf : // 0x13 (CFA Definition Instruction)
{
// takes a signed LEB128 operand representing a factored
// offset. This instruction is identical to DW_CFA_def_cfa_offset
// except that the operand is signed and factored.
op_offset = ( int32_t ) m_cfi_data . GetSLEB128 ( & offset ) * data_align ;
2012-07-14 12:52:53 +08:00
row - > SetCFAOffset ( op_offset ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_val_expression : // 0x16
{
// takes two operands: an unsigned LEB128 value representing a register
// number, and a DW_FORM_block value representing a DWARF expression.
// The required action is to change the rule for the register indicated
// by the register number to be a val_expression(E) rule where E is the
// DWARF expression. That is, the DWARF expression computes the value of
// the given register. The value of the CFA is pushed on the DWARF
// evaluation stack prior to execution of the DWARF expression.
reg_num = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
uint32_t block_len = ( uint32_t ) m_cfi_data . GetULEB128 ( & offset ) ;
const uint8_t * block_data = ( uint8_t * ) m_cfi_data . GetData ( & offset , block_len ) ;
//#if defined(__i386__) || defined(__x86_64__)
// // The EH frame info for EIP and RIP contains code that looks for traps to
// // be a specific type and increments the PC.
// // For i386:
// // DW_CFA_val_expression where:
// // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
// // DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
// // DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
// // DW_OP_and, DW_OP_plus
// // This basically does a:
// // eip = ucontenxt.mcontext32->gpr.eip;
// // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
// // eip++;
// //
// // For x86_64:
// // DW_CFA_val_expression where:
// // rip = DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
// // DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
// // DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
// // This basically does a:
// // rip = ucontenxt.mcontext64->gpr.rip;
// // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
// // rip++;
// // The trap comparisons and increments are not needed as it hoses up the unwound PC which
// // is expected to point at least past the instruction that causes the fault/trap. So we
// // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
// if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
// {
// if (thread->Is64Bit())
// {
// if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
// block_len = 8;
// }
// else
// {
// if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
// block_len = 7;
// }
// }
//#endif
reg_location . SetIsDWARFExpression ( block_data , block_len ) ;
2012-07-14 12:52:53 +08:00
row - > SetRegisterInfo ( reg_num , reg_location ) ;
2010-06-09 00:52:24 +08:00
}
break ;
case DW_CFA_val_offset : // 0x14
case DW_CFA_val_offset_sf : // 0x15
default :
break ;
}
}
}
2010-09-10 15:49:16 +08:00
unwind_plan . AppendRow ( row ) ;
2010-06-09 00:52:24 +08:00
2010-09-10 15:49:16 +08:00
return true ;
2010-06-09 00:52:24 +08:00
}