llvm-project/llvm/utils/TableGen/DAGISelMatcher.cpp

416 lines
13 KiB
C++
Raw Normal View History

//===- DAGISelMatcher.cpp - Representation of DAG pattern matcher ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DAGISelMatcher.h"
#include "CodeGenDAGPatterns.h"
#include "CodeGenTarget.h"
#include "llvm/TableGen/Record.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;
void Matcher::anchor() { }
void Matcher::dump() const {
print(errs(), 0);
}
void Matcher::print(raw_ostream &OS, unsigned indent) const {
printImpl(OS, indent);
if (Next)
return Next->print(OS, indent);
}
void Matcher::printOne(raw_ostream &OS) const {
printImpl(OS, 0);
}
/// unlinkNode - Unlink the specified node from this chain. If Other == this,
/// we unlink the next pointer and return it. Otherwise we unlink Other from
/// the list and return this.
Matcher *Matcher::unlinkNode(Matcher *Other) {
if (this == Other)
return takeNext();
// Scan until we find the predecessor of Other.
Matcher *Cur = this;
for (; Cur && Cur->getNext() != Other; Cur = Cur->getNext())
/*empty*/;
if (Cur == 0) return 0;
Cur->takeNext();
Cur->setNext(Other->takeNext());
return this;
}
/// canMoveBefore - Return true if this matcher is the same as Other, or if
/// we can move this matcher past all of the nodes in-between Other and this
/// node. Other must be equal to or before this.
bool Matcher::canMoveBefore(const Matcher *Other) const {
for (;; Other = Other->getNext()) {
assert(Other && "Other didn't come before 'this'?");
if (this == Other) return true;
// We have to be able to move this node across the Other node.
if (!canMoveBeforeNode(Other))
return false;
}
}
/// canMoveBefore - Return true if it is safe to move the current matcher
/// across the specified one.
bool Matcher::canMoveBeforeNode(const Matcher *Other) const {
// We can move simple predicates before record nodes.
if (isSimplePredicateNode())
return Other->isSimplePredicateOrRecordNode();
// We can move record nodes across simple predicates.
if (isSimplePredicateOrRecordNode())
return isSimplePredicateNode();
// We can't move record nodes across each other etc.
return false;
}
ScopeMatcher::~ScopeMatcher() {
for (unsigned i = 0, e = Children.size(); i != e; ++i)
delete Children[i];
}
CheckPredicateMatcher::CheckPredicateMatcher(const TreePredicateFn &pred)
: Matcher(CheckPredicate), Pred(pred.getOrigPatFragRecord()) {}
TreePredicateFn CheckPredicateMatcher::getPredicate() const {
return TreePredicateFn(Pred);
}
// printImpl methods.
void ScopeMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "Scope\n";
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
if (getChild(i) == 0)
OS.indent(indent+1) << "NULL POINTER\n";
else
getChild(i)->print(OS, indent+2);
}
}
void RecordMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "Record\n";
}
void RecordChildMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "RecordChild: " << ChildNo << '\n';
}
void RecordMemRefMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "RecordMemRef\n";
}
void CaptureGlueInputMatcher::printImpl(raw_ostream &OS, unsigned indent) const{
OS.indent(indent) << "CaptureGlueInput\n";
}
void MoveChildMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "MoveChild " << ChildNo << '\n';
}
void MoveParentMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "MoveParent\n";
}
void CheckSameMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckSame " << MatchNumber << '\n';
}
void CheckPatternPredicateMatcher::
printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckPatternPredicate " << Predicate << '\n';
}
void CheckPredicateMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckPredicate " << getPredicate().getFnName() << '\n';
}
void CheckOpcodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckOpcode " << Opcode.getEnumName() << '\n';
}
void SwitchOpcodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "SwitchOpcode: {\n";
for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
OS.indent(indent) << "case " << Cases[i].first->getEnumName() << ":\n";
Cases[i].second->print(OS, indent+2);
}
OS.indent(indent) << "}\n";
}
void CheckTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckType " << getEnumName(Type) << ", ResNo="
<< ResNo << '\n';
}
void SwitchTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "SwitchType: {\n";
for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
OS.indent(indent) << "case " << getEnumName(Cases[i].first) << ":\n";
Cases[i].second->print(OS, indent+2);
}
OS.indent(indent) << "}\n";
}
void CheckChildTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckChildType " << ChildNo << " "
<< getEnumName(Type) << '\n';
}
void CheckIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckInteger " << Value << '\n';
}
void CheckCondCodeMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckCondCode ISD::" << CondCodeName << '\n';
}
void CheckValueTypeMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckValueType MVT::" << TypeName << '\n';
}
void CheckComplexPatMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckComplexPat " << Pattern.getSelectFunc() << '\n';
}
void CheckAndImmMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckAndImm " << Value << '\n';
}
void CheckOrImmMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CheckOrImm " << Value << '\n';
}
void CheckFoldableChainNodeMatcher::printImpl(raw_ostream &OS,
unsigned indent) const {
OS.indent(indent) << "CheckFoldableChainNode\n";
}
void EmitIntegerMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "EmitInteger " << Val << " VT=" << VT << '\n';
}
void EmitStringIntegerMatcher::
printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "EmitStringInteger " << Val << " VT=" << VT << '\n';
}
void EmitRegisterMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "EmitRegister ";
if (Reg)
OS << Reg->getName();
else
OS << "zero_reg";
OS << " VT=" << VT << '\n';
}
void EmitConvertToTargetMatcher::
printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "EmitConvertToTarget " << Slot << '\n';
}
void EmitMergeInputChainsMatcher::
printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "EmitMergeInputChains <todo: args>\n";
}
void EmitCopyToRegMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "EmitCopyToReg <todo: args>\n";
}
void EmitNodeXFormMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "EmitNodeXForm " << NodeXForm->getName()
<< " Slot=" << Slot << '\n';
}
void EmitNodeMatcherCommon::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent);
OS << (isa<MorphNodeToMatcher>(this) ? "MorphNodeTo: " : "EmitNode: ")
<< OpcodeName << ": <todo flags> ";
for (unsigned i = 0, e = VTs.size(); i != e; ++i)
OS << ' ' << getEnumName(VTs[i]);
OS << '(';
for (unsigned i = 0, e = Operands.size(); i != e; ++i)
OS << Operands[i] << ' ';
OS << ")\n";
}
void MarkGlueResultsMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "MarkGlueResults <todo: args>\n";
}
void CompleteMatchMatcher::printImpl(raw_ostream &OS, unsigned indent) const {
OS.indent(indent) << "CompleteMatch <todo args>\n";
OS.indent(indent) << "Src = " << *Pattern.getSrcPattern() << "\n";
OS.indent(indent) << "Dst = " << *Pattern.getDstPattern() << "\n";
}
// getHashImpl Implementation.
unsigned CheckPatternPredicateMatcher::getHashImpl() const {
return HashString(Predicate);
}
unsigned CheckPredicateMatcher::getHashImpl() const {
return HashString(getPredicate().getFnName());
}
unsigned CheckOpcodeMatcher::getHashImpl() const {
return HashString(Opcode.getEnumName());
}
unsigned CheckCondCodeMatcher::getHashImpl() const {
return HashString(CondCodeName);
}
unsigned CheckValueTypeMatcher::getHashImpl() const {
return HashString(TypeName);
}
unsigned EmitStringIntegerMatcher::getHashImpl() const {
return HashString(Val) ^ VT;
}
template<typename It>
static unsigned HashUnsigneds(It I, It E) {
unsigned Result = 0;
for (; I != E; ++I)
Result = (Result<<3) ^ *I;
return Result;
}
unsigned EmitMergeInputChainsMatcher::getHashImpl() const {
return HashUnsigneds(ChainNodes.begin(), ChainNodes.end());
}
bool CheckOpcodeMatcher::isEqualImpl(const Matcher *M) const {
// Note: pointer equality isn't enough here, we have to check the enum names
// to ensure that the nodes are for the same opcode.
return cast<CheckOpcodeMatcher>(M)->Opcode.getEnumName() ==
Opcode.getEnumName();
}
bool EmitNodeMatcherCommon::isEqualImpl(const Matcher *m) const {
const EmitNodeMatcherCommon *M = cast<EmitNodeMatcherCommon>(m);
return M->OpcodeName == OpcodeName && M->VTs == VTs &&
M->Operands == Operands && M->HasChain == HasChain &&
M->HasInGlue == HasInGlue && M->HasOutGlue == HasOutGlue &&
M->HasMemRefs == HasMemRefs &&
M->NumFixedArityOperands == NumFixedArityOperands;
}
unsigned EmitNodeMatcherCommon::getHashImpl() const {
return (HashString(OpcodeName) << 4) | Operands.size();
}
void EmitNodeMatcher::anchor() { }
void MorphNodeToMatcher::anchor() { }
unsigned MarkGlueResultsMatcher::getHashImpl() const {
return HashUnsigneds(GlueResultNodes.begin(), GlueResultNodes.end());
}
unsigned CompleteMatchMatcher::getHashImpl() const {
return HashUnsigneds(Results.begin(), Results.end()) ^
((unsigned)(intptr_t)&Pattern << 8);
}
// isContradictoryImpl Implementations.
static bool TypesAreContradictory(MVT::SimpleValueType T1,
MVT::SimpleValueType T2) {
// If the two types are the same, then they are the same, so they don't
// contradict.
if (T1 == T2) return false;
// If either type is about iPtr, then they don't conflict unless the other
// one is not a scalar integer type.
if (T1 == MVT::iPTR)
return !MVT(T2).isInteger() || MVT(T2).isVector();
if (T2 == MVT::iPTR)
return !MVT(T1).isInteger() || MVT(T1).isVector();
// Otherwise, they are two different non-iPTR types, they conflict.
return true;
}
bool CheckOpcodeMatcher::isContradictoryImpl(const Matcher *M) const {
if (const CheckOpcodeMatcher *COM = dyn_cast<CheckOpcodeMatcher>(M)) {
// One node can't have two different opcodes!
// Note: pointer equality isn't enough here, we have to check the enum names
// to ensure that the nodes are for the same opcode.
return COM->getOpcode().getEnumName() != getOpcode().getEnumName();
}
// If the node has a known type, and if the type we're checking for is
// different, then we know they contradict. For example, a check for
// ISD::STORE will never be true at the same time a check for Type i32 is.
if (const CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(M)) {
// If checking for a result the opcode doesn't have, it can't match.
if (CT->getResNo() >= getOpcode().getNumResults())
return true;
MVT::SimpleValueType NodeType = getOpcode().getKnownType(CT->getResNo());
if (NodeType != MVT::Other)
return TypesAreContradictory(NodeType, CT->getType());
}
return false;
}
bool CheckTypeMatcher::isContradictoryImpl(const Matcher *M) const {
if (const CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(M))
return TypesAreContradictory(getType(), CT->getType());
return false;
}
bool CheckChildTypeMatcher::isContradictoryImpl(const Matcher *M) const {
if (const CheckChildTypeMatcher *CC = dyn_cast<CheckChildTypeMatcher>(M)) {
// If the two checks are about different nodes, we don't know if they
// conflict!
if (CC->getChildNo() != getChildNo())
return false;
return TypesAreContradictory(getType(), CC->getType());
}
return false;
}
bool CheckIntegerMatcher::isContradictoryImpl(const Matcher *M) const {
if (const CheckIntegerMatcher *CIM = dyn_cast<CheckIntegerMatcher>(M))
return CIM->getValue() != getValue();
return false;
}
bool CheckValueTypeMatcher::isContradictoryImpl(const Matcher *M) const {
if (const CheckValueTypeMatcher *CVT = dyn_cast<CheckValueTypeMatcher>(M))
return CVT->getTypeName() != getTypeName();
return false;
}