llvm-project/llvm/lib/Transforms/Scalar/RewriteStatepointsForGC.cpp

2657 lines
102 KiB
C++
Raw Normal View History

Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Rewrite an existing set of gc.statepoints such that they make potential
// relocations performed by the garbage collector explicit in the IR.
//
//===----------------------------------------------------------------------===//
#include "llvm/Pass.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/TargetTransformInfo.h"
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/MDBuilder.h"
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#include "llvm/IR/Statepoint.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#define DEBUG_TYPE "rewrite-statepoints-for-gc"
using namespace llvm;
// Print tracing output
static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
cl::init(false));
// Print the liveset found at the insert location
static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
cl::init(false));
static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
cl::init(false));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Print out the base pointers for debugging
static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
cl::init(false));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Cost threshold measuring when it is profitable to rematerialize value instead
// of relocating it
static cl::opt<unsigned>
RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
cl::init(6));
#ifdef XDEBUG
static bool ClobberNonLive = true;
#else
static bool ClobberNonLive = false;
#endif
static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
cl::location(ClobberNonLive),
cl::Hidden);
namespace {
struct RewriteStatepointsForGC : public ModulePass {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
static char ID; // Pass identification, replacement for typeid
RewriteStatepointsForGC() : ModulePass(ID) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F);
bool runOnModule(Module &M) override {
bool Changed = false;
for (Function &F : M)
Changed |= runOnFunction(F);
if (Changed) {
// stripDereferenceabilityInfo asserts that shouldRewriteStatepointsIn
// returns true for at least one function in the module. Since at least
// one function changed, we know that the precondition is satisfied.
stripDereferenceabilityInfo(M);
}
return Changed;
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
void getAnalysisUsage(AnalysisUsage &AU) const override {
// We add and rewrite a bunch of instructions, but don't really do much
// else. We could in theory preserve a lot more analyses here.
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
/// The IR fed into RewriteStatepointsForGC may have had attributes implying
/// dereferenceability that are no longer valid/correct after
/// RewriteStatepointsForGC has run. This is because semantically, after
/// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
/// heap. stripDereferenceabilityInfo (conservatively) restores correctness
/// by erasing all attributes in the module that externally imply
/// dereferenceability.
///
void stripDereferenceabilityInfo(Module &M);
// Helpers for stripDereferenceabilityInfo
void stripDereferenceabilityInfoFromBody(Function &F);
void stripDereferenceabilityInfoFromPrototype(Function &F);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
};
} // namespace
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
char RewriteStatepointsForGC::ID = 0;
ModulePass *llvm::createRewriteStatepointsForGCPass() {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
return new RewriteStatepointsForGC();
}
INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
"Make relocations explicit at statepoints", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
"Make relocations explicit at statepoints", false, false)
namespace {
struct GCPtrLivenessData {
/// Values defined in this block.
DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
/// Values used in this block (and thus live); does not included values
/// killed within this block.
DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
/// Values live into this basic block (i.e. used by any
/// instruction in this basic block or ones reachable from here)
DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
/// Values live out of this basic block (i.e. live into
/// any successor block)
DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
};
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// The type of the internal cache used inside the findBasePointers family
// of functions. From the callers perspective, this is an opaque type and
// should not be inspected.
//
// In the actual implementation this caches two relations:
// - The base relation itself (i.e. this pointer is based on that one)
// - The base defining value relation (i.e. before base_phi insertion)
// Generally, after the execution of a full findBasePointer call, only the
// base relation will remain. Internally, we add a mixture of the two
// types, then update all the second type to the first type
typedef DenseMap<Value *, Value *> DefiningValueMapTy;
typedef DenseSet<llvm::Value *> StatepointLiveSetTy;
typedef DenseMap<Instruction *, Value *> RematerializedValueMapTy;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
struct PartiallyConstructedSafepointRecord {
/// The set of values known to be live accross this safepoint
StatepointLiveSetTy liveset;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// Mapping from live pointers to a base-defining-value
DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// The *new* gc.statepoint instruction itself. This produces the token
/// that normal path gc.relocates and the gc.result are tied to.
Instruction *StatepointToken;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// Instruction to which exceptional gc relocates are attached
/// Makes it easier to iterate through them during relocationViaAlloca.
Instruction *UnwindToken;
/// Record live values we are rematerialized instead of relocating.
/// They are not included into 'liveset' field.
/// Maps rematerialized copy to it's original value.
RematerializedValueMapTy RematerializedValues;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
};
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// Compute the live-in set for every basic block in the function
static void computeLiveInValues(DominatorTree &DT, Function &F,
GCPtrLivenessData &Data);
/// Given results from the dataflow liveness computation, find the set of live
/// Values at a particular instruction.
static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
StatepointLiveSetTy &out);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// TODO: Once we can get to the GCStrategy, this becomes
// Optional<bool> isGCManagedPointer(const Value *V) const override {
static bool isGCPointerType(const Type *T) {
if (const PointerType *PT = dyn_cast<PointerType>(T))
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
// GC managed heap. We know that a pointer into this heap needs to be
// updated and that no other pointer does.
return (1 == PT->getAddressSpace());
return false;
}
// Return true if this type is one which a) is a gc pointer or contains a GC
// pointer and b) is of a type this code expects to encounter as a live value.
// (The insertion code will assert that a type which matches (a) and not (b)
// is not encountered.)
static bool isHandledGCPointerType(Type *T) {
// We fully support gc pointers
if (isGCPointerType(T))
return true;
// We partially support vectors of gc pointers. The code will assert if it
// can't handle something.
if (auto VT = dyn_cast<VectorType>(T))
if (isGCPointerType(VT->getElementType()))
return true;
return false;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
#ifndef NDEBUG
/// Returns true if this type contains a gc pointer whether we know how to
/// handle that type or not.
static bool containsGCPtrType(Type *Ty) {
if (isGCPointerType(Ty))
return true;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (VectorType *VT = dyn_cast<VectorType>(Ty))
return isGCPointerType(VT->getScalarType());
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
return containsGCPtrType(AT->getElementType());
if (StructType *ST = dyn_cast<StructType>(Ty))
return std::any_of(
ST->subtypes().begin(), ST->subtypes().end(),
[](Type *SubType) { return containsGCPtrType(SubType); });
return false;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// Returns true if this is a type which a) is a gc pointer or contains a GC
// pointer and b) is of a type which the code doesn't expect (i.e. first class
// aggregates). Used to trip assertions.
static bool isUnhandledGCPointerType(Type *Ty) {
return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
}
#endif
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
static bool order_by_name(llvm::Value *a, llvm::Value *b) {
if (a->hasName() && b->hasName()) {
return -1 == a->getName().compare(b->getName());
} else if (a->hasName() && !b->hasName()) {
return true;
} else if (!a->hasName() && b->hasName()) {
return false;
} else {
// Better than nothing, but not stable
return a < b;
}
}
// Conservatively identifies any definitions which might be live at the
// given instruction. The analysis is performed immediately before the
// given instruction. Values defined by that instruction are not considered
// live. Values used by that instruction are considered live.
static void analyzeParsePointLiveness(
DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
Instruction *inst = CS.getInstruction();
StatepointLiveSetTy liveset;
findLiveSetAtInst(inst, OriginalLivenessData, liveset);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (PrintLiveSet) {
// Note: This output is used by several of the test cases
// The order of elemtns in a set is not stable, put them in a vec and sort
// by name
SmallVector<Value *, 64> temp;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
temp.insert(temp.end(), liveset.begin(), liveset.end());
std::sort(temp.begin(), temp.end(), order_by_name);
errs() << "Live Variables:\n";
for (Value *V : temp) {
errs() << " " << V->getName(); // no newline
V->dump();
}
}
if (PrintLiveSetSize) {
errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
errs() << "Number live values: " << liveset.size() << "\n";
}
result.liveset = liveset;
}
static Value *findBaseDefiningValue(Value *I);
/// Return a base defining value for the 'Index' element of the given vector
/// instruction 'I'. If Index is null, returns a BDV for the entire vector
/// 'I'. As an optimization, this method will try to determine when the
/// element is known to already be a base pointer. If this can be established,
/// the second value in the returned pair will be true. Note that either a
/// vector or a pointer typed value can be returned. For the former, the
/// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
/// If the later, the return pointer is a BDV (or possibly a base) for the
/// particular element in 'I'.
static std::pair<Value *, bool>
findBaseDefiningValueOfVector(Value *I, Value *Index = nullptr) {
assert(I->getType()->isVectorTy() &&
cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
"Illegal to ask for the base pointer of a non-pointer type");
// Each case parallels findBaseDefiningValue below, see that code for
// detailed motivation.
if (isa<Argument>(I))
// An incoming argument to the function is a base pointer
return std::make_pair(I, true);
// We shouldn't see the address of a global as a vector value?
assert(!isa<GlobalVariable>(I) &&
"unexpected global variable found in base of vector");
// inlining could possibly introduce phi node that contains
// undef if callee has multiple returns
if (isa<UndefValue>(I))
// utterly meaningless, but useful for dealing with partially optimized
// code.
return std::make_pair(I, true);
// Due to inheritance, this must be _after_ the global variable and undef
// checks
if (Constant *Con = dyn_cast<Constant>(I)) {
assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
"order of checks wrong!");
assert(Con->isNullValue() && "null is the only case which makes sense");
return std::make_pair(Con, true);
}
if (isa<LoadInst>(I))
return std::make_pair(I, true);
// For an insert element, we might be able to look through it if we know
// something about the indexes.
if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(I)) {
if (Index) {
Value *InsertIndex = IEI->getOperand(2);
// This index is inserting the value, look for its BDV
if (InsertIndex == Index)
return std::make_pair(findBaseDefiningValue(IEI->getOperand(1)), false);
// Both constant, and can't be equal per above. This insert is definitely
// not relevant, look back at the rest of the vector and keep trying.
if (isa<ConstantInt>(Index) && isa<ConstantInt>(InsertIndex))
return findBaseDefiningValueOfVector(IEI->getOperand(0), Index);
}
// We don't know whether this vector contains entirely base pointers or
// not. To be conservatively correct, we treat it as a BDV and will
// duplicate code as needed to construct a parallel vector of bases.
return std::make_pair(IEI, false);
}
if (isa<ShuffleVectorInst>(I))
// We don't know whether this vector contains entirely base pointers or
// not. To be conservatively correct, we treat it as a BDV and will
// duplicate code as needed to construct a parallel vector of bases.
// TODO: There a number of local optimizations which could be applied here
// for particular sufflevector patterns.
return std::make_pair(I, false);
// A PHI or Select is a base defining value. The outer findBasePointer
// algorithm is responsible for constructing a base value for this BDV.
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
"unknown vector instruction - no base found for vector element");
return std::make_pair(I, false);
}
static bool isKnownBaseResult(Value *V);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// Helper function for findBasePointer - Will return a value which either a)
/// defines the base pointer for the input or b) blocks the simple search
/// (i.e. a PHI or Select of two derived pointers)
static Value *findBaseDefiningValue(Value *I) {
if (I->getType()->isVectorTy())
return findBaseDefiningValueOfVector(I).first;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
assert(I->getType()->isPointerTy() &&
"Illegal to ask for the base pointer of a non-pointer type");
// This case is a bit of a hack - it only handles extracts from vectors which
// trivially contain only base pointers or cases where we can directly match
// the index of the original extract element to an insertion into the vector.
// See note inside the function for how to improve this.
if (auto *EEI = dyn_cast<ExtractElementInst>(I)) {
Value *VectorOperand = EEI->getVectorOperand();
Value *Index = EEI->getIndexOperand();
std::pair<Value *, bool> pair =
findBaseDefiningValueOfVector(VectorOperand, Index);
Value *VectorBase = pair.first;
if (VectorBase->getType()->isPointerTy())
// We found a BDV for this specific element with the vector. This is an
// optimization, but in practice it covers most of the useful cases
// created via scalarization.
return VectorBase;
else {
assert(VectorBase->getType()->isVectorTy());
if (pair.second)
// If the entire vector returned is known to be entirely base pointers,
// then the extractelement is valid base for this value.
return EEI;
else {
// Otherwise, we have an instruction which potentially produces a
// derived pointer and we need findBasePointers to clone code for us
// such that we can create an instruction which produces the
// accompanying base pointer.
// Note: This code is currently rather incomplete. We don't currently
// support the general form of shufflevector of insertelement.
// Conceptually, these are just 'base defining values' of the same
// variety as phi or select instructions. We need to update the
// findBasePointers algorithm to insert new 'base-only' versions of the
// original instructions. This is relative straight forward to do, but
// the case which would motivate the work hasn't shown up in real
// workloads yet.
assert((isa<PHINode>(VectorBase) || isa<SelectInst>(VectorBase)) &&
"need to extend findBasePointers for generic vector"
"instruction cases");
return VectorBase;
}
}
}
if (isa<Argument>(I))
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// An incoming argument to the function is a base pointer
// We should have never reached here if this argument isn't an gc value
return I;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (isa<GlobalVariable>(I))
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// base case
return I;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// inlining could possibly introduce phi node that contains
// undef if callee has multiple returns
if (isa<UndefValue>(I))
// utterly meaningless, but useful for dealing with
// partially optimized code.
return I;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Due to inheritance, this must be _after_ the global variable and undef
// checks
if (Constant *Con = dyn_cast<Constant>(I)) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
"order of checks wrong!");
// Note: Finding a constant base for something marked for relocation
// doesn't really make sense. The most likely case is either a) some
// screwed up the address space usage or b) your validating against
// compiled C++ code w/o the proper separation. The only real exception
// is a null pointer. You could have generic code written to index of
// off a potentially null value and have proven it null. We also use
// null pointers in dead paths of relocation phis (which we might later
// want to find a base pointer for).
assert(isa<ConstantPointerNull>(Con) &&
"null is the only case which makes sense");
return Con;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
if (CastInst *CI = dyn_cast<CastInst>(I)) {
Value *Def = CI->stripPointerCasts();
// If we find a cast instruction here, it means we've found a cast which is
// not simply a pointer cast (i.e. an inttoptr). We don't know how to
// handle int->ptr conversion.
assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
return findBaseDefiningValue(Def);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
if (isa<LoadInst>(I))
return I; // The value loaded is an gc base itself
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
// The base of this GEP is the base
return findBaseDefiningValue(GEP->getPointerOperand());
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::experimental_gc_result_ptr:
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
default:
// fall through to general call handling
break;
case Intrinsic::experimental_gc_statepoint:
case Intrinsic::experimental_gc_result_float:
case Intrinsic::experimental_gc_result_int:
llvm_unreachable("these don't produce pointers");
case Intrinsic::experimental_gc_relocate: {
// Rerunning safepoint insertion after safepoints are already
// inserted is not supported. It could probably be made to work,
// but why are you doing this? There's no good reason.
llvm_unreachable("repeat safepoint insertion is not supported");
}
case Intrinsic::gcroot:
// Currently, this mechanism hasn't been extended to work with gcroot.
// There's no reason it couldn't be, but I haven't thought about the
// implications much.
llvm_unreachable(
"interaction with the gcroot mechanism is not supported");
}
}
// We assume that functions in the source language only return base
// pointers. This should probably be generalized via attributes to support
// both source language and internal functions.
if (isa<CallInst>(I) || isa<InvokeInst>(I))
return I;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// I have absolutely no idea how to implement this part yet. It's not
// neccessarily hard, I just haven't really looked at it yet.
assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
if (isa<AtomicCmpXchgInst>(I))
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// A CAS is effectively a atomic store and load combined under a
// predicate. From the perspective of base pointers, we just treat it
// like a load.
return I;
assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
"binary ops which don't apply to pointers");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// The aggregate ops. Aggregates can either be in the heap or on the
// stack, but in either case, this is simply a field load. As a result,
// this is a defining definition of the base just like a load is.
if (isa<ExtractValueInst>(I))
return I;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// We should never see an insert vector since that would require we be
// tracing back a struct value not a pointer value.
assert(!isa<InsertValueInst>(I) &&
"Base pointer for a struct is meaningless");
// The last two cases here don't return a base pointer. Instead, they
// return a value which dynamically selects from amoung several base
// derived pointers (each with it's own base potentially). It's the job of
// the caller to resolve these.
assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
"missing instruction case in findBaseDefiningValing");
return I;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
/// Returns the base defining value for this value.
static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
Value *&Cached = Cache[I];
if (!Cached) {
Cached = findBaseDefiningValue(I);
DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
<< Cached->getName() << "\n");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
assert(Cache[I] != nullptr);
return Cached;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
/// Return a base pointer for this value if known. Otherwise, return it's
/// base defining value.
static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
Value *Def = findBaseDefiningValueCached(I, Cache);
auto Found = Cache.find(Def);
if (Found != Cache.end()) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Either a base-of relation, or a self reference. Caller must check.
return Found->second;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// Only a BDV available
return Def;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
/// is it known to be a base pointer? Or do we need to continue searching.
static bool isKnownBaseResult(Value *V) {
if (!isa<PHINode>(V) && !isa<SelectInst>(V)) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// no recursion possible
return true;
}
if (isa<Instruction>(V) &&
cast<Instruction>(V)->getMetadata("is_base_value")) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// This is a previously inserted base phi or select. We know
// that this is a base value.
return true;
}
// We need to keep searching
return false;
}
namespace {
/// Models the state of a single base defining value in the findBasePointer
/// algorithm for determining where a new instruction is needed to propagate
/// the base of this BDV.
class BDVState {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
public:
enum Status { Unknown, Base, Conflict };
BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
assert(status != Base || b);
}
explicit BDVState(Value *b) : status(Base), base(b) {}
BDVState() : status(Unknown), base(nullptr) {}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
Status getStatus() const { return status; }
Value *getBase() const { return base; }
bool isBase() const { return getStatus() == Base; }
bool isUnknown() const { return getStatus() == Unknown; }
bool isConflict() const { return getStatus() == Conflict; }
bool operator==(const BDVState &other) const {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
return base == other.base && status == other.status;
}
bool operator!=(const BDVState &other) const { return !(*this == other); }
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
LLVM_DUMP_METHOD
void dump() const { print(dbgs()); dbgs() << '\n'; }
void print(raw_ostream &OS) const {
OS << status << " (" << base << " - "
<< (base ? base->getName() : "nullptr") << "): ";
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
private:
Status status;
Value *base; // non null only if status == base
};
inline raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
State.print(OS);
return OS;
}
typedef DenseMap<Value *, BDVState> ConflictStateMapTy;
// Values of type BDVState form a lattice, and this is a helper
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// class that implementes the meet operation. The meat of the meet
// operation is implemented in MeetBDVStates::pureMeet
class MeetBDVStates {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
public:
/// Initializes the currentResult to the TOP state so that if can be met with
/// any other state to produce that state.
MeetBDVStates() {}
// Destructively meet the current result with the given BDVState
void meetWith(BDVState otherState) {
currentResult = meet(otherState, currentResult);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
BDVState getResult() const { return currentResult; }
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
private:
BDVState currentResult;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// Perform a meet operation on two elements of the BDVState lattice.
static BDVState meet(BDVState LHS, BDVState RHS) {
assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
"math is wrong: meet does not commute!");
BDVState Result = pureMeet(LHS, RHS);
DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
<< " produced " << Result << "\n");
return Result;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
switch (stateA.getStatus()) {
case BDVState::Unknown:
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
return stateB;
case BDVState::Base:
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
assert(stateA.getBase() && "can't be null");
if (stateB.isUnknown())
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
return stateA;
if (stateB.isBase()) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (stateA.getBase() == stateB.getBase()) {
assert(stateA == stateB && "equality broken!");
return stateA;
}
return BDVState(BDVState::Conflict);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
assert(stateB.isConflict() && "only three states!");
return BDVState(BDVState::Conflict);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
case BDVState::Conflict:
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
return stateA;
}
llvm_unreachable("only three states!");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
};
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// For a given value or instruction, figure out what base ptr it's derived
/// from. For gc objects, this is simply itself. On success, returns a value
/// which is the base pointer. (This is reliable and can be used for
/// relocation.) On failure, returns nullptr.
static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
Value *def = findBaseOrBDV(I, cache);
if (isKnownBaseResult(def)) {
return def;
}
// Here's the rough algorithm:
// - For every SSA value, construct a mapping to either an actual base
// pointer or a PHI which obscures the base pointer.
// - Construct a mapping from PHI to unknown TOP state. Use an
// optimistic algorithm to propagate base pointer information. Lattice
// looks like:
// UNKNOWN
// b1 b2 b3 b4
// CONFLICT
// When algorithm terminates, all PHIs will either have a single concrete
// base or be in a conflict state.
// - For every conflict, insert a dummy PHI node without arguments. Add
// these to the base[Instruction] = BasePtr mapping. For every
// non-conflict, add the actual base.
// - For every conflict, add arguments for the base[a] of each input
// arguments.
//
// Note: A simpler form of this would be to add the conflict form of all
// PHIs without running the optimistic algorithm. This would be
// analougous to pessimistic data flow and would likely lead to an
// overall worse solution.
auto isExpectedBDVType = [](Value *BDV) {
return isa<PHINode>(BDV) || isa<SelectInst>(BDV);
};
// Once populated, will contain a mapping from each potentially non-base BDV
// to a lattice value (described above) which corresponds to that BDV.
ConflictStateMapTy states;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Recursively fill in all phis & selects reachable from the initial one
// for which we don't already know a definite base value for
/* scope */ {
DenseSet<Value *> Visited;
SmallVector<Value*, 16> Worklist;
Worklist.push_back(def);
Visited.insert(def);
while (!Worklist.empty()) {
Value *Current = Worklist.pop_back_val();
assert(!isKnownBaseResult(Current) && "why did it get added?");
auto visitIncomingValue = [&](Value *InVal) {
Value *Base = findBaseOrBDV(InVal, cache);
if (isKnownBaseResult(Base))
// Known bases won't need new instructions introduced and can be
// ignored safely
return;
assert(isExpectedBDVType(Base) && "the only non-base values "
"we see should be base defining values");
if (Visited.insert(Base).second)
Worklist.push_back(Base);
};
if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
for (Value *InVal : Phi->incoming_values())
visitIncomingValue(InVal);
} else {
SelectInst *Sel = cast<SelectInst>(Current);
visitIncomingValue(Sel->getTrueValue());
visitIncomingValue(Sel->getFalseValue());
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
// The frontier of visited instructions are the ones we might need to
// duplicate, so fill in the starting state for the optimistic algorithm
// that follows.
for (Value *BDV : Visited) {
states[BDV] = BDVState();
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
if (TraceLSP) {
errs() << "States after initialization:\n";
for (auto Pair : states)
dbgs() << " " << Pair.second << " for " << Pair.first << "\n";
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// TODO: come back and revisit the state transitions around inputs which
// have reached conflict state. The current version seems too conservative.
// Return a phi state for a base defining value. We'll generate a new
// base state for known bases and expect to find a cached state otherwise.
auto getStateForBDV = [&](Value *baseValue) {
if (isKnownBaseResult(baseValue))
return BDVState(baseValue);
auto I = states.find(baseValue);
assert(I != states.end() && "lookup failed!");
return I->second;
};
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
bool progress = true;
while (progress) {
#ifndef NDEBUG
size_t oldSize = states.size();
#endif
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
progress = false;
// We're only changing keys in this loop, thus safe to keep iterators
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
for (auto Pair : states) {
Value *v = Pair.first;
assert(!isKnownBaseResult(v) && "why did it get added?");
// Given an input value for the current instruction, return a BDVState
// instance which represents the BDV of that value.
auto getStateForInput = [&](Value *V) mutable {
Value *BDV = findBaseOrBDV(V, cache);
return getStateForBDV(BDV);
};
MeetBDVStates calculateMeet;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (SelectInst *select = dyn_cast<SelectInst>(v)) {
calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
} else
for (Value *Val : cast<PHINode>(v)->incoming_values())
calculateMeet.meetWith(getStateForInput(Val));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
BDVState oldState = states[v];
BDVState newState = calculateMeet.getResult();
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (oldState != newState) {
progress = true;
states[v] = newState;
}
}
assert(oldSize <= states.size());
assert(oldSize == states.size() || progress);
}
if (TraceLSP) {
errs() << "States after meet iteration:\n";
for (auto Pair : states)
dbgs() << " " << Pair.second << " for " << Pair.first << "\n";
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// Insert Phis for all conflicts
// We want to keep naming deterministic in the loop that follows, so
// sort the keys before iteration. This is useful in allowing us to
// write stable tests. Note that there is no invalidation issue here.
SmallVector<Value *, 16> Keys;
Keys.reserve(states.size());
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
for (auto Pair : states) {
Value *V = Pair.first;
Keys.push_back(V);
}
std::sort(Keys.begin(), Keys.end(), order_by_name);
// TODO: adjust naming patterns to avoid this order of iteration dependency
for (Value *V : Keys) {
Instruction *I = cast<Instruction>(V);
BDVState State = states[I];
assert(!isKnownBaseResult(I) && "why did it get added?");
assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
if (!State.isConflict())
continue;
/// Create and insert a new instruction which will represent the base of
/// the given instruction 'I'.
auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
if (isa<PHINode>(I)) {
BasicBlock *BB = I->getParent();
int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
assert(NumPreds > 0 && "how did we reach here");
return PHINode::Create(I->getType(), NumPreds, "base_phi", I);
}
SelectInst *Sel = cast<SelectInst>(I);
// The undef will be replaced later
UndefValue *Undef = UndefValue::get(Sel->getType());
return SelectInst::Create(Sel->getCondition(), Undef,
Undef, "base_select", Sel);
};
Instruction *BaseInst = MakeBaseInstPlaceholder(I);
// Add metadata marking this as a base value
BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
states[I] = BDVState(BDVState::Conflict, BaseInst);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// Fixup all the inputs of the new PHIs
for (auto Pair : states) {
Instruction *v = cast<Instruction>(Pair.first);
BDVState state = Pair.second;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
assert(!isKnownBaseResult(v) && "why did it get added?");
assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
if (!state.isConflict())
continue;
if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
PHINode *phi = cast<PHINode>(v);
unsigned NumPHIValues = phi->getNumIncomingValues();
for (unsigned i = 0; i < NumPHIValues; i++) {
Value *InVal = phi->getIncomingValue(i);
BasicBlock *InBB = phi->getIncomingBlock(i);
// If we've already seen InBB, add the same incoming value
// we added for it earlier. The IR verifier requires phi
// nodes with multiple entries from the same basic block
// to have the same incoming value for each of those
// entries. If we don't do this check here and basephi
// has a different type than base, we'll end up adding two
// bitcasts (and hence two distinct values) as incoming
// values for the same basic block.
int blockIndex = basephi->getBasicBlockIndex(InBB);
if (blockIndex != -1) {
Value *oldBase = basephi->getIncomingValue(blockIndex);
basephi->addIncoming(oldBase, InBB);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#ifndef NDEBUG
Value *base = findBaseOrBDV(InVal, cache);
if (!isKnownBaseResult(base)) {
// Either conflict or base.
assert(states.count(base));
base = states[base].getBase();
assert(base != nullptr && "unknown BDVState!");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// In essense this assert states: the only way two
// values incoming from the same basic block may be
// different is by being different bitcasts of the same
// value. A cleanup that remains TODO is changing
// findBaseOrBDV to return an llvm::Value of the correct
// type (and still remain pure). This will remove the
// need to add bitcasts.
assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
"sanity -- findBaseOrBDV should be pure!");
#endif
continue;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// Find either the defining value for the PHI or the normal base for
// a non-phi node
Value *base = findBaseOrBDV(InVal, cache);
if (!isKnownBaseResult(base)) {
// Either conflict or base.
assert(states.count(base));
base = states[base].getBase();
assert(base != nullptr && "unknown BDVState!");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
assert(base && "can't be null");
// Must use original input BB since base may not be Instruction
// The cast is needed since base traversal may strip away bitcasts
if (base->getType() != basephi->getType()) {
base = new BitCastInst(base, basephi->getType(), "cast",
InBB->getTerminator());
}
basephi->addIncoming(base, InBB);
}
assert(basephi->getNumIncomingValues() == NumPHIValues);
} else {
SelectInst *basesel = cast<SelectInst>(state.getBase());
SelectInst *sel = cast<SelectInst>(v);
// Operand 1 & 2 are true, false path respectively. TODO: refactor to
// something more safe and less hacky.
for (int i = 1; i <= 2; i++) {
Value *InVal = sel->getOperand(i);
// Find either the defining value for the PHI or the normal base for
// a non-phi node
Value *base = findBaseOrBDV(InVal, cache);
if (!isKnownBaseResult(base)) {
// Either conflict or base.
assert(states.count(base));
base = states[base].getBase();
assert(base != nullptr && "unknown BDVState!");
}
assert(base && "can't be null");
// Must use original input BB since base may not be Instruction
// The cast is needed since base traversal may strip away bitcasts
if (base->getType() != basesel->getType()) {
base = new BitCastInst(base, basesel->getType(), "cast", basesel);
}
basesel->setOperand(i, base);
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
// Cache all of our results so we can cheaply reuse them
// NOTE: This is actually two caches: one of the base defining value
// relation and one of the base pointer relation! FIXME
for (auto item : states) {
Value *v = item.first;
Value *base = item.second.getBase();
assert(v && base);
assert(!isKnownBaseResult(v) && "why did it get added?");
if (TraceLSP) {
std::string fromstr =
cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
: "none";
errs() << "Updating base value cache"
<< " for: " << (v->hasName() ? v->getName() : "")
<< " from: " << fromstr
<< " to: " << (base->hasName() ? base->getName() : "") << "\n";
}
assert(isKnownBaseResult(base) &&
"must be something we 'know' is a base pointer");
if (cache.count(v)) {
// Once we transition from the BDV relation being store in the cache to
// the base relation being stored, it must be stable
assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
"base relation should be stable");
}
cache[v] = base;
}
assert(cache.find(def) != cache.end());
return cache[def];
}
// For a set of live pointers (base and/or derived), identify the base
// pointer of the object which they are derived from. This routine will
// mutate the IR graph as needed to make the 'base' pointer live at the
// definition site of 'derived'. This ensures that any use of 'derived' can
// also use 'base'. This may involve the insertion of a number of
// additional PHI nodes.
//
// preconditions: live is a set of pointer type Values
//
// side effects: may insert PHI nodes into the existing CFG, will preserve
// CFG, will not remove or mutate any existing nodes
//
// post condition: PointerToBase contains one (derived, base) pair for every
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// pointer in live. Note that derived can be equal to base if the original
// pointer was a base pointer.
static void
findBasePointers(const StatepointLiveSetTy &live,
DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
DominatorTree *DT, DefiningValueMapTy &DVCache) {
// For the naming of values inserted to be deterministic - which makes for
// much cleaner and more stable tests - we need to assign an order to the
// live values. DenseSets do not provide a deterministic order across runs.
SmallVector<Value *, 64> Temp;
Temp.insert(Temp.end(), live.begin(), live.end());
std::sort(Temp.begin(), Temp.end(), order_by_name);
for (Value *ptr : Temp) {
Value *base = findBasePointer(ptr, DVCache);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
assert(base && "failed to find base pointer");
PointerToBase[ptr] = base;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
DT->dominates(cast<Instruction>(base)->getParent(),
cast<Instruction>(ptr)->getParent())) &&
"The base we found better dominate the derived pointer");
// If you see this trip and like to live really dangerously, the code should
// be correct, just with idioms the verifier can't handle. You can try
// disabling the verifier at your own substaintial risk.
assert(!isa<ConstantPointerNull>(base) &&
"the relocation code needs adjustment to handle the relocation of "
"a null pointer constant without causing false positives in the "
"safepoint ir verifier.");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
/// Find the required based pointers (and adjust the live set) for the given
/// parse point.
static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
const CallSite &CS,
PartiallyConstructedSafepointRecord &result) {
DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
findBasePointers(result.liveset, PointerToBase, &DT, DVCache);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (PrintBasePointers) {
// Note: Need to print these in a stable order since this is checked in
// some tests.
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
errs() << "Base Pairs (w/o Relocation):\n";
SmallVector<Value *, 64> Temp;
Temp.reserve(PointerToBase.size());
for (auto Pair : PointerToBase) {
Temp.push_back(Pair.first);
}
std::sort(Temp.begin(), Temp.end(), order_by_name);
for (Value *Ptr : Temp) {
Value *Base = PointerToBase[Ptr];
errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
<< "\n";
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
result.PointerToBase = PointerToBase;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
/// Given an updated version of the dataflow liveness results, update the
/// liveset and base pointer maps for the call site CS.
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
const CallSite &CS,
PartiallyConstructedSafepointRecord &result);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
static void recomputeLiveInValues(
Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
// TODO-PERF: reuse the original liveness, then simply run the dataflow
// again. The old values are still live and will help it stablize quickly.
GCPtrLivenessData RevisedLivenessData;
computeLiveInValues(DT, F, RevisedLivenessData);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
const CallSite &CS = toUpdate[i];
recomputeLiveInValues(RevisedLivenessData, CS, info);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
// When inserting gc.relocate calls, we need to ensure there are no uses
// of the original value between the gc.statepoint and the gc.relocate call.
// One case which can arise is a phi node starting one of the successor blocks.
// We also need to be able to insert the gc.relocates only on the path which
// goes through the statepoint. We might need to split an edge to make this
// possible.
static BasicBlock *
normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
DominatorTree &DT) {
BasicBlock *Ret = BB;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (!BB->getUniquePredecessor()) {
Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// Now that 'ret' has unique predecessor we can safely remove all phi nodes
// from it
FoldSingleEntryPHINodes(Ret);
assert(!isa<PHINode>(Ret->begin()));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// At this point, we can safely insert a gc.relocate as the first instruction
// in Ret if needed.
return Ret;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
static int find_index(ArrayRef<Value *> livevec, Value *val) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
auto itr = std::find(livevec.begin(), livevec.end(), val);
assert(livevec.end() != itr);
size_t index = std::distance(livevec.begin(), itr);
assert(index < livevec.size());
return index;
}
// Create new attribute set containing only attributes which can be transfered
// from original call to the safepoint.
static AttributeSet legalizeCallAttributes(AttributeSet AS) {
AttributeSet ret;
for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
unsigned index = AS.getSlotIndex(Slot);
if (index == AttributeSet::ReturnIndex ||
index == AttributeSet::FunctionIndex) {
for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
++it) {
Attribute attr = *it;
// Do not allow certain attributes - just skip them
// Safepoint can not be read only or read none.
if (attr.hasAttribute(Attribute::ReadNone) ||
attr.hasAttribute(Attribute::ReadOnly))
continue;
ret = ret.addAttributes(
AS.getContext(), index,
AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
}
}
// Just skip parameter attributes for now
}
return ret;
}
/// Helper function to place all gc relocates necessary for the given
/// statepoint.
/// Inputs:
/// liveVariables - list of variables to be relocated.
/// liveStart - index of the first live variable.
/// basePtrs - base pointers.
/// statepointToken - statepoint instruction to which relocates should be
/// bound.
/// Builder - Llvm IR builder to be used to construct new calls.
static void CreateGCRelocates(ArrayRef<llvm::Value *> LiveVariables,
const int LiveStart,
ArrayRef<llvm::Value *> BasePtrs,
Instruction *StatepointToken,
IRBuilder<> Builder) {
if (LiveVariables.empty())
return;
// All gc_relocate are set to i8 addrspace(1)* type. We originally generated
// unique declarations for each pointer type, but this proved problematic
// because the intrinsic mangling code is incomplete and fragile. Since
// we're moving towards a single unified pointer type anyways, we can just
// cast everything to an i8* of the right address space. A bitcast is added
// later to convert gc_relocate to the actual value's type.
Module *M = StatepointToken->getModule();
auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace();
Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)};
Value *GCRelocateDecl =
Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
for (unsigned i = 0; i < LiveVariables.size(); i++) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Generate the gc.relocate call and save the result
Value *BaseIdx =
Builder.getInt32(LiveStart + find_index(LiveVariables, BasePtrs[i]));
Value *LiveIdx =
Builder.getInt32(LiveStart + find_index(LiveVariables, LiveVariables[i]));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// only specify a debug name if we can give a useful one
CallInst *Reloc = Builder.CreateCall(
GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
LiveVariables[i]->hasName() ? LiveVariables[i]->getName() + ".relocated"
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
: "");
// Trick CodeGen into thinking there are lots of free registers at this
// fake call.
Reloc->setCallingConv(CallingConv::Cold);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
static void
makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
const SmallVectorImpl<llvm::Value *> &basePtrs,
const SmallVectorImpl<llvm::Value *> &liveVariables,
Pass *P,
PartiallyConstructedSafepointRecord &result) {
assert(basePtrs.size() == liveVariables.size());
assert(isStatepoint(CS) &&
"This method expects to be rewriting a statepoint");
BasicBlock *BB = CS.getInstruction()->getParent();
assert(BB);
Function *F = BB->getParent();
assert(F && "must be set");
Module *M = F->getParent();
(void)M;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
assert(M && "must be set");
// We're not changing the function signature of the statepoint since the gc
// arguments go into the var args section.
Function *gc_statepoint_decl = CS.getCalledFunction();
// Then go ahead and use the builder do actually do the inserts. We insert
// immediately before the previous instruction under the assumption that all
// arguments will be available here. We can't insert afterwards since we may
// be replacing a terminator.
Instruction *insertBefore = CS.getInstruction();
IRBuilder<> Builder(insertBefore);
// Copy all of the arguments from the original statepoint - this includes the
// target, call args, and deopt args
SmallVector<llvm::Value *, 64> args;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
args.insert(args.end(), CS.arg_begin(), CS.arg_end());
// TODO: Clear the 'needs rewrite' flag
// add all the pointers to be relocated (gc arguments)
// Capture the start of the live variable list for use in the gc_relocates
const int live_start = args.size();
args.insert(args.end(), liveVariables.begin(), liveVariables.end());
// Create the statepoint given all the arguments
Instruction *token = nullptr;
AttributeSet return_attributes;
if (CS.isCall()) {
CallInst *toReplace = cast<CallInst>(CS.getInstruction());
CallInst *call =
Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
call->setTailCall(toReplace->isTailCall());
call->setCallingConv(toReplace->getCallingConv());
// Currently we will fail on parameter attributes and on certain
// function attributes.
AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
// In case if we can handle this set of sttributes - set up function attrs
// directly on statepoint and return attrs later for gc_result intrinsic.
call->setAttributes(new_attrs.getFnAttributes());
return_attributes = new_attrs.getRetAttributes();
token = call;
// Put the following gc_result and gc_relocate calls immediately after the
// the old call (which we're about to delete)
BasicBlock::iterator next(toReplace);
assert(BB->end() != next && "not a terminator, must have next");
next++;
Instruction *IP = &*(next);
Builder.SetInsertPoint(IP);
Builder.SetCurrentDebugLocation(IP->getDebugLoc());
} else {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
// Insert the new invoke into the old block. We'll remove the old one in a
// moment at which point this will become the new terminator for the
// original block.
InvokeInst *invoke = InvokeInst::Create(
gc_statepoint_decl, toReplace->getNormalDest(),
toReplace->getUnwindDest(), args, "", toReplace->getParent());
invoke->setCallingConv(toReplace->getCallingConv());
// Currently we will fail on parameter attributes and on certain
// function attributes.
AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
// In case if we can handle this set of sttributes - set up function attrs
// directly on statepoint and return attrs later for gc_result intrinsic.
invoke->setAttributes(new_attrs.getFnAttributes());
return_attributes = new_attrs.getRetAttributes();
token = invoke;
// Generate gc relocates in exceptional path
BasicBlock *unwindBlock = toReplace->getUnwindDest();
assert(!isa<PHINode>(unwindBlock->begin()) &&
unwindBlock->getUniquePredecessor() &&
"can't safely insert in this block!");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
Builder.SetInsertPoint(IP);
Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
// Extract second element from landingpad return value. We will attach
// exceptional gc relocates to it.
const unsigned idx = 1;
Instruction *exceptional_token =
cast<Instruction>(Builder.CreateExtractValue(
unwindBlock->getLandingPadInst(), idx, "relocate_token"));
result.UnwindToken = exceptional_token;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
CreateGCRelocates(liveVariables, live_start, basePtrs,
exceptional_token, Builder);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Generate gc relocates and returns for normal block
BasicBlock *normalDest = toReplace->getNormalDest();
assert(!isa<PHINode>(normalDest->begin()) &&
normalDest->getUniquePredecessor() &&
"can't safely insert in this block!");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
IP = &*(normalDest->getFirstInsertionPt());
Builder.SetInsertPoint(IP);
// gc relocates will be generated later as if it were regular call
// statepoint
}
assert(token);
// Take the name of the original value call if it had one.
token->takeName(CS.getInstruction());
// The GCResult is already inserted, we just need to find it
#ifndef NDEBUG
Instruction *toReplace = CS.getInstruction();
assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
"only valid use before rewrite is gc.result");
assert(!toReplace->hasOneUse() ||
isGCResult(cast<Instruction>(*toReplace->user_begin())));
#endif
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Update the gc.result of the original statepoint (if any) to use the newly
// inserted statepoint. This is safe to do here since the token can't be
// considered a live reference.
CS.getInstruction()->replaceAllUsesWith(token);
result.StatepointToken = token;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Second, create a gc.relocate for every live variable
CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
namespace {
struct name_ordering {
Value *base;
Value *derived;
bool operator()(name_ordering const &a, name_ordering const &b) {
return -1 == a.derived->getName().compare(b.derived->getName());
}
};
}
static void stablize_order(SmallVectorImpl<Value *> &basevec,
SmallVectorImpl<Value *> &livevec) {
assert(basevec.size() == livevec.size());
SmallVector<name_ordering, 64> temp;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
for (size_t i = 0; i < basevec.size(); i++) {
name_ordering v;
v.base = basevec[i];
v.derived = livevec[i];
temp.push_back(v);
}
std::sort(temp.begin(), temp.end(), name_ordering());
for (size_t i = 0; i < basevec.size(); i++) {
basevec[i] = temp[i].base;
livevec[i] = temp[i].derived;
}
}
// Replace an existing gc.statepoint with a new one and a set of gc.relocates
// which make the relocations happening at this safepoint explicit.
//
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// WARNING: Does not do any fixup to adjust users of the original live
// values. That's the callers responsibility.
static void
makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
PartiallyConstructedSafepointRecord &result) {
auto liveset = result.liveset;
auto PointerToBase = result.PointerToBase;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Convert to vector for efficient cross referencing.
SmallVector<Value *, 64> basevec, livevec;
livevec.reserve(liveset.size());
basevec.reserve(liveset.size());
for (Value *L : liveset) {
livevec.push_back(L);
assert(PointerToBase.count(L));
Value *base = PointerToBase[L];
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
basevec.push_back(base);
}
assert(livevec.size() == basevec.size());
// To make the output IR slightly more stable (for use in diffs), ensure a
// fixed order of the values in the safepoint (by sorting the value name).
// The order is otherwise meaningless.
stablize_order(basevec, livevec);
// Do the actual rewriting and delete the old statepoint
makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
CS.getInstruction()->eraseFromParent();
}
// Helper function for the relocationViaAlloca.
// It receives iterator to the statepoint gc relocates and emits store to the
// assigned
// location (via allocaMap) for the each one of them.
// Add visited values into the visitedLiveValues set we will later use them
// for sanity check.
static void
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
DenseMap<Value *, Value *> &AllocaMap,
DenseSet<Value *> &VisitedLiveValues) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
for (User *U : GCRelocs) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (!isa<IntrinsicInst>(U))
continue;
IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// We only care about relocates
if (RelocatedValue->getIntrinsicID() !=
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
Intrinsic::experimental_gc_relocate) {
continue;
}
GCRelocateOperands RelocateOperands(RelocatedValue);
Value *OriginalValue =
const_cast<Value *>(RelocateOperands.getDerivedPtr());
assert(AllocaMap.count(OriginalValue));
Value *Alloca = AllocaMap[OriginalValue];
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Emit store into the related alloca
// All gc_relocate are i8 addrspace(1)* typed, and it must be bitcasted to
// the correct type according to alloca.
assert(RelocatedValue->getNextNode() && "Should always have one since it's not a terminator");
IRBuilder<> Builder(RelocatedValue->getNextNode());
Value *CastedRelocatedValue =
Builder.CreateBitCast(RelocatedValue, cast<AllocaInst>(Alloca)->getAllocatedType(),
RelocatedValue->hasName() ? RelocatedValue->getName() + ".casted" : "");
StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#ifndef NDEBUG
VisitedLiveValues.insert(OriginalValue);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#endif
}
}
// Helper function for the "relocationViaAlloca". Similar to the
// "insertRelocationStores" but works for rematerialized values.
static void
insertRematerializationStores(
RematerializedValueMapTy RematerializedValues,
DenseMap<Value *, Value *> &AllocaMap,
DenseSet<Value *> &VisitedLiveValues) {
for (auto RematerializedValuePair: RematerializedValues) {
Instruction *RematerializedValue = RematerializedValuePair.first;
Value *OriginalValue = RematerializedValuePair.second;
assert(AllocaMap.count(OriginalValue) &&
"Can not find alloca for rematerialized value");
Value *Alloca = AllocaMap[OriginalValue];
StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
Store->insertAfter(RematerializedValue);
#ifndef NDEBUG
VisitedLiveValues.insert(OriginalValue);
#endif
}
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// do all the relocation update via allocas and mem2reg
static void relocationViaAlloca(
Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
ArrayRef<struct PartiallyConstructedSafepointRecord> Records) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#ifndef NDEBUG
// record initial number of (static) allocas; we'll check we have the same
// number when we get done.
int InitialAllocaNum = 0;
for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
I++)
if (isa<AllocaInst>(*I))
InitialAllocaNum++;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#endif
// TODO-PERF: change data structures, reserve
DenseMap<Value *, Value *> AllocaMap;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
SmallVector<AllocaInst *, 200> PromotableAllocas;
// Used later to chack that we have enough allocas to store all values
std::size_t NumRematerializedValues = 0;
PromotableAllocas.reserve(Live.size());
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Emit alloca for "LiveValue" and record it in "allocaMap" and
// "PromotableAllocas"
auto emitAllocaFor = [&](Value *LiveValue) {
AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
F.getEntryBlock().getFirstNonPHI());
AllocaMap[LiveValue] = Alloca;
PromotableAllocas.push_back(Alloca);
};
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// emit alloca for each live gc pointer
for (unsigned i = 0; i < Live.size(); i++) {
emitAllocaFor(Live[i]);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// emit allocas for rematerialized values
for (size_t i = 0; i < Records.size(); i++) {
const struct PartiallyConstructedSafepointRecord &Info = Records[i];
for (auto RematerializedValuePair : Info.RematerializedValues) {
Value *OriginalValue = RematerializedValuePair.second;
if (AllocaMap.count(OriginalValue) != 0)
continue;
emitAllocaFor(OriginalValue);
++NumRematerializedValues;
}
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// The next two loops are part of the same conceptual operation. We need to
// insert a store to the alloca after the original def and at each
// redefinition. We need to insert a load before each use. These are split
// into distinct loops for performance reasons.
// update gc pointer after each statepoint
// either store a relocated value or null (if no relocated value found for
// this gc pointer and it is not a gc_result)
// this must happen before we update the statepoint with load of alloca
// otherwise we lose the link between statepoint and old def
for (size_t i = 0; i < Records.size(); i++) {
const struct PartiallyConstructedSafepointRecord &Info = Records[i];
Value *Statepoint = Info.StatepointToken;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// This will be used for consistency check
DenseSet<Value *> VisitedLiveValues;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Insert stores for normal statepoint gc relocates
insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// In case if it was invoke statepoint
// we will insert stores for exceptional path gc relocates.
if (isa<InvokeInst>(Statepoint)) {
insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
VisitedLiveValues);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// Do similar thing with rematerialized values
insertRematerializationStores(Info.RematerializedValues, AllocaMap,
VisitedLiveValues);
if (ClobberNonLive) {
// As a debuging aid, pretend that an unrelocated pointer becomes null at
// the gc.statepoint. This will turn some subtle GC problems into
// slightly easier to debug SEGVs. Note that on large IR files with
// lots of gc.statepoints this is extremely costly both memory and time
// wise.
SmallVector<AllocaInst *, 64> ToClobber;
for (auto Pair : AllocaMap) {
Value *Def = Pair.first;
AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
// This value was relocated
if (VisitedLiveValues.count(Def)) {
continue;
}
ToClobber.push_back(Alloca);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
auto InsertClobbersAt = [&](Instruction *IP) {
for (auto *AI : ToClobber) {
auto AIType = cast<PointerType>(AI->getType());
auto PT = cast<PointerType>(AIType->getElementType());
Constant *CPN = ConstantPointerNull::get(PT);
StoreInst *Store = new StoreInst(CPN, AI);
Store->insertBefore(IP);
}
};
// Insert the clobbering stores. These may get intermixed with the
// gc.results and gc.relocates, but that's fine.
if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
} else {
BasicBlock::iterator Next(cast<CallInst>(Statepoint));
Next++;
InsertClobbersAt(Next);
}
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// update use with load allocas and add store for gc_relocated
for (auto Pair : AllocaMap) {
Value *Def = Pair.first;
Value *Alloca = Pair.second;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// we pre-record the uses of allocas so that we dont have to worry about
// later update
// that change the user information.
SmallVector<Instruction *, 20> Uses;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// PERF: trade a linear scan for repeated reallocation
Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
for (User *U : Def->users()) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (!isa<ConstantExpr>(U)) {
// If the def has a ConstantExpr use, then the def is either a
// ConstantExpr use itself or null. In either case
// (recursively in the first, directly in the second), the oop
// it is ultimately dependent on is null and this particular
// use does not need to be fixed up.
Uses.push_back(cast<Instruction>(U));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
std::sort(Uses.begin(), Uses.end());
auto Last = std::unique(Uses.begin(), Uses.end());
Uses.erase(Last, Uses.end());
for (Instruction *Use : Uses) {
if (isa<PHINode>(Use)) {
PHINode *Phi = cast<PHINode>(Use);
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
if (Def == Phi->getIncomingValue(i)) {
LoadInst *Load = new LoadInst(
Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
Phi->setIncomingValue(i, Load);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
} else {
LoadInst *Load = new LoadInst(Alloca, "", Use);
Use->replaceUsesOfWith(Def, Load);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
// emit store for the initial gc value
// store must be inserted after load, otherwise store will be in alloca's
// use list and an extra load will be inserted before it
StoreInst *Store = new StoreInst(Def, Alloca);
if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
// InvokeInst is a TerminatorInst so the store need to be inserted
// into its normal destination block.
BasicBlock *NormalDest = Invoke->getNormalDest();
Store->insertBefore(NormalDest->getFirstNonPHI());
} else {
assert(!Inst->isTerminator() &&
"The only TerminatorInst that can produce a value is "
"InvokeInst which is handled above.");
Store->insertAfter(Inst);
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
} else {
assert(isa<Argument>(Def));
Store->insertAfter(cast<Instruction>(Alloca));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
"we must have the same allocas with lives");
if (!PromotableAllocas.empty()) {
// apply mem2reg to promote alloca to SSA
PromoteMemToReg(PromotableAllocas, DT);
}
#ifndef NDEBUG
for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
I++)
if (isa<AllocaInst>(*I))
InitialAllocaNum--;
assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#endif
}
/// Implement a unique function which doesn't require we sort the input
/// vector. Doing so has the effect of changing the output of a couple of
/// tests in ways which make them less useful in testing fused safepoints.
template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
SmallSet<T, 8> Seen;
Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
return !Seen.insert(V).second;
}), Vec.end());
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
/// Insert holders so that each Value is obviously live through the entire
/// lifetime of the call.
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
SmallVectorImpl<CallInst *> &Holders) {
if (Values.empty())
// No values to hold live, might as well not insert the empty holder
return;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
// Use a dummy vararg function to actually hold the values live
Function *Func = cast<Function>(M->getOrInsertFunction(
"__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (CS.isCall()) {
// For call safepoints insert dummy calls right after safepoint
BasicBlock::iterator Next(CS.getInstruction());
Next++;
Holders.push_back(CallInst::Create(Func, Values, "", Next));
return;
}
// For invoke safepooints insert dummy calls both in normal and
// exceptional destination blocks
auto *II = cast<InvokeInst>(CS.getInstruction());
Holders.push_back(CallInst::Create(
Func, Values, "", II->getNormalDest()->getFirstInsertionPt()));
Holders.push_back(CallInst::Create(
Func, Values, "", II->getUnwindDest()->getFirstInsertionPt()));
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
static void findLiveReferences(
Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
GCPtrLivenessData OriginalLivenessData;
computeLiveInValues(DT, F, OriginalLivenessData);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
const CallSite &CS = toUpdate[i];
analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
}
/// Remove any vector of pointers from the liveset by scalarizing them over the
/// statepoint instruction. Adds the scalarized pieces to the liveset. It
/// would be preferrable to include the vector in the statepoint itself, but
/// the lowering code currently does not handle that. Extending it would be
/// slightly non-trivial since it requires a format change. Given how rare
/// such cases are (for the moment?) scalarizing is an acceptable comprimise.
static void splitVectorValues(Instruction *StatepointInst,
StatepointLiveSetTy &LiveSet,
DenseMap<Value *, Value *>& PointerToBase,
DominatorTree &DT) {
SmallVector<Value *, 16> ToSplit;
for (Value *V : LiveSet)
if (isa<VectorType>(V->getType()))
ToSplit.push_back(V);
if (ToSplit.empty())
return;
DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
Function &F = *(StatepointInst->getParent()->getParent());
DenseMap<Value *, AllocaInst *> AllocaMap;
// First is normal return, second is exceptional return (invoke only)
DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
for (Value *V : ToSplit) {
AllocaInst *Alloca =
new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
AllocaMap[V] = Alloca;
VectorType *VT = cast<VectorType>(V->getType());
IRBuilder<> Builder(StatepointInst);
SmallVector<Value *, 16> Elements;
for (unsigned i = 0; i < VT->getNumElements(); i++)
Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
ElementMapping[V] = Elements;
auto InsertVectorReform = [&](Instruction *IP) {
Builder.SetInsertPoint(IP);
Builder.SetCurrentDebugLocation(IP->getDebugLoc());
Value *ResultVec = UndefValue::get(VT);
for (unsigned i = 0; i < VT->getNumElements(); i++)
ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
Builder.getInt32(i));
return ResultVec;
};
if (isa<CallInst>(StatepointInst)) {
BasicBlock::iterator Next(StatepointInst);
Next++;
Instruction *IP = &*(Next);
Replacements[V].first = InsertVectorReform(IP);
Replacements[V].second = nullptr;
} else {
InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
// We've already normalized - check that we don't have shared destination
// blocks
BasicBlock *NormalDest = Invoke->getNormalDest();
assert(!isa<PHINode>(NormalDest->begin()));
BasicBlock *UnwindDest = Invoke->getUnwindDest();
assert(!isa<PHINode>(UnwindDest->begin()));
// Insert insert element sequences in both successors
Instruction *IP = &*(NormalDest->getFirstInsertionPt());
Replacements[V].first = InsertVectorReform(IP);
IP = &*(UnwindDest->getFirstInsertionPt());
Replacements[V].second = InsertVectorReform(IP);
}
}
for (Value *V : ToSplit) {
AllocaInst *Alloca = AllocaMap[V];
// Capture all users before we start mutating use lists
SmallVector<Instruction *, 16> Users;
for (User *U : V->users())
Users.push_back(cast<Instruction>(U));
for (Instruction *I : Users) {
if (auto Phi = dyn_cast<PHINode>(I)) {
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
if (V == Phi->getIncomingValue(i)) {
LoadInst *Load = new LoadInst(
Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
Phi->setIncomingValue(i, Load);
}
} else {
LoadInst *Load = new LoadInst(Alloca, "", I);
I->replaceUsesOfWith(V, Load);
}
}
// Store the original value and the replacement value into the alloca
StoreInst *Store = new StoreInst(V, Alloca);
if (auto I = dyn_cast<Instruction>(V))
Store->insertAfter(I);
else
Store->insertAfter(Alloca);
// Normal return for invoke, or call return
Instruction *Replacement = cast<Instruction>(Replacements[V].first);
(new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
// Unwind return for invoke only
Replacement = cast_or_null<Instruction>(Replacements[V].second);
if (Replacement)
(new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
}
// apply mem2reg to promote alloca to SSA
SmallVector<AllocaInst *, 16> Allocas;
for (Value *V : ToSplit)
Allocas.push_back(AllocaMap[V]);
PromoteMemToReg(Allocas, DT);
// Update our tracking of live pointers and base mappings to account for the
// changes we just made.
for (Value *V : ToSplit) {
auto &Elements = ElementMapping[V];
LiveSet.erase(V);
LiveSet.insert(Elements.begin(), Elements.end());
// We need to update the base mapping as well.
assert(PointerToBase.count(V));
Value *OldBase = PointerToBase[V];
auto &BaseElements = ElementMapping[OldBase];
PointerToBase.erase(V);
assert(Elements.size() == BaseElements.size());
for (unsigned i = 0; i < Elements.size(); i++) {
Value *Elem = Elements[i];
PointerToBase[Elem] = BaseElements[i];
}
}
}
// Helper function for the "rematerializeLiveValues". It walks use chain
// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
// values are visited (currently it is GEP's and casts). Returns true if it
// sucessfully reached "BaseValue" and false otherwise.
// Fills "ChainToBase" array with all visited values. "BaseValue" is not
// recorded.
static bool findRematerializableChainToBasePointer(
SmallVectorImpl<Instruction*> &ChainToBase,
Value *CurrentValue, Value *BaseValue) {
// We have found a base value
if (CurrentValue == BaseValue) {
return true;
}
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
ChainToBase.push_back(GEP);
return findRematerializableChainToBasePointer(ChainToBase,
GEP->getPointerOperand(),
BaseValue);
}
if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
Value *Def = CI->stripPointerCasts();
// This two checks are basically similar. First one is here for the
// consistency with findBasePointers logic.
assert(!isa<CastInst>(Def) && "not a pointer cast found");
if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
return false;
ChainToBase.push_back(CI);
return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
}
// Not supported instruction in the chain
return false;
}
// Helper function for the "rematerializeLiveValues". Compute cost of the use
// chain we are going to rematerialize.
static unsigned
chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
TargetTransformInfo &TTI) {
unsigned Cost = 0;
for (Instruction *Instr : Chain) {
if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
"non noop cast is found during rematerialization");
Type *SrcTy = CI->getOperand(0)->getType();
Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
// Cost of the address calculation
Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
Cost += TTI.getAddressComputationCost(ValTy);
// And cost of the GEP itself
// TODO: Use TTI->getGEPCost here (it exists, but appears to be not
// allowed for the external usage)
if (!GEP->hasAllConstantIndices())
Cost += 2;
} else {
llvm_unreachable("unsupported instruciton type during rematerialization");
}
}
return Cost;
}
// From the statepoint liveset pick values that are cheaper to recompute then to
// relocate. Remove this values from the liveset, rematerialize them after
// statepoint and record them in "Info" structure. Note that similar to
// relocated values we don't do any user adjustments here.
static void rematerializeLiveValues(CallSite CS,
PartiallyConstructedSafepointRecord &Info,
TargetTransformInfo &TTI) {
const unsigned int ChainLengthThreshold = 10;
2015-05-25 09:43:23 +08:00
// Record values we are going to delete from this statepoint live set.
// We can not di this in following loop due to iterator invalidation.
SmallVector<Value *, 32> LiveValuesToBeDeleted;
for (Value *LiveValue: Info.liveset) {
// For each live pointer find it's defining chain
SmallVector<Instruction *, 3> ChainToBase;
assert(Info.PointerToBase.count(LiveValue));
bool FoundChain =
findRematerializableChainToBasePointer(ChainToBase,
LiveValue,
Info.PointerToBase[LiveValue]);
// Nothing to do, or chain is too long
if (!FoundChain ||
ChainToBase.size() == 0 ||
ChainToBase.size() > ChainLengthThreshold)
continue;
// Compute cost of this chain
unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
// TODO: We can also account for cases when we will be able to remove some
// of the rematerialized values by later optimization passes. I.e if
// we rematerialized several intersecting chains. Or if original values
// don't have any uses besides this statepoint.
// For invokes we need to rematerialize each chain twice - for normal and
// for unwind basic blocks. Model this by multiplying cost by two.
if (CS.isInvoke()) {
Cost *= 2;
}
// If it's too expensive - skip it
if (Cost >= RematerializationThreshold)
continue;
// Remove value from the live set
LiveValuesToBeDeleted.push_back(LiveValue);
// Clone instructions and record them inside "Info" structure
// Walk backwards to visit top-most instructions first
std::reverse(ChainToBase.begin(), ChainToBase.end());
// Utility function which clones all instructions from "ChainToBase"
// and inserts them before "InsertBefore". Returns rematerialized value
// which should be used after statepoint.
auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
Instruction *LastClonedValue = nullptr;
Instruction *LastValue = nullptr;
for (Instruction *Instr: ChainToBase) {
// Only GEP's and casts are suported as we need to be careful to not
// introduce any new uses of pointers not in the liveset.
// Note that it's fine to introduce new uses of pointers which were
// otherwise not used after this statepoint.
assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
Instruction *ClonedValue = Instr->clone();
ClonedValue->insertBefore(InsertBefore);
ClonedValue->setName(Instr->getName() + ".remat");
// If it is not first instruction in the chain then it uses previously
// cloned value. We should update it to use cloned value.
if (LastClonedValue) {
assert(LastValue);
ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
#ifndef NDEBUG
// Assert that cloned instruction does not use any instructions from
// this chain other than LastClonedValue
for (auto OpValue : ClonedValue->operand_values()) {
assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
ChainToBase.end() &&
"incorrect use in rematerialization chain");
}
#endif
}
LastClonedValue = ClonedValue;
LastValue = Instr;
}
assert(LastClonedValue);
return LastClonedValue;
};
// Different cases for calls and invokes. For invokes we need to clone
// instructions both on normal and unwind path.
if (CS.isCall()) {
Instruction *InsertBefore = CS.getInstruction()->getNextNode();
assert(InsertBefore);
Instruction *RematerializedValue = rematerializeChain(InsertBefore);
Info.RematerializedValues[RematerializedValue] = LiveValue;
} else {
InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
Instruction *NormalInsertBefore =
Invoke->getNormalDest()->getFirstInsertionPt();
Instruction *UnwindInsertBefore =
Invoke->getUnwindDest()->getFirstInsertionPt();
Instruction *NormalRematerializedValue =
rematerializeChain(NormalInsertBefore);
Instruction *UnwindRematerializedValue =
rematerializeChain(UnwindInsertBefore);
Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
}
}
// Remove rematerializaed values from the live set
for (auto LiveValue: LiveValuesToBeDeleted) {
Info.liveset.erase(LiveValue);
}
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
SmallVectorImpl<CallSite> &toUpdate) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
#ifndef NDEBUG
// sanity check the input
std::set<CallSite> uniqued;
uniqued.insert(toUpdate.begin(), toUpdate.end());
assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
for (size_t i = 0; i < toUpdate.size(); i++) {
CallSite &CS = toUpdate[i];
assert(CS.getInstruction()->getParent()->getParent() == &F);
assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
}
#endif
// When inserting gc.relocates for invokes, we need to be able to insert at
// the top of the successor blocks. See the comment on
// normalForInvokeSafepoint on exactly what is needed. Note that this step
// may restructure the CFG.
for (CallSite CS : toUpdate) {
if (!CS.isInvoke())
continue;
InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
normalizeForInvokeSafepoint(invoke->getNormalDest(), invoke->getParent(),
DT);
normalizeForInvokeSafepoint(invoke->getUnwindDest(), invoke->getParent(),
DT);
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// A list of dummy calls added to the IR to keep various values obviously
// live in the IR. We'll remove all of these when done.
SmallVector<CallInst *, 64> holders;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Insert a dummy call with all of the arguments to the vm_state we'll need
// for the actual safepoint insertion. This ensures reference arguments in
// the deopt argument list are considered live through the safepoint (and
// thus makes sure they get relocated.)
for (size_t i = 0; i < toUpdate.size(); i++) {
CallSite &CS = toUpdate[i];
Statepoint StatepointCS(CS);
SmallVector<Value *, 64> DeoptValues;
for (Use &U : StatepointCS.vm_state_args()) {
Value *Arg = cast<Value>(&U);
assert(!isUnhandledGCPointerType(Arg->getType()) &&
"support for FCA unimplemented");
if (isHandledGCPointerType(Arg->getType()))
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
DeoptValues.push_back(Arg);
}
insertUseHolderAfter(CS, DeoptValues, holders);
}
SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
records.reserve(toUpdate.size());
for (size_t i = 0; i < toUpdate.size(); i++) {
struct PartiallyConstructedSafepointRecord info;
records.push_back(info);
}
assert(records.size() == toUpdate.size());
// A) Identify all gc pointers which are staticly live at the given call
// site.
findLiveReferences(F, DT, P, toUpdate, records);
// B) Find the base pointers for each live pointer
/* scope for caching */ {
// Cache the 'defining value' relation used in the computation and
// insertion of base phis and selects. This ensures that we don't insert
// large numbers of duplicate base_phis.
DefiningValueMapTy DVCache;
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
CallSite &CS = toUpdate[i];
findBasePointers(DT, DVCache, CS, info);
}
} // end of cache scope
// The base phi insertion logic (for any safepoint) may have inserted new
// instructions which are now live at some safepoint. The simplest such
// example is:
// loop:
// phi a <-- will be a new base_phi here
// safepoint 1 <-- that needs to be live here
// gep a + 1
// safepoint 2
// br loop
// We insert some dummy calls after each safepoint to definitely hold live
// the base pointers which were identified for that safepoint. We'll then
// ask liveness for _every_ base inserted to see what is now live. Then we
// remove the dummy calls.
holders.reserve(holders.size() + records.size());
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
CallSite &CS = toUpdate[i];
SmallVector<Value *, 128> Bases;
for (auto Pair : info.PointerToBase) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
Bases.push_back(Pair.second);
}
insertUseHolderAfter(CS, Bases, holders);
}
// By selecting base pointers, we've effectively inserted new uses. Thus, we
// need to rerun liveness. We may *also* have inserted new defs, but that's
// not the key issue.
recomputeLiveInValues(F, DT, P, toUpdate, records);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
if (PrintBasePointers) {
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
errs() << "Base Pairs: (w/Relocation)\n";
for (auto Pair : info.PointerToBase) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
errs() << " derived %" << Pair.first->getName() << " base %"
<< Pair.second->getName() << "\n";
}
}
}
for (size_t i = 0; i < holders.size(); i++) {
holders[i]->eraseFromParent();
holders[i] = nullptr;
}
holders.clear();
// Do a limited scalarization of any live at safepoint vector values which
// contain pointers. This enables this pass to run after vectorization at
// the cost of some possible performance loss. TODO: it would be nice to
// natively support vectors all the way through the backend so we don't need
// to scalarize here.
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
Instruction *statepoint = toUpdate[i].getInstruction();
splitVectorValues(cast<Instruction>(statepoint), info.liveset,
info.PointerToBase, DT);
}
// In order to reduce live set of statepoint we might choose to rematerialize
// some values instead of relocating them. This is purelly an optimization and
// does not influence correctness.
TargetTransformInfo &TTI =
P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2015-05-25 09:43:23 +08:00
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
CallSite &CS = toUpdate[i];
rematerializeLiveValues(CS, info, TTI);
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Now run through and replace the existing statepoints with new ones with
// the live variables listed. We do not yet update uses of the values being
// relocated. We have references to live variables that need to
// survive to the last iteration of this loop. (By construction, the
// previous statepoint can not be a live variable, thus we can and remove
// the old statepoint calls as we go.)
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
CallSite &CS = toUpdate[i];
makeStatepointExplicit(DT, CS, P, info);
}
toUpdate.clear(); // prevent accident use of invalid CallSites
// Do all the fixups of the original live variables to their relocated selves
SmallVector<Value *, 128> live;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
for (size_t i = 0; i < records.size(); i++) {
struct PartiallyConstructedSafepointRecord &info = records[i];
// We can't simply save the live set from the original insertion. One of
// the live values might be the result of a call which needs a safepoint.
// That Value* no longer exists and we need to use the new gc_result.
// Thankfully, the liveset is embedded in the statepoint (and updated), so
// we just grab that.
Statepoint statepoint(info.StatepointToken);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
live.insert(live.end(), statepoint.gc_args_begin(),
statepoint.gc_args_end());
#ifndef NDEBUG
// Do some basic sanity checks on our liveness results before performing
// relocation. Relocation can and will turn mistakes in liveness results
// into non-sensical code which is must harder to debug.
// TODO: It would be nice to test consistency as well
assert(DT.isReachableFromEntry(info.StatepointToken->getParent()) &&
"statepoint must be reachable or liveness is meaningless");
for (Value *V : statepoint.gc_args()) {
if (!isa<Instruction>(V))
// Non-instruction values trivial dominate all possible uses
continue;
auto LiveInst = cast<Instruction>(V);
assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
"unreachable values should never be live");
assert(DT.dominates(LiveInst, info.StatepointToken) &&
"basic SSA liveness expectation violated by liveness analysis");
}
#endif
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
unique_unsorted(live);
#ifndef NDEBUG
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// sanity check
for (auto ptr : live) {
assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
}
#endif
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
relocationViaAlloca(F, DT, live, records);
return !records.empty();
}
// Handles both return values and arguments for Functions and CallSites.
template <typename AttrHolder>
static void RemoveDerefAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
unsigned Index) {
AttrBuilder R;
if (AH.getDereferenceableBytes(Index))
R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
AH.getDereferenceableBytes(Index)));
if (AH.getDereferenceableOrNullBytes(Index))
R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
AH.getDereferenceableOrNullBytes(Index)));
if (!R.empty())
AH.setAttributes(AH.getAttributes().removeAttributes(
Ctx, Index, AttributeSet::get(Ctx, Index, R)));
}
void
RewriteStatepointsForGC::stripDereferenceabilityInfoFromPrototype(Function &F) {
LLVMContext &Ctx = F.getContext();
for (Argument &A : F.args())
if (isa<PointerType>(A.getType()))
RemoveDerefAttrAtIndex(Ctx, F, A.getArgNo() + 1);
if (isa<PointerType>(F.getReturnType()))
RemoveDerefAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
}
void RewriteStatepointsForGC::stripDereferenceabilityInfoFromBody(Function &F) {
if (F.empty())
return;
LLVMContext &Ctx = F.getContext();
MDBuilder Builder(Ctx);
for (Instruction &I : inst_range(F)) {
if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
bool IsImmutableTBAA =
MD->getNumOperands() == 4 &&
mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
if (!IsImmutableTBAA)
continue; // no work to do, MD_tbaa is already marked mutable
MDNode *Base = cast<MDNode>(MD->getOperand(0));
MDNode *Access = cast<MDNode>(MD->getOperand(1));
uint64_t Offset =
mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
MDNode *MutableTBAA =
Builder.createTBAAStructTagNode(Base, Access, Offset);
I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
}
if (CallSite CS = CallSite(&I)) {
for (int i = 0, e = CS.arg_size(); i != e; i++)
if (isa<PointerType>(CS.getArgument(i)->getType()))
RemoveDerefAttrAtIndex(Ctx, CS, i + 1);
if (isa<PointerType>(CS.getType()))
RemoveDerefAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
}
}
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
/// Returns true if this function should be rewritten by this pass. The main
/// point of this function is as an extension point for custom logic.
static bool shouldRewriteStatepointsIn(Function &F) {
// TODO: This should check the GCStrategy
if (F.hasGC()) {
2015-05-25 09:43:23 +08:00
const char *FunctionGCName = F.getGC();
const StringRef StatepointExampleName("statepoint-example");
const StringRef CoreCLRName("coreclr");
return (StatepointExampleName == FunctionGCName) ||
2015-05-25 09:43:34 +08:00
(CoreCLRName == FunctionGCName);
} else
return false;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
void RewriteStatepointsForGC::stripDereferenceabilityInfo(Module &M) {
#ifndef NDEBUG
assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
"precondition!");
#endif
for (Function &F : M)
stripDereferenceabilityInfoFromPrototype(F);
for (Function &F : M)
stripDereferenceabilityInfoFromBody(F);
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
bool RewriteStatepointsForGC::runOnFunction(Function &F) {
// Nothing to do for declarations.
if (F.isDeclaration() || F.empty())
return false;
// Policy choice says not to rewrite - the most common reason is that we're
// compiling code without a GCStrategy.
if (!shouldRewriteStatepointsIn(F))
return false;
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
// Gather all the statepoints which need rewritten. Be careful to only
// consider those in reachable code since we need to ask dominance queries
// when rewriting. We'll delete the unreachable ones in a moment.
SmallVector<CallSite, 64> ParsePointNeeded;
bool HasUnreachableStatepoint = false;
for (Instruction &I : inst_range(F)) {
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// TODO: only the ones with the flag set!
if (isStatepoint(I)) {
if (DT.isReachableFromEntry(I.getParent()))
ParsePointNeeded.push_back(CallSite(&I));
else
HasUnreachableStatepoint = true;
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
bool MadeChange = false;
// Delete any unreachable statepoints so that we don't have unrewritten
// statepoints surviving this pass. This makes testing easier and the
// resulting IR less confusing to human readers. Rather than be fancy, we
// just reuse a utility function which removes the unreachable blocks.
if (HasUnreachableStatepoint)
MadeChange |= removeUnreachableBlocks(F);
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
// Return early if no work to do.
if (ParsePointNeeded.empty())
return MadeChange;
// As a prepass, go ahead and aggressively destroy single entry phi nodes.
// These are created by LCSSA. They have the effect of increasing the size
// of liveness sets for no good reason. It may be harder to do this post
// insertion since relocations and base phis can confuse things.
for (BasicBlock &BB : F)
if (BB.getUniquePredecessor()) {
MadeChange = true;
FoldSingleEntryPHINodes(&BB);
}
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
return MadeChange;
Add a pass for constructing gc.statepoint sequences w/explicit relocations This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'. This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage. The pass has several main subproblems it needs to address: - First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live. - Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. - Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us. llvm-svn: 229945
2015-02-20 09:06:44 +08:00
}
// liveness computation via standard dataflow
// -------------------------------------------------------------------
// TODO: Consider using bitvectors for liveness, the set of potentially
// interesting values should be small and easy to pre-compute.
/// Compute the live-in set for the location rbegin starting from
/// the live-out set of the basic block
static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
BasicBlock::reverse_iterator rend,
DenseSet<Value *> &LiveTmp) {
for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
Instruction *I = &*ritr;
// KILL/Def - Remove this definition from LiveIn
LiveTmp.erase(I);
// Don't consider *uses* in PHI nodes, we handle their contribution to
// predecessor blocks when we seed the LiveOut sets
if (isa<PHINode>(I))
continue;
// USE - Add to the LiveIn set for this instruction
for (Value *V : I->operands()) {
assert(!isUnhandledGCPointerType(V->getType()) &&
"support for FCA unimplemented");
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
// The choice to exclude all things constant here is slightly subtle.
// There are two idependent reasons:
// - We assume that things which are constant (from LLVM's definition)
// do not move at runtime. For example, the address of a global
// variable is fixed, even though it's contents may not be.
// - Second, we can't disallow arbitrary inttoptr constants even
// if the language frontend does. Optimization passes are free to
// locally exploit facts without respect to global reachability. This
// can create sections of code which are dynamically unreachable and
// contain just about anything. (see constants.ll in tests)
LiveTmp.insert(V);
}
}
}
}
static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
for (BasicBlock *Succ : successors(BB)) {
const BasicBlock::iterator E(Succ->getFirstNonPHI());
for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
PHINode *Phi = cast<PHINode>(&*I);
Value *V = Phi->getIncomingValueForBlock(BB);
assert(!isUnhandledGCPointerType(V->getType()) &&
"support for FCA unimplemented");
if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
LiveTmp.insert(V);
}
}
}
}
static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
DenseSet<Value *> KillSet;
for (Instruction &I : *BB)
if (isHandledGCPointerType(I.getType()))
KillSet.insert(&I);
return KillSet;
}
#ifndef NDEBUG
/// Check that the items in 'Live' dominate 'TI'. This is used as a basic
/// sanity check for the liveness computation.
static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
TerminatorInst *TI, bool TermOkay = false) {
for (Value *V : Live) {
if (auto *I = dyn_cast<Instruction>(V)) {
// The terminator can be a member of the LiveOut set. LLVM's definition
// of instruction dominance states that V does not dominate itself. As
// such, we need to special case this to allow it.
if (TermOkay && TI == I)
continue;
assert(DT.dominates(I, TI) &&
"basic SSA liveness expectation violated by liveness analysis");
}
}
}
/// Check that all the liveness sets used during the computation of liveness
/// obey basic SSA properties. This is useful for finding cases where we miss
/// a def.
static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
BasicBlock &BB) {
checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
}
#endif
static void computeLiveInValues(DominatorTree &DT, Function &F,
GCPtrLivenessData &Data) {
SmallSetVector<BasicBlock *, 200> Worklist;
auto AddPredsToWorklist = [&](BasicBlock *BB) {
// We use a SetVector so that we don't have duplicates in the worklist.
Worklist.insert(pred_begin(BB), pred_end(BB));
};
auto NextItem = [&]() {
BasicBlock *BB = Worklist.back();
Worklist.pop_back();
return BB;
};
// Seed the liveness for each individual block
for (BasicBlock &BB : F) {
Data.KillSet[&BB] = computeKillSet(&BB);
Data.LiveSet[&BB].clear();
computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
#ifndef NDEBUG
for (Value *Kill : Data.KillSet[&BB])
assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
#endif
Data.LiveOut[&BB] = DenseSet<Value *>();
computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
Data.LiveIn[&BB] = Data.LiveSet[&BB];
set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
if (!Data.LiveIn[&BB].empty())
AddPredsToWorklist(&BB);
}
// Propagate that liveness until stable
while (!Worklist.empty()) {
BasicBlock *BB = NextItem();
// Compute our new liveout set, then exit early if it hasn't changed
// despite the contribution of our successor.
DenseSet<Value *> LiveOut = Data.LiveOut[BB];
const auto OldLiveOutSize = LiveOut.size();
for (BasicBlock *Succ : successors(BB)) {
assert(Data.LiveIn.count(Succ));
set_union(LiveOut, Data.LiveIn[Succ]);
}
// assert OutLiveOut is a subset of LiveOut
if (OldLiveOutSize == LiveOut.size()) {
// If the sets are the same size, then we didn't actually add anything
// when unioning our successors LiveIn Thus, the LiveIn of this block
// hasn't changed.
continue;
}
Data.LiveOut[BB] = LiveOut;
// Apply the effects of this basic block
DenseSet<Value *> LiveTmp = LiveOut;
set_union(LiveTmp, Data.LiveSet[BB]);
set_subtract(LiveTmp, Data.KillSet[BB]);
assert(Data.LiveIn.count(BB));
const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
// assert: OldLiveIn is a subset of LiveTmp
if (OldLiveIn.size() != LiveTmp.size()) {
Data.LiveIn[BB] = LiveTmp;
AddPredsToWorklist(BB);
}
} // while( !worklist.empty() )
#ifndef NDEBUG
// Sanity check our ouput against SSA properties. This helps catch any
// missing kills during the above iteration.
for (BasicBlock &BB : F) {
checkBasicSSA(DT, Data, BB);
}
#endif
}
static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
StatepointLiveSetTy &Out) {
BasicBlock *BB = Inst->getParent();
// Note: The copy is intentional and required
assert(Data.LiveOut.count(BB));
DenseSet<Value *> LiveOut = Data.LiveOut[BB];
// We want to handle the statepoint itself oddly. It's
// call result is not live (normal), nor are it's arguments
// (unless they're used again later). This adjustment is
// specifically what we need to relocate
BasicBlock::reverse_iterator rend(Inst);
computeLiveInValues(BB->rbegin(), rend, LiveOut);
LiveOut.erase(Inst);
Out.insert(LiveOut.begin(), LiveOut.end());
}
static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
const CallSite &CS,
PartiallyConstructedSafepointRecord &Info) {
Instruction *Inst = CS.getInstruction();
StatepointLiveSetTy Updated;
findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
#ifndef NDEBUG
DenseSet<Value *> Bases;
for (auto KVPair : Info.PointerToBase) {
Bases.insert(KVPair.second);
}
#endif
// We may have base pointers which are now live that weren't before. We need
// to update the PointerToBase structure to reflect this.
for (auto V : Updated)
if (!Info.PointerToBase.count(V)) {
assert(Bases.count(V) && "can't find base for unexpected live value");
Info.PointerToBase[V] = V;
continue;
}
#ifndef NDEBUG
for (auto V : Updated) {
assert(Info.PointerToBase.count(V) &&
"must be able to find base for live value");
}
#endif
// Remove any stale base mappings - this can happen since our liveness is
// more precise then the one inherent in the base pointer analysis
DenseSet<Value *> ToErase;
for (auto KVPair : Info.PointerToBase)
if (!Updated.count(KVPair.first))
ToErase.insert(KVPair.first);
for (auto V : ToErase)
Info.PointerToBase.erase(V);
#ifndef NDEBUG
for (auto KVPair : Info.PointerToBase)
assert(Updated.count(KVPair.first) && "record for non-live value");
#endif
Info.liveset = Updated;
}