llvm-project/clang/lib/Headers/xmmintrin.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

3013 lines
106 KiB
C
Raw Normal View History

/*===---- xmmintrin.h - SSE intrinsics -------------------------------------===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*/
#ifndef __XMMINTRIN_H
#define __XMMINTRIN_H
#if !defined(__i386__) && !defined(__x86_64__)
#error "This header is only meant to be used on x86 and x64 architecture"
#endif
#include <mmintrin.h>
typedef int __v4si __attribute__((__vector_size__(16)));
typedef float __v4sf __attribute__((__vector_size__(16)));
typedef float __m128 __attribute__((__vector_size__(16), __aligned__(16)));
typedef float __m128_u __attribute__((__vector_size__(16), __aligned__(1)));
/* Unsigned types */
typedef unsigned int __v4su __attribute__((__vector_size__(16)));
/* This header should only be included in a hosted environment as it depends on
* a standard library to provide allocation routines. */
#if __STDC_HOSTED__
#include <mm_malloc.h>
#endif
/* Define the default attributes for the functions in this file. */
[Builtins][Attributes][X86] Tag all X86 builtins with their required vector width. Add a min_vector_width function attribute and tag all x86 instrinsics with it This is part of an ongoing attempt at making 512 bit vectors illegal in the X86 backend type legalizer due to CPU frequency penalties associated with wide vectors on Skylake Server CPUs. We want the loop vectorizer to be able to emit IR containing wide vectors as intermediate operations in vectorized code and allow these wide vectors to be legalized to 256 bits by the X86 backend even though we are targetting a CPU that supports 512 bit vectors. This is similar to what happens with an AVX2 CPU, the vectorizer can emit wide vectors and the backend will split them. We want this splitting behavior, but still be able to use new Skylake instructions that work on 256-bit vectors and support things like masking and gather/scatter. Of course if the user uses explicit vector code in their source code we need to not split those operations. Especially if they have used any of the 512-bit vector intrinsics from immintrin.h. And we need to make it so that merely using the intrinsics produces the expected code in order to be backwards compatible. To support this goal, this patch adds a new IR function attribute "min-legal-vector-width" that can indicate the need for a minimum vector width to be legal in the backend. We need to ensure this attribute is set to the largest vector width needed by any intrinsics from immintrin.h that the function uses. The inliner will be reponsible for merging this attribute when a function is inlined. We may also need a way to limit inlining in the future as well, but we can discuss that in the future. To make things more complicated, there are two different ways intrinsics are implemented in immintrin.h. Either as an always_inline function containing calls to builtins(can be target specific or target independent) or vector extension code. Or as a macro wrapper around a taget specific builtin. I believe I've removed all cases where the macro was around a target independent builtin. To support the always_inline function case this patch adds attribute((min_vector_width(128))) that can be used to tag these functions with their vector width. All x86 intrinsic functions that operate on vectors have been tagged with this attribute. To support the macro case, all x86 specific builtins have also been tagged with the vector width that they require. Use of any builtin with this property will implicitly increase the min_vector_width of the function that calls it. I've done this as a new property in the attribute string for the builtin rather than basing it on the type string so that we can opt into it on a per builtin basis and avoid any impact to target independent builtins. There will be future work to support vectors passed as function arguments and supporting inline assembly. And whatever else we can find that isn't covered by this patch. Special thanks to Chandler who suggested this direction and reviewed a preview version of this patch. And thanks to Eric Christopher who has had many conversations with me about this issue. Differential Revision: https://reviews.llvm.org/D48617 llvm-svn: 336583
2018-07-10 03:00:16 +08:00
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("sse"), __min_vector_width__(128)))
#define __DEFAULT_FN_ATTRS_MMX __attribute__((__always_inline__, __nodebug__, __target__("mmx,sse"), __min_vector_width__(64)))
/// Adds the 32-bit float values in the low-order bits of the operands.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VADDSS / ADDSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// The lower 32 bits of this operand are used in the calculation.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// The lower 32 bits of this operand are used in the calculation.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the sum
/// of the lower 32 bits of both operands. The upper 96 bits are copied from
/// the upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_add_ss(__m128 __a, __m128 __b)
{
__a[0] += __b[0];
return __a;
}
/// Adds two 128-bit vectors of [4 x float], and returns the results of
/// the addition.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VADDPS / ADDPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the sums of both
/// operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_add_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4sf)__a + (__v4sf)__b);
}
/// Subtracts the 32-bit float value in the low-order bits of the second
/// operand from the corresponding value in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSUBSS / SUBSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the minuend. The lower 32 bits
/// of this operand are used in the calculation.
/// \param __b
/// A 128-bit vector of [4 x float] containing the subtrahend. The lower 32
/// bits of this operand are used in the calculation.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// difference of the lower 32 bits of both operands. The upper 96 bits are
/// copied from the upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_sub_ss(__m128 __a, __m128 __b)
{
__a[0] -= __b[0];
return __a;
}
/// Subtracts each of the values of the second operand from the first
/// operand, both of which are 128-bit vectors of [4 x float] and returns
/// the results of the subtraction.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSUBPS / SUBPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the minuend.
/// \param __b
/// A 128-bit vector of [4 x float] containing the subtrahend.
/// \returns A 128-bit vector of [4 x float] containing the differences between
/// both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_sub_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4sf)__a - (__v4sf)__b);
}
/// Multiplies two 32-bit float values in the low-order bits of the
/// operands.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMULSS / MULSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// The lower 32 bits of this operand are used in the calculation.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// The lower 32 bits of this operand are used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the product of the lower
/// 32 bits of both operands. The upper 96 bits are copied from the upper 96
/// bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_mul_ss(__m128 __a, __m128 __b)
{
__a[0] *= __b[0];
return __a;
}
/// Multiplies two 128-bit vectors of [4 x float] and returns the
/// results of the multiplication.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMULPS / MULPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the products of both
/// operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_mul_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4sf)__a * (__v4sf)__b);
}
/// Divides the value in the low-order 32 bits of the first operand by
/// the corresponding value in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDIVSS / DIVSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the dividend. The lower 32
/// bits of this operand are used in the calculation.
/// \param __b
/// A 128-bit vector of [4 x float] containing the divisor. The lower 32 bits
/// of this operand are used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the quotients of the
/// lower 32 bits of both operands. The upper 96 bits are copied from the
/// upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_div_ss(__m128 __a, __m128 __b)
{
__a[0] /= __b[0];
return __a;
}
/// Divides two 128-bit vectors of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VDIVPS / DIVPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the dividend.
/// \param __b
/// A 128-bit vector of [4 x float] containing the divisor.
/// \returns A 128-bit vector of [4 x float] containing the quotients of both
/// operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_div_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4sf)__a / (__v4sf)__b);
}
/// Calculates the square root of the value stored in the low-order bits
/// of a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSQRTSS / SQRTSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the square root of the
/// value in the low-order bits of the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_sqrt_ss(__m128 __a)
{
return (__m128)__builtin_ia32_sqrtss((__v4sf)__a);
}
/// Calculates the square roots of the values stored in a 128-bit vector
/// of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSQRTPS / SQRTPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the square roots of the
/// values in the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_sqrt_ps(__m128 __a)
{
return __builtin_ia32_sqrtps((__v4sf)__a);
}
/// Calculates the approximate reciprocal of the value stored in the
/// low-order bits of a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VRCPSS / RCPSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the approximate
/// reciprocal of the value in the low-order bits of the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_rcp_ss(__m128 __a)
{
return (__m128)__builtin_ia32_rcpss((__v4sf)__a);
}
/// Calculates the approximate reciprocals of the values stored in a
/// 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VRCPPS / RCPPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the approximate
/// reciprocals of the values in the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_rcp_ps(__m128 __a)
{
return (__m128)__builtin_ia32_rcpps((__v4sf)__a);
}
/// Calculates the approximate reciprocal of the square root of the value
/// stored in the low-order bits of a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VRSQRTSS / RSQRTSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the calculation.
/// \returns A 128-bit vector of [4 x float] containing the approximate
/// reciprocal of the square root of the value in the low-order bits of the
/// operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_rsqrt_ss(__m128 __a)
{
return __builtin_ia32_rsqrtss((__v4sf)__a);
}
/// Calculates the approximate reciprocals of the square roots of the
/// values stored in a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VRSQRTPS / RSQRTPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the approximate
/// reciprocals of the square roots of the values in the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_rsqrt_ps(__m128 __a)
{
return __builtin_ia32_rsqrtps((__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands and returns the lesser value in the low-order bits of the
/// vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMINSS / MINSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// minimum value between both operands. The upper 96 bits are copied from
/// the upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_min_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_minss((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 128-bit vectors of [4 x float] and returns the lesser
/// of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMINPS / MINPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands.
/// \returns A 128-bit vector of [4 x float] containing the minimum values
/// between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_min_ps(__m128 __a, __m128 __b)
{
return __builtin_ia32_minps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands and returns the greater value in the low-order bits of a 128-bit
/// vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMAXSS / MAXSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// maximum value between both operands. The upper 96 bits are copied from
/// the upper 96 bits of the first source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_max_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_maxss((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 128-bit vectors of [4 x float] and returns the greater
/// of each pair of values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMAXPS / MAXPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands.
/// \returns A 128-bit vector of [4 x float] containing the maximum values
/// between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_max_ps(__m128 __a, __m128 __b)
{
return __builtin_ia32_maxps((__v4sf)__a, (__v4sf)__b);
}
/// Performs a bitwise AND of two 128-bit vectors of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VANDPS / ANDPS </c> instructions.
///
/// \param __a
/// A 128-bit vector containing one of the source operands.
/// \param __b
/// A 128-bit vector containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the bitwise AND of the
/// values between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_and_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4su)__a & (__v4su)__b);
}
/// Performs a bitwise AND of two 128-bit vectors of [4 x float], using
/// the one's complement of the values contained in the first source
/// operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VANDNPS / ANDNPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing the first source operand. The
/// one's complement of this value is used in the bitwise AND.
/// \param __b
/// A 128-bit vector of [4 x float] containing the second source operand.
/// \returns A 128-bit vector of [4 x float] containing the bitwise AND of the
/// one's complement of the first operand and the values in the second
/// operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_andnot_ps(__m128 __a, __m128 __b)
{
return (__m128)(~(__v4su)__a & (__v4su)__b);
}
/// Performs a bitwise OR of two 128-bit vectors of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VORPS / ORPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the bitwise OR of the
/// values between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_or_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4su)__a | (__v4su)__b);
}
/// Performs a bitwise exclusive OR of two 128-bit vectors of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VXORPS / XORPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the source operands.
/// \returns A 128-bit vector of [4 x float] containing the bitwise exclusive OR
/// of the values between both operands.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_xor_ps(__m128 __a, __m128 __b)
{
return (__m128)((__v4su)__a ^ (__v4su)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands for equality and returns the result of the comparison in the
/// low-order bits of a vector [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPEQSS / CMPEQSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpeq_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpeqss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] for equality.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPEQPS / CMPEQPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpeq_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpeqps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is less than the
/// corresponding value in the second operand and returns the result of the
/// comparison in the low-order bits of a vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLTSS / CMPLTSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmplt_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpltss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are less than those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLTPS / CMPLTPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmplt_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpltps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is less than or
/// equal to the corresponding value in the second operand and returns the
/// result of the comparison in the low-order bits of a vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLESS / CMPLESS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmple_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpless((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are less than or equal to those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLEPS / CMPLEPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmple_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpleps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is greater than
/// the corresponding value in the second operand and returns the result of
/// the comparison in the low-order bits of a vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLTSS / CMPLTSS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpgt_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_shufflevector((__v4sf)__a,
(__v4sf)__builtin_ia32_cmpltss((__v4sf)__b, (__v4sf)__a),
4, 1, 2, 3);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are greater than those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLTPS / CMPLTPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpgt_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpltps((__v4sf)__b, (__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is greater than
/// or equal to the corresponding value in the second operand and returns
/// the result of the comparison in the low-order bits of a vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLESS / CMPLESS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpge_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_shufflevector((__v4sf)__a,
(__v4sf)__builtin_ia32_cmpless((__v4sf)__b, (__v4sf)__a),
4, 1, 2, 3);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are greater than or equal to those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPLEPS / CMPLEPS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpge_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpleps((__v4sf)__b, (__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands for inequality and returns the result of the comparison in the
/// low-order bits of a vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNEQSS / CMPNEQSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpneq_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpneqss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] for inequality.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNEQPS / CMPNEQPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpneq_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpneqps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is not less than
/// the corresponding value in the second operand and returns the result of
/// the comparison in the low-order bits of a vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLTSS / CMPNLTSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnlt_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnltss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are not less than those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLTPS / CMPNLTPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnlt_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnltps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is not less than
/// or equal to the corresponding value in the second operand and returns
/// the result of the comparison in the low-order bits of a vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLESS / CMPNLESS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnle_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnless((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are not less than or equal to those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLEPS / CMPNLEPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnle_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnleps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is not greater
/// than the corresponding value in the second operand and returns the
/// result of the comparison in the low-order bits of a vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLTSS / CMPNLTSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpngt_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_shufflevector((__v4sf)__a,
(__v4sf)__builtin_ia32_cmpnltss((__v4sf)__b, (__v4sf)__a),
4, 1, 2, 3);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are not greater than those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLTPS / CMPNLTPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpngt_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnltps((__v4sf)__b, (__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is not greater
/// than or equal to the corresponding value in the second operand and
/// returns the result of the comparison in the low-order bits of a vector
/// of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLESS / CMPNLESS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnge_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_shufflevector((__v4sf)__a,
(__v4sf)__builtin_ia32_cmpnless((__v4sf)__b, (__v4sf)__a),
4, 1, 2, 3);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are not greater than or equal to those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPNLEPS / CMPNLEPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpnge_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpnleps((__v4sf)__b, (__v4sf)__a);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is ordered with
/// respect to the corresponding value in the second operand and returns the
/// result of the comparison in the low-order bits of a vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPORDSS / CMPORDSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpord_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpordss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are ordered with respect to those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPORDPS / CMPORDPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpord_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpordps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the value in the first operand is unordered
/// with respect to the corresponding value in the second operand and
/// returns the result of the comparison in the low-order bits of a vector
/// of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPUNORDSS / CMPUNORDSS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float] containing one of the operands. The lower
/// 32 bits of this operand are used in the comparison.
/// \returns A 128-bit vector of [4 x float] containing the comparison results
/// in the low-order bits.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpunord_ss(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpunordss((__v4sf)__a, (__v4sf)__b);
}
/// Compares each of the corresponding 32-bit float values of the
/// 128-bit vectors of [4 x float] to determine if the values in the first
/// operand are unordered with respect to those in the second operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCMPUNORDPS / CMPUNORDPS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 128-bit vector of [4 x float].
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cmpunord_ps(__m128 __a, __m128 __b)
{
return (__m128)__builtin_ia32_cmpunordps((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands for equality and returns the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the
/// two lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comieq_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comieq((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is less than the second
/// operand and returns the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comilt_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comilt((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is less than or equal to the
/// second operand and returns the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comile_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comile((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is greater than the second
/// operand and returns the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the
/// two lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comigt_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comigt((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is greater than or equal to
/// the second operand and returns the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comige_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comige((__v4sf)__a, (__v4sf)__b);
}
/// Compares two 32-bit float values in the low-order bits of both
/// operands to determine if the first operand is not equal to the second
/// operand and returns the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 1 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the
/// two lower 32-bit values is NaN, 1 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_comineq_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_comineq((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine equality and returns
/// the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomieq_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomieq((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine if the first operand is
/// less than the second operand and returns the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomilt_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomilt((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine if the first operand is
/// less than or equal to the second operand and returns the result of the
/// comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomile_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomile((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine if the first operand is
/// greater than the second operand and returns the result of the
/// comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomigt_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomigt((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine if the first operand is
/// greater than or equal to the second operand and returns the result of
/// the comparison.
///
/// If either of the two lower 32-bit values is NaN, 0 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 0 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomige_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomige((__v4sf)__a, (__v4sf)__b);
}
/// Performs an unordered comparison of two 32-bit float values using
/// the low-order bits of both operands to determine inequality and returns
/// the result of the comparison.
///
/// If either of the two lower 32-bit values is NaN, 1 is returned.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \param __b
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the comparison.
/// \returns An integer containing the comparison results. If either of the two
/// lower 32-bit values is NaN, 1 is returned.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_ucomineq_ss(__m128 __a, __m128 __b)
{
return __builtin_ia32_ucomineq((__v4sf)__a, (__v4sf)__b);
}
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 32-bit integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 32-bit integer containing the converted value.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_cvtss_si32(__m128 __a)
{
return __builtin_ia32_cvtss2si((__v4sf)__a);
}
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 32-bit integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 32-bit integer containing the converted value.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_cvt_ss2si(__m128 __a)
{
return _mm_cvtss_si32(__a);
}
#ifdef __x86_64__
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 64-bit integer.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 64-bit integer containing the converted value.
static __inline__ long long __DEFAULT_FN_ATTRS
_mm_cvtss_si64(__m128 __a)
{
return __builtin_ia32_cvtss2si64((__v4sf)__a);
}
#endif
/// Converts two low-order float values in a 128-bit vector of
/// [4 x float] into a 64-bit vector of [2 x i32].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPS2PI </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 64-bit integer vector containing the converted values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_cvtps_pi32(__m128 __a)
{
return (__m64)__builtin_ia32_cvtps2pi((__v4sf)__a);
}
/// Converts two low-order float values in a 128-bit vector of
/// [4 x float] into a 64-bit vector of [2 x i32].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPS2PI </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 64-bit integer vector containing the converted values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_cvt_ps2pi(__m128 __a)
{
return _mm_cvtps_pi32(__a);
}
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 32-bit integer, truncating the result when it is
/// inexact.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 32-bit integer containing the converted value.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_cvttss_si32(__m128 __a)
{
return __builtin_ia32_cvttss2si((__v4sf)__a);
}
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 32-bit integer, truncating the result when it is
/// inexact.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 32-bit integer containing the converted value.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_cvtt_ss2si(__m128 __a)
{
return _mm_cvttss_si32(__a);
}
#ifdef __x86_64__
/// Converts a float value contained in the lower 32 bits of a vector of
/// [4 x float] into a 64-bit integer, truncating the result when it is
/// inexact.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the conversion.
/// \returns A 64-bit integer containing the converted value.
static __inline__ long long __DEFAULT_FN_ATTRS
_mm_cvttss_si64(__m128 __a)
{
return __builtin_ia32_cvttss2si64((__v4sf)__a);
}
#endif
/// Converts two low-order float values in a 128-bit vector of
/// [4 x float] into a 64-bit vector of [2 x i32], truncating the result
/// when it is inexact.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTTPS2PI / VTTPS2PI </c>
/// instructions.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 64-bit integer vector containing the converted values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_cvttps_pi32(__m128 __a)
{
return (__m64)__builtin_ia32_cvttps2pi((__v4sf)__a);
}
/// Converts two low-order float values in a 128-bit vector of [4 x
/// float] into a 64-bit vector of [2 x i32], truncating the result when it
/// is inexact.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTTPS2PI </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \returns A 64-bit integer vector containing the converted values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_cvtt_ps2pi(__m128 __a)
{
return _mm_cvttps_pi32(__a);
}
/// Converts a 32-bit signed integer value into a floating point value
/// and writes it to the lower 32 bits of the destination. The remaining
/// higher order elements of the destination vector are copied from the
/// corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 32-bit signed integer operand containing the value to be converted.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// converted value of the second operand. The upper 96 bits are copied from
/// the upper 96 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cvtsi32_ss(__m128 __a, int __b)
{
__a[0] = __b;
return __a;
}
/// Converts a 32-bit signed integer value into a floating point value
/// and writes it to the lower 32 bits of the destination. The remaining
/// higher order elements of the destination are copied from the
/// corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 32-bit signed integer operand containing the value to be converted.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// converted value of the second operand. The upper 96 bits are copied from
/// the upper 96 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cvt_si2ss(__m128 __a, int __b)
{
return _mm_cvtsi32_ss(__a, __b);
}
#ifdef __x86_64__
/// Converts a 64-bit signed integer value into a floating point value
/// and writes it to the lower 32 bits of the destination. The remaining
/// higher order elements of the destination are copied from the
/// corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 64-bit signed integer operand containing the value to be converted.
/// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the
/// converted value of the second operand. The upper 96 bits are copied from
/// the upper 96 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_cvtsi64_ss(__m128 __a, long long __b)
{
__a[0] = __b;
return __a;
}
#endif
/// Converts two elements of a 64-bit vector of [2 x i32] into two
/// floating point values and writes them to the lower 64-bits of the
/// destination. The remaining higher order elements of the destination are
/// copied from the corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 64-bit vector of [2 x i32]. The elements in this vector are converted
/// and written to the corresponding low-order elements in the destination.
/// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the
/// converted value of the second operand. The upper 64 bits are copied from
/// the upper 64 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX
_mm_cvtpi32_ps(__m128 __a, __m64 __b)
{
return __builtin_ia32_cvtpi2ps((__v4sf)__a, (__v2si)__b);
}
/// Converts two elements of a 64-bit vector of [2 x i32] into two
/// floating point values and writes them to the lower 64-bits of the
/// destination. The remaining higher order elements of the destination are
/// copied from the corresponding elements in the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float].
/// \param __b
/// A 64-bit vector of [2 x i32]. The elements in this vector are converted
/// and written to the corresponding low-order elements in the destination.
/// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the
/// converted value from the second operand. The upper 64 bits are copied
/// from the upper 64 bits of the first operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX
_mm_cvt_pi2ps(__m128 __a, __m64 __b)
{
return _mm_cvtpi32_ps(__a, __b);
}
/// Extracts a float value contained in the lower 32 bits of a vector of
/// [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic has no corresponding instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are
/// used in the extraction.
/// \returns A 32-bit float containing the extracted value.
static __inline__ float __DEFAULT_FN_ATTRS
_mm_cvtss_f32(__m128 __a)
{
return __a[0];
}
/// Loads two packed float values from the address \a __p into the
/// high-order bits of a 128-bit vector of [4 x float]. The low-order bits
/// are copied from the low-order bits of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVHPD / MOVHPD </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. Bits [63:0] are written to bits [63:0]
/// of the destination.
/// \param __p
/// A pointer to two packed float values. Bits [63:0] are written to bits
/// [127:64] of the destination.
/// \returns A 128-bit vector of [4 x float] containing the moved values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_loadh_pi(__m128 __a, const __m64 *__p)
2008-12-22 10:43:30 +08:00
{
typedef float __mm_loadh_pi_v2f32 __attribute__((__vector_size__(8)));
struct __mm_loadh_pi_struct {
__mm_loadh_pi_v2f32 __u;
} __attribute__((__packed__, __may_alias__));
__mm_loadh_pi_v2f32 __b = ((const struct __mm_loadh_pi_struct*)__p)->__u;
__m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1);
return __builtin_shufflevector(__a, __bb, 0, 1, 4, 5);
2008-12-22 10:43:30 +08:00
}
/// Loads two packed float values from the address \a __p into the
/// low-order bits of a 128-bit vector of [4 x float]. The high-order bits
/// are copied from the high-order bits of the first operand.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVLPD / MOVLPD </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. Bits [127:64] are written to bits
/// [127:64] of the destination.
/// \param __p
/// A pointer to two packed float values. Bits [63:0] are written to bits
/// [63:0] of the destination.
/// \returns A 128-bit vector of [4 x float] containing the moved values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_loadl_pi(__m128 __a, const __m64 *__p)
2008-12-22 10:43:30 +08:00
{
typedef float __mm_loadl_pi_v2f32 __attribute__((__vector_size__(8)));
struct __mm_loadl_pi_struct {
__mm_loadl_pi_v2f32 __u;
} __attribute__((__packed__, __may_alias__));
__mm_loadl_pi_v2f32 __b = ((const struct __mm_loadl_pi_struct*)__p)->__u;
__m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1);
return __builtin_shufflevector(__a, __bb, 4, 5, 2, 3);
2008-12-22 10:43:30 +08:00
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 32 bits of the vector are initialized with the single-precision
/// floating-point value loaded from a specified memory location. The upper
/// 96 bits are set to zero.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction.
///
/// \param __p
/// A pointer to a 32-bit memory location containing a single-precision
/// floating-point value.
/// \returns An initialized 128-bit floating-point vector of [4 x float]. The
/// lower 32 bits contain the value loaded from the memory location. The
/// upper 96 bits are set to zero.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_load_ss(const float *__p)
2008-12-22 10:43:30 +08:00
{
struct __mm_load_ss_struct {
float __u;
} __attribute__((__packed__, __may_alias__));
float __u = ((const struct __mm_load_ss_struct*)__p)->__u;
return __extension__ (__m128){ __u, 0, 0, 0 };
2008-12-22 10:43:30 +08:00
}
/// Loads a 32-bit float value and duplicates it to all four vector
/// elements of a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VBROADCASTSS / MOVSS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a float value to be loaded and duplicated.
/// \returns A 128-bit vector of [4 x float] containing the loaded and
/// duplicated values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_load1_ps(const float *__p)
2008-12-22 10:43:30 +08:00
{
struct __mm_load1_ps_struct {
float __u;
} __attribute__((__packed__, __may_alias__));
float __u = ((const struct __mm_load1_ps_struct*)__p)->__u;
return __extension__ (__m128){ __u, __u, __u, __u };
2008-12-22 10:43:30 +08:00
}
#define _mm_load_ps1(p) _mm_load1_ps(p)
/// Loads a 128-bit floating-point vector of [4 x float] from an aligned
/// memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location has to be 128-bit aligned.
/// \returns A 128-bit vector of [4 x float] containing the loaded values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_load_ps(const float *__p)
2008-12-22 10:43:30 +08:00
{
return *(const __m128*)__p;
2008-12-22 10:43:30 +08:00
}
/// Loads a 128-bit floating-point vector of [4 x float] from an
/// unaligned memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVUPS / MOVUPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location does not have to be aligned.
/// \returns A 128-bit vector of [4 x float] containing the loaded values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_loadu_ps(const float *__p)
2008-12-22 10:43:30 +08:00
{
struct __loadu_ps {
__m128_u __v;
} __attribute__((__packed__, __may_alias__));
return ((const struct __loadu_ps*)__p)->__v;
2008-12-22 10:43:30 +08:00
}
/// Loads four packed float values, in reverse order, from an aligned
/// memory location to 32-bit elements in a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location has to be 128-bit aligned.
/// \returns A 128-bit vector of [4 x float] containing the moved values, loaded
/// in reverse order.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_loadr_ps(const float *__p)
2008-12-22 10:43:30 +08:00
{
__m128 __a = _mm_load_ps(__p);
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 3, 2, 1, 0);
2008-12-22 10:43:30 +08:00
}
/// Create a 128-bit vector of [4 x float] with undefined values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic has no corresponding instruction.
///
/// \returns A 128-bit vector of [4 x float] containing undefined values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_undefined_ps(void)
{
return (__m128)__builtin_ia32_undef128();
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 32 bits of the vector are initialized with the specified single-precision
/// floating-point value. The upper 96 bits are set to zero.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction.
///
/// \param __w
/// A single-precision floating-point value used to initialize the lower 32
/// bits of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float]. The
/// lower 32 bits contain the value provided in the source operand. The
/// upper 96 bits are set to zero.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_set_ss(float __w)
2008-12-22 10:51:35 +08:00
{
return __extension__ (__m128){ __w, 0, 0, 0 };
2008-12-22 10:51:35 +08:00
}
/// Constructs a 128-bit floating-point vector of [4 x float], with each
/// of the four single-precision floating-point vector elements set to the
/// specified single-precision floating-point value.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPERMILPS / PERMILPS </c> instruction.
///
/// \param __w
/// A single-precision floating-point value used to initialize each vector
/// element of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_set1_ps(float __w)
2008-12-22 10:51:35 +08:00
{
return __extension__ (__m128){ __w, __w, __w, __w };
2008-12-22 10:51:35 +08:00
}
/* Microsoft specific. */
/// Constructs a 128-bit floating-point vector of [4 x float], with each
/// of the four single-precision floating-point vector elements set to the
/// specified single-precision floating-point value.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPERMILPS / PERMILPS </c> instruction.
///
/// \param __w
/// A single-precision floating-point value used to initialize each vector
/// element of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_set_ps1(float __w)
{
return _mm_set1_ps(__w);
}
/// Constructs a 128-bit floating-point vector of [4 x float]
/// initialized with the specified single-precision floating-point values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic is a utility function and does not correspond to a specific
/// instruction.
///
/// \param __z
/// A single-precision floating-point value used to initialize bits [127:96]
/// of the result.
/// \param __y
/// A single-precision floating-point value used to initialize bits [95:64]
/// of the result.
/// \param __x
/// A single-precision floating-point value used to initialize bits [63:32]
/// of the result.
/// \param __w
/// A single-precision floating-point value used to initialize bits [31:0]
/// of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_set_ps(float __z, float __y, float __x, float __w)
2008-12-22 10:51:35 +08:00
{
return __extension__ (__m128){ __w, __x, __y, __z };
2008-12-22 10:51:35 +08:00
}
/// Constructs a 128-bit floating-point vector of [4 x float],
/// initialized in reverse order with the specified 32-bit single-precision
/// float-point values.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic is a utility function and does not correspond to a specific
/// instruction.
///
/// \param __z
/// A single-precision floating-point value used to initialize bits [31:0]
/// of the result.
/// \param __y
/// A single-precision floating-point value used to initialize bits [63:32]
/// of the result.
/// \param __x
/// A single-precision floating-point value used to initialize bits [95:64]
/// of the result.
/// \param __w
/// A single-precision floating-point value used to initialize bits [127:96]
/// of the result.
/// \returns An initialized 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_setr_ps(float __z, float __y, float __x, float __w)
2008-12-22 10:51:35 +08:00
{
return __extension__ (__m128){ __z, __y, __x, __w };
2008-12-22 10:51:35 +08:00
}
/// Constructs a 128-bit floating-point vector of [4 x float] initialized
/// to zero.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VXORPS / XORPS </c> instruction.
///
/// \returns An initialized 128-bit floating-point vector of [4 x float] with
/// all elements set to zero.
static __inline__ __m128 __DEFAULT_FN_ATTRS
2009-02-13 22:24:50 +08:00
_mm_setzero_ps(void)
2008-12-22 10:51:35 +08:00
{
return __extension__ (__m128){ 0, 0, 0, 0 };
2008-12-22 10:51:35 +08:00
}
/// Stores the upper 64 bits of a 128-bit vector of [4 x float] to a
/// memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VPEXTRQ / PEXTRQ </c> instruction.
///
/// \param __p
/// A pointer to a 64-bit memory location.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_storeh_pi(__m64 *__p, __m128 __a)
2008-12-22 11:16:40 +08:00
{
typedef float __mm_storeh_pi_v2f32 __attribute__((__vector_size__(8)));
struct __mm_storeh_pi_struct {
__mm_storeh_pi_v2f32 __u;
} __attribute__((__packed__, __may_alias__));
((struct __mm_storeh_pi_struct*)__p)->__u = __builtin_shufflevector(__a, __a, 2, 3);
2008-12-22 11:16:40 +08:00
}
/// Stores the lower 64 bits of a 128-bit vector of [4 x float] to a
/// memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVLPS / MOVLPS </c> instruction.
///
/// \param __p
/// A pointer to a memory location that will receive the float values.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_storel_pi(__m64 *__p, __m128 __a)
2008-12-22 11:16:40 +08:00
{
typedef float __mm_storeh_pi_v2f32 __attribute__((__vector_size__(8)));
struct __mm_storeh_pi_struct {
__mm_storeh_pi_v2f32 __u;
} __attribute__((__packed__, __may_alias__));
((struct __mm_storeh_pi_struct*)__p)->__u = __builtin_shufflevector(__a, __a, 0, 1);
2008-12-22 11:16:40 +08:00
}
/// Stores the lower 32 bits of a 128-bit vector of [4 x float] to a
/// memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction.
///
/// \param __p
/// A pointer to a 32-bit memory location.
/// \param __a
/// A 128-bit vector of [4 x float] containing the value to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_store_ss(float *__p, __m128 __a)
2008-12-22 11:16:40 +08:00
{
struct __mm_store_ss_struct {
float __u;
} __attribute__((__packed__, __may_alias__));
((struct __mm_store_ss_struct*)__p)->__u = __a[0];
2008-12-22 11:16:40 +08:00
}
/// Stores a 128-bit vector of [4 x float] to an unaligned memory
/// location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVUPS / MOVUPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location does not have to be aligned.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_storeu_ps(float *__p, __m128 __a)
2008-12-22 11:16:40 +08:00
{
struct __storeu_ps {
__m128_u __v;
} __attribute__((__packed__, __may_alias__));
((struct __storeu_ps*)__p)->__v = __a;
2008-12-22 11:16:40 +08:00
}
/// Stores a 128-bit vector of [4 x float] into an aligned memory
/// location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location has to be 16-byte aligned.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_store_ps(float *__p, __m128 __a)
2008-12-22 11:16:40 +08:00
{
*(__m128*)__p = __a;
2008-12-22 11:16:40 +08:00
}
/// Stores the lower 32 bits of a 128-bit vector of [4 x float] into
/// four contiguous elements in an aligned memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to <c> VMOVAPS / MOVAPS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location.
/// \param __a
/// A 128-bit vector of [4 x float] whose lower 32 bits are stored to each
/// of the four contiguous elements pointed by \a __p.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_store1_ps(float *__p, __m128 __a)
{
__a = __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 0, 0, 0);
_mm_store_ps(__p, __a);
}
/// Stores the lower 32 bits of a 128-bit vector of [4 x float] into
/// four contiguous elements in an aligned memory location.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to <c> VMOVAPS / MOVAPS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location.
/// \param __a
/// A 128-bit vector of [4 x float] whose lower 32 bits are stored to each
/// of the four contiguous elements pointed by \a __p.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_store_ps1(float *__p, __m128 __a)
2008-12-22 11:16:40 +08:00
{
_mm_store1_ps(__p, __a);
2008-12-22 11:16:40 +08:00
}
/// Stores float values from a 128-bit vector of [4 x float] to an
/// aligned memory location in reverse order.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS + shuffling </c>
/// instruction.
///
/// \param __p
/// A pointer to a 128-bit memory location. The address of the memory
/// location has to be 128-bit aligned.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be stored.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_storer_ps(float *__p, __m128 __a)
2008-12-22 11:16:40 +08:00
{
__a = __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 3, 2, 1, 0);
_mm_store_ps(__p, __a);
2008-12-22 11:16:40 +08:00
}
#define _MM_HINT_ET0 7
#define _MM_HINT_ET1 6
#define _MM_HINT_T0 3
#define _MM_HINT_T1 2
#define _MM_HINT_T2 1
#define _MM_HINT_NTA 0
#ifndef _MSC_VER
/* FIXME: We have to #define this because "sel" must be a constant integer, and
Sema doesn't do any form of constant propagation yet. */
/// Loads one cache line of data from the specified address to a location
/// closer to the processor.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// void _mm_prefetch(const void * a, const int sel);
/// \endcode
///
/// This intrinsic corresponds to the <c> PREFETCHNTA </c> instruction.
///
/// \param a
/// A pointer to a memory location containing a cache line of data.
/// \param sel
/// A predefined integer constant specifying the type of prefetch
/// operation: \n
/// _MM_HINT_NTA: Move data using the non-temporal access (NTA) hint. The
/// PREFETCHNTA instruction will be generated. \n
/// _MM_HINT_T0: Move data using the T0 hint. The PREFETCHT0 instruction will
/// be generated. \n
/// _MM_HINT_T1: Move data using the T1 hint. The PREFETCHT1 instruction will
/// be generated. \n
/// _MM_HINT_T2: Move data using the T2 hint. The PREFETCHT2 instruction will
/// be generated.
#define _mm_prefetch(a, sel) (__builtin_prefetch((const void *)(a), \
((sel) >> 2) & 1, (sel) & 0x3))
#endif
/// Stores a 64-bit integer in the specified aligned memory location. To
/// minimize caching, the data is flagged as non-temporal (unlikely to be
/// used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> MOVNTQ </c> instruction.
///
/// \param __p
/// A pointer to an aligned memory location used to store the register value.
/// \param __a
/// A 64-bit integer containing the value to be stored.
static __inline__ void __DEFAULT_FN_ATTRS_MMX
_mm_stream_pi(__m64 *__p, __m64 __a)
{
__builtin_ia32_movntq(__p, __a);
}
/// Moves packed float values from a 128-bit vector of [4 x float] to a
/// 128-bit aligned memory location. To minimize caching, the data is flagged
/// as non-temporal (unlikely to be used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVNTPS / MOVNTPS </c> instruction.
///
/// \param __p
/// A pointer to a 128-bit aligned memory location that will receive the
/// single-precision floating-point values.
/// \param __a
/// A 128-bit vector of [4 x float] containing the values to be moved.
static __inline__ void __DEFAULT_FN_ATTRS
_mm_stream_ps(float *__p, __m128 __a)
{
__builtin_nontemporal_store((__v4sf)__a, (__v4sf*)__p);
}
#if defined(__cplusplus)
extern "C" {
#endif
/// Forces strong memory ordering (serialization) between store
/// instructions preceding this instruction and store instructions following
/// this instruction, ensuring the system completes all previous stores
/// before executing subsequent stores.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> SFENCE </c> instruction.
///
void _mm_sfence(void);
#if defined(__cplusplus)
} // extern "C"
#endif
/// Extracts 16-bit element from a 64-bit vector of [4 x i16] and
/// returns it, as specified by the immediate integer operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// int _mm_extract_pi16(__m64 a, int n);
/// \endcode
///
/// This intrinsic corresponds to the <c> VPEXTRW / PEXTRW </c> instruction.
///
/// \param a
/// A 64-bit vector of [4 x i16].
/// \param n
/// An immediate integer operand that determines which bits are extracted: \n
/// 0: Bits [15:0] are copied to the destination. \n
/// 1: Bits [31:16] are copied to the destination. \n
/// 2: Bits [47:32] are copied to the destination. \n
/// 3: Bits [63:48] are copied to the destination.
/// \returns A 16-bit integer containing the extracted 16 bits of packed data.
#define _mm_extract_pi16(a, n) \
((int)__builtin_ia32_vec_ext_v4hi((__v4hi)a, (int)n))
2008-12-22 12:55:36 +08:00
/// Copies data from the 64-bit vector of [4 x i16] to the destination,
/// and inserts the lower 16-bits of an integer operand at the 16-bit offset
/// specified by the immediate operand \a n.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m64 _mm_insert_pi16(__m64 a, int d, int n);
/// \endcode
///
/// This intrinsic corresponds to the <c> PINSRW </c> instruction.
///
/// \param a
/// A 64-bit vector of [4 x i16].
/// \param d
/// An integer. The lower 16-bit value from this operand is written to the
/// destination at the offset specified by operand \a n.
/// \param n
/// An immediate integer operant that determines which the bits to be used
/// in the destination. \n
/// 0: Bits [15:0] are copied to the destination. \n
/// 1: Bits [31:16] are copied to the destination. \n
/// 2: Bits [47:32] are copied to the destination. \n
/// 3: Bits [63:48] are copied to the destination. \n
/// The remaining bits in the destination are copied from the corresponding
/// bits in operand \a a.
/// \returns A 64-bit integer vector containing the copied packed data from the
/// operands.
#define _mm_insert_pi16(a, d, n) \
((__m64)__builtin_ia32_vec_set_v4hi((__v4hi)a, (int)d, (int)n))
2008-12-22 12:55:36 +08:00
/// Compares each of the corresponding packed 16-bit integer values of
/// the 64-bit integer vectors, and writes the greater value to the
/// corresponding bits in the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMAXSW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the comparison results.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_max_pi16(__m64 __a, __m64 __b)
2008-12-22 12:55:36 +08:00
{
return (__m64)__builtin_ia32_pmaxsw((__v4hi)__a, (__v4hi)__b);
2008-12-22 12:55:36 +08:00
}
/// Compares each of the corresponding packed 8-bit unsigned integer
/// values of the 64-bit integer vectors, and writes the greater value to the
/// corresponding bits in the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMAXUB </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the comparison results.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_max_pu8(__m64 __a, __m64 __b)
2008-12-22 12:55:36 +08:00
{
return (__m64)__builtin_ia32_pmaxub((__v8qi)__a, (__v8qi)__b);
2008-12-22 12:55:36 +08:00
}
/// Compares each of the corresponding packed 16-bit integer values of
/// the 64-bit integer vectors, and writes the lesser value to the
/// corresponding bits in the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMINSW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the comparison results.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_min_pi16(__m64 __a, __m64 __b)
2008-12-22 12:55:36 +08:00
{
return (__m64)__builtin_ia32_pminsw((__v4hi)__a, (__v4hi)__b);
2008-12-22 12:55:36 +08:00
}
/// Compares each of the corresponding packed 8-bit unsigned integer
/// values of the 64-bit integer vectors, and writes the lesser value to the
/// corresponding bits in the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMINUB </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the comparison results.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_min_pu8(__m64 __a, __m64 __b)
2008-12-22 12:55:36 +08:00
{
return (__m64)__builtin_ia32_pminub((__v8qi)__a, (__v8qi)__b);
2008-12-22 12:55:36 +08:00
}
/// Takes the most significant bit from each 8-bit element in a 64-bit
/// integer vector to create an 8-bit mask value. Zero-extends the value to
/// 32-bit integer and writes it to the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMOVMSKB </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing the values with bits to be extracted.
/// \returns The most significant bit from each 8-bit element in \a __a,
/// written to bits [7:0].
static __inline__ int __DEFAULT_FN_ATTRS_MMX
_mm_movemask_pi8(__m64 __a)
2008-12-22 12:55:36 +08:00
{
return __builtin_ia32_pmovmskb((__v8qi)__a);
2008-12-22 12:55:36 +08:00
}
/// Multiplies packed 16-bit unsigned integer values and writes the
/// high-order 16 bits of each 32-bit product to the corresponding bits in
/// the destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PMULHUW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the products of both operands.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_mulhi_pu16(__m64 __a, __m64 __b)
2008-12-22 12:55:36 +08:00
{
return (__m64)__builtin_ia32_pmulhuw((__v4hi)__a, (__v4hi)__b);
2008-12-22 12:55:36 +08:00
}
/// Shuffles the 4 16-bit integers from a 64-bit integer vector to the
/// destination, as specified by the immediate value operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m64 _mm_shuffle_pi16(__m64 a, const int n);
/// \endcode
///
/// This intrinsic corresponds to the <c> PSHUFW </c> instruction.
///
/// \param a
/// A 64-bit integer vector containing the values to be shuffled.
/// \param n
/// An immediate value containing an 8-bit value specifying which elements to
/// copy from \a a. The destinations within the 64-bit destination are
/// assigned values as follows: \n
/// Bits [1:0] are used to assign values to bits [15:0] in the
/// destination. \n
/// Bits [3:2] are used to assign values to bits [31:16] in the
/// destination. \n
/// Bits [5:4] are used to assign values to bits [47:32] in the
/// destination. \n
/// Bits [7:6] are used to assign values to bits [63:48] in the
/// destination. \n
/// Bit value assignments: \n
/// 00: assigned from bits [15:0] of \a a. \n
/// 01: assigned from bits [31:16] of \a a. \n
/// 10: assigned from bits [47:32] of \a a. \n
/// 11: assigned from bits [63:48] of \a a.
/// \returns A 64-bit integer vector containing the shuffled values.
#define _mm_shuffle_pi16(a, n) \
((__m64)__builtin_ia32_pshufw((__v4hi)(__m64)(a), (n)))
2008-12-22 12:55:36 +08:00
/// Conditionally copies the values from each 8-bit element in the first
/// 64-bit integer vector operand to the specified memory location, as
/// specified by the most significant bit in the corresponding element in the
/// second 64-bit integer vector operand.
///
/// To minimize caching, the data is flagged as non-temporal
/// (unlikely to be used again soon).
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> MASKMOVQ </c> instruction.
///
/// \param __d
/// A 64-bit integer vector containing the values with elements to be copied.
/// \param __n
/// A 64-bit integer vector operand. The most significant bit from each 8-bit
/// element determines whether the corresponding element in operand \a __d
/// is copied. If the most significant bit of a given element is 1, the
/// corresponding element in operand \a __d is copied.
/// \param __p
/// A pointer to a 64-bit memory location that will receive the conditionally
/// copied integer values. The address of the memory location does not have
/// to be aligned.
static __inline__ void __DEFAULT_FN_ATTRS_MMX
_mm_maskmove_si64(__m64 __d, __m64 __n, char *__p)
2008-12-22 12:55:36 +08:00
{
__builtin_ia32_maskmovq((__v8qi)__d, (__v8qi)__n, __p);
2008-12-22 12:55:36 +08:00
}
/// Computes the rounded averages of the packed unsigned 8-bit integer
/// values and writes the averages to the corresponding bits in the
/// destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PAVGB </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the averages of both operands.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_avg_pu8(__m64 __a, __m64 __b)
2008-12-22 12:55:36 +08:00
{
return (__m64)__builtin_ia32_pavgb((__v8qi)__a, (__v8qi)__b);
2008-12-22 12:55:36 +08:00
}
/// Computes the rounded averages of the packed unsigned 16-bit integer
/// values and writes the averages to the corresponding bits in the
/// destination.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PAVGW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector containing the averages of both operands.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_avg_pu16(__m64 __a, __m64 __b)
2008-12-22 12:55:36 +08:00
{
return (__m64)__builtin_ia32_pavgw((__v4hi)__a, (__v4hi)__b);
2008-12-22 12:55:36 +08:00
}
/// Subtracts the corresponding 8-bit unsigned integer values of the two
/// 64-bit vector operands and computes the absolute value for each of the
/// difference. Then sum of the 8 absolute differences is written to the
/// bits [15:0] of the destination; the remaining bits [63:16] are cleared.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> PSADBW </c> instruction.
///
/// \param __a
/// A 64-bit integer vector containing one of the source operands.
/// \param __b
/// A 64-bit integer vector containing one of the source operands.
/// \returns A 64-bit integer vector whose lower 16 bits contain the sums of the
/// sets of absolute differences between both operands. The upper bits are
/// cleared.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_sad_pu8(__m64 __a, __m64 __b)
2008-12-22 12:55:36 +08:00
{
return (__m64)__builtin_ia32_psadbw((__v8qi)__a, (__v8qi)__b);
2008-12-22 12:55:36 +08:00
}
#if defined(__cplusplus)
extern "C" {
#endif
/// Returns the contents of the MXCSR register as a 32-bit unsigned
/// integer value.
///
/// There are several groups of macros associated with this
/// intrinsic, including:
/// <ul>
/// <li>
/// For checking exception states: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO,
/// _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW,
/// _MM_EXCEPT_INEXACT. There is a convenience wrapper
/// _MM_GET_EXCEPTION_STATE().
/// </li>
/// <li>
/// For checking exception masks: _MM_MASK_UNDERFLOW, _MM_MASK_OVERFLOW,
/// _MM_MASK_INVALID, _MM_MASK_DENORM, _MM_MASK_DIV_ZERO, _MM_MASK_INEXACT.
/// There is a convenience wrapper _MM_GET_EXCEPTION_MASK().
/// </li>
/// <li>
/// For checking rounding modes: _MM_ROUND_NEAREST, _MM_ROUND_DOWN,
/// _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO. There is a convenience wrapper
/// _MM_GET_ROUNDING_MODE().
/// </li>
/// <li>
/// For checking flush-to-zero mode: _MM_FLUSH_ZERO_ON, _MM_FLUSH_ZERO_OFF.
/// There is a convenience wrapper _MM_GET_FLUSH_ZERO_MODE().
/// </li>
/// <li>
/// For checking denormals-are-zero mode: _MM_DENORMALS_ZERO_ON,
/// _MM_DENORMALS_ZERO_OFF. There is a convenience wrapper
/// _MM_GET_DENORMALS_ZERO_MODE().
/// </li>
/// </ul>
///
/// For example, the following expression checks if an overflow exception has
/// occurred:
/// \code
/// ( _mm_getcsr() & _MM_EXCEPT_OVERFLOW )
/// \endcode
///
/// The following expression gets the current rounding mode:
/// \code
/// _MM_GET_ROUNDING_MODE()
/// \endcode
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VSTMXCSR / STMXCSR </c> instruction.
///
/// \returns A 32-bit unsigned integer containing the contents of the MXCSR
/// register.
unsigned int _mm_getcsr(void);
/// Sets the MXCSR register with the 32-bit unsigned integer value.
///
/// There are several groups of macros associated with this intrinsic,
/// including:
/// <ul>
/// <li>
/// For setting exception states: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO,
/// _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW,
/// _MM_EXCEPT_INEXACT. There is a convenience wrapper
/// _MM_SET_EXCEPTION_STATE(x) where x is one of these macros.
/// </li>
/// <li>
/// For setting exception masks: _MM_MASK_UNDERFLOW, _MM_MASK_OVERFLOW,
/// _MM_MASK_INVALID, _MM_MASK_DENORM, _MM_MASK_DIV_ZERO, _MM_MASK_INEXACT.
/// There is a convenience wrapper _MM_SET_EXCEPTION_MASK(x) where x is one
/// of these macros.
/// </li>
/// <li>
/// For setting rounding modes: _MM_ROUND_NEAREST, _MM_ROUND_DOWN,
/// _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO. There is a convenience wrapper
/// _MM_SET_ROUNDING_MODE(x) where x is one of these macros.
/// </li>
/// <li>
/// For setting flush-to-zero mode: _MM_FLUSH_ZERO_ON, _MM_FLUSH_ZERO_OFF.
/// There is a convenience wrapper _MM_SET_FLUSH_ZERO_MODE(x) where x is
/// one of these macros.
/// </li>
/// <li>
/// For setting denormals-are-zero mode: _MM_DENORMALS_ZERO_ON,
/// _MM_DENORMALS_ZERO_OFF. There is a convenience wrapper
/// _MM_SET_DENORMALS_ZERO_MODE(x) where x is one of these macros.
/// </li>
/// </ul>
///
/// For example, the following expression causes subsequent floating-point
/// operations to round up:
/// _mm_setcsr(_mm_getcsr() | _MM_ROUND_UP)
///
/// The following example sets the DAZ and FTZ flags:
/// \code
/// void setFlags() {
/// _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
/// _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
/// }
/// \endcode
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VLDMXCSR / LDMXCSR </c> instruction.
///
/// \param __i
/// A 32-bit unsigned integer value to be written to the MXCSR register.
void _mm_setcsr(unsigned int __i);
#if defined(__cplusplus)
} // extern "C"
#endif
/// Selects 4 float values from the 128-bit operands of [4 x float], as
/// specified by the immediate value operand.
///
/// \headerfile <x86intrin.h>
///
/// \code
/// __m128 _mm_shuffle_ps(__m128 a, __m128 b, const int mask);
/// \endcode
///
/// This intrinsic corresponds to the <c> VSHUFPS / SHUFPS </c> instruction.
///
/// \param a
/// A 128-bit vector of [4 x float].
/// \param b
/// A 128-bit vector of [4 x float].
/// \param mask
/// An immediate value containing an 8-bit value specifying which elements to
/// copy from \a a and \a b. \n
/// Bits [3:0] specify the values copied from operand \a a. \n
/// Bits [7:4] specify the values copied from operand \a b. \n
/// The destinations within the 128-bit destination are assigned values as
/// follows: \n
/// Bits [1:0] are used to assign values to bits [31:0] in the
/// destination. \n
/// Bits [3:2] are used to assign values to bits [63:32] in the
/// destination. \n
/// Bits [5:4] are used to assign values to bits [95:64] in the
/// destination. \n
/// Bits [7:6] are used to assign values to bits [127:96] in the
/// destination. \n
/// Bit value assignments: \n
/// 00: Bits [31:0] copied from the specified operand. \n
/// 01: Bits [63:32] copied from the specified operand. \n
/// 10: Bits [95:64] copied from the specified operand. \n
/// 11: Bits [127:96] copied from the specified operand.
/// \returns A 128-bit vector of [4 x float] containing the shuffled values.
#define _mm_shuffle_ps(a, b, mask) \
((__m128)__builtin_ia32_shufps((__v4sf)(__m128)(a), (__v4sf)(__m128)(b), \
(int)(mask)))
2008-12-22 13:20:34 +08:00
/// Unpacks the high-order (index 2,3) values from two 128-bit vectors of
/// [4 x float] and interleaves them into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUNPCKHPS / UNPCKHPS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. \n
/// Bits [95:64] are written to bits [31:0] of the destination. \n
/// Bits [127:96] are written to bits [95:64] of the destination.
/// \param __b
/// A 128-bit vector of [4 x float].
/// Bits [95:64] are written to bits [63:32] of the destination. \n
/// Bits [127:96] are written to bits [127:96] of the destination.
/// \returns A 128-bit vector of [4 x float] containing the interleaved values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_unpackhi_ps(__m128 __a, __m128 __b)
2008-12-22 13:20:34 +08:00
{
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 2, 6, 3, 7);
2008-12-22 13:20:34 +08:00
}
/// Unpacks the low-order (index 0,1) values from two 128-bit vectors of
/// [4 x float] and interleaves them into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUNPCKLPS / UNPCKLPS </c> instruction.
///
/// \param __a
/// A 128-bit vector of [4 x float]. \n
/// Bits [31:0] are written to bits [31:0] of the destination. \n
/// Bits [63:32] are written to bits [95:64] of the destination.
/// \param __b
/// A 128-bit vector of [4 x float]. \n
/// Bits [31:0] are written to bits [63:32] of the destination. \n
/// Bits [63:32] are written to bits [127:96] of the destination.
/// \returns A 128-bit vector of [4 x float] containing the interleaved values.
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_unpacklo_ps(__m128 __a, __m128 __b)
2008-12-22 13:20:34 +08:00
{
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 0, 4, 1, 5);
2008-12-22 13:20:34 +08:00
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 32 bits are set to the lower 32 bits of the second parameter. The upper
/// 96 bits are set to the upper 96 bits of the first parameter.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VBLENDPS / BLENDPS / MOVSS </c>
/// instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float]. The upper 96 bits are
/// written to the upper 96 bits of the result.
/// \param __b
/// A 128-bit floating-point vector of [4 x float]. The lower 32 bits are
/// written to the lower 32 bits of the result.
/// \returns A 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_move_ss(__m128 __a, __m128 __b)
2008-12-22 13:20:34 +08:00
{
__a[0] = __b[0];
return __a;
2008-12-22 13:20:34 +08:00
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 64 bits are set to the upper 64 bits of the second parameter. The upper
/// 64 bits are set to the upper 64 bits of the first parameter.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUNPCKHPD / UNPCKHPD </c> instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float]. The upper 64 bits are
/// written to the upper 64 bits of the result.
/// \param __b
/// A 128-bit floating-point vector of [4 x float]. The upper 64 bits are
/// written to the lower 64 bits of the result.
/// \returns A 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_movehl_ps(__m128 __a, __m128 __b)
2008-12-22 13:20:34 +08:00
{
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 6, 7, 2, 3);
2008-12-22 13:20:34 +08:00
}
/// Constructs a 128-bit floating-point vector of [4 x float]. The lower
/// 64 bits are set to the lower 64 bits of the first parameter. The upper
/// 64 bits are set to the lower 64 bits of the second parameter.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VUNPCKLPD / UNPCKLPD </c> instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float]. The lower 64 bits are
/// written to the lower 64 bits of the result.
/// \param __b
/// A 128-bit floating-point vector of [4 x float]. The lower 64 bits are
/// written to the upper 64 bits of the result.
/// \returns A 128-bit floating-point vector of [4 x float].
static __inline__ __m128 __DEFAULT_FN_ATTRS
_mm_movelh_ps(__m128 __a, __m128 __b)
2008-12-22 13:20:34 +08:00
{
return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 0, 1, 4, 5);
2008-12-22 13:20:34 +08:00
}
/// Converts a 64-bit vector of [4 x i16] into a 128-bit vector of [4 x
/// float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of [4 x i16]. The elements of the destination are copied
/// from the corresponding elements in this operand.
/// \returns A 128-bit vector of [4 x float] containing the copied and converted
/// values from the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX
_mm_cvtpi16_ps(__m64 __a)
{
__m64 __b, __c;
__m128 __r;
__b = _mm_setzero_si64();
__b = _mm_cmpgt_pi16(__b, __a);
__c = _mm_unpackhi_pi16(__a, __b);
__r = _mm_setzero_ps();
__r = _mm_cvtpi32_ps(__r, __c);
__r = _mm_movelh_ps(__r, __r);
__c = _mm_unpacklo_pi16(__a, __b);
__r = _mm_cvtpi32_ps(__r, __c);
return __r;
}
/// Converts a 64-bit vector of 16-bit unsigned integer values into a
/// 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of 16-bit unsigned integer values. The elements of the
/// destination are copied from the corresponding elements in this operand.
/// \returns A 128-bit vector of [4 x float] containing the copied and converted
/// values from the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX
_mm_cvtpu16_ps(__m64 __a)
{
__m64 __b, __c;
__m128 __r;
__b = _mm_setzero_si64();
__c = _mm_unpackhi_pi16(__a, __b);
__r = _mm_setzero_ps();
__r = _mm_cvtpi32_ps(__r, __c);
__r = _mm_movelh_ps(__r, __r);
__c = _mm_unpacklo_pi16(__a, __b);
__r = _mm_cvtpi32_ps(__r, __c);
return __r;
}
/// Converts the lower four 8-bit values from a 64-bit vector of [8 x i8]
/// into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of [8 x i8]. The elements of the destination are copied
/// from the corresponding lower 4 elements in this operand.
/// \returns A 128-bit vector of [4 x float] containing the copied and converted
/// values from the operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX
_mm_cvtpi8_ps(__m64 __a)
{
__m64 __b;
__b = _mm_setzero_si64();
__b = _mm_cmpgt_pi8(__b, __a);
__b = _mm_unpacklo_pi8(__a, __b);
return _mm_cvtpi16_ps(__b);
}
/// Converts the lower four unsigned 8-bit integer values from a 64-bit
/// vector of [8 x u8] into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of unsigned 8-bit integer values. The elements of the
/// destination are copied from the corresponding lower 4 elements in this
/// operand.
/// \returns A 128-bit vector of [4 x float] containing the copied and converted
/// values from the source operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX
_mm_cvtpu8_ps(__m64 __a)
{
__m64 __b;
__b = _mm_setzero_si64();
__b = _mm_unpacklo_pi8(__a, __b);
return _mm_cvtpi16_ps(__b);
}
/// Converts the two 32-bit signed integer values from each 64-bit vector
/// operand of [2 x i32] into a 128-bit vector of [4 x float].
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction.
///
/// \param __a
/// A 64-bit vector of [2 x i32]. The lower elements of the destination are
/// copied from the elements in this operand.
/// \param __b
/// A 64-bit vector of [2 x i32]. The upper elements of the destination are
/// copied from the elements in this operand.
/// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the
/// copied and converted values from the first operand. The upper 64 bits
/// contain the copied and converted values from the second operand.
static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX
_mm_cvtpi32x2_ps(__m64 __a, __m64 __b)
{
__m128 __c;
__c = _mm_setzero_ps();
__c = _mm_cvtpi32_ps(__c, __b);
__c = _mm_movelh_ps(__c, __c);
return _mm_cvtpi32_ps(__c, __a);
}
/// Converts each single-precision floating-point element of a 128-bit
/// floating-point vector of [4 x float] into a 16-bit signed integer, and
/// packs the results into a 64-bit integer vector of [4 x i16].
///
/// If the floating-point element is NaN or infinity, or if the
/// floating-point element is greater than 0x7FFFFFFF or less than -0x8000,
/// it is converted to 0x8000. Otherwise if the floating-point element is
/// greater than 0x7FFF, it is converted to 0x7FFF.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPS2PI + COMPOSITE </c> instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float].
/// \returns A 64-bit integer vector of [4 x i16] containing the converted
/// values.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_cvtps_pi16(__m128 __a)
{
__m64 __b, __c;
__b = _mm_cvtps_pi32(__a);
__a = _mm_movehl_ps(__a, __a);
__c = _mm_cvtps_pi32(__a);
return _mm_packs_pi32(__b, __c);
}
/// Converts each single-precision floating-point element of a 128-bit
/// floating-point vector of [4 x float] into an 8-bit signed integer, and
/// packs the results into the lower 32 bits of a 64-bit integer vector of
/// [8 x i8]. The upper 32 bits of the vector are set to 0.
///
/// If the floating-point element is NaN or infinity, or if the
/// floating-point element is greater than 0x7FFFFFFF or less than -0x80, it
/// is converted to 0x80. Otherwise if the floating-point element is greater
/// than 0x7F, it is converted to 0x7F.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> CVTPS2PI + COMPOSITE </c> instruction.
///
/// \param __a
/// 128-bit floating-point vector of [4 x float].
/// \returns A 64-bit integer vector of [8 x i8]. The lower 32 bits contain the
/// converted values and the uppper 32 bits are set to zero.
static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX
_mm_cvtps_pi8(__m128 __a)
{
__m64 __b, __c;
__b = _mm_cvtps_pi16(__a);
__c = _mm_setzero_si64();
return _mm_packs_pi16(__b, __c);
}
/// Extracts the sign bits from each single-precision floating-point
/// element of a 128-bit floating-point vector of [4 x float] and returns the
/// sign bits in bits [0:3] of the result. Bits [31:4] of the result are set
/// to zero.
///
/// \headerfile <x86intrin.h>
///
/// This intrinsic corresponds to the <c> VMOVMSKPS / MOVMSKPS </c> instruction.
///
/// \param __a
/// A 128-bit floating-point vector of [4 x float].
/// \returns A 32-bit integer value. Bits [3:0] contain the sign bits from each
/// single-precision floating-point element of the parameter. Bits [31:4] are
/// set to zero.
static __inline__ int __DEFAULT_FN_ATTRS
_mm_movemask_ps(__m128 __a)
2008-12-22 13:20:34 +08:00
{
return __builtin_ia32_movmskps((__v4sf)__a);
2008-12-22 13:20:34 +08:00
}
#define _MM_ALIGN16 __attribute__((aligned(16)))
2008-12-22 13:42:03 +08:00
#define _MM_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
#define _MM_EXCEPT_INVALID (0x0001U)
#define _MM_EXCEPT_DENORM (0x0002U)
#define _MM_EXCEPT_DIV_ZERO (0x0004U)
#define _MM_EXCEPT_OVERFLOW (0x0008U)
#define _MM_EXCEPT_UNDERFLOW (0x0010U)
#define _MM_EXCEPT_INEXACT (0x0020U)
#define _MM_EXCEPT_MASK (0x003fU)
#define _MM_MASK_INVALID (0x0080U)
#define _MM_MASK_DENORM (0x0100U)
#define _MM_MASK_DIV_ZERO (0x0200U)
#define _MM_MASK_OVERFLOW (0x0400U)
#define _MM_MASK_UNDERFLOW (0x0800U)
#define _MM_MASK_INEXACT (0x1000U)
#define _MM_MASK_MASK (0x1f80U)
#define _MM_ROUND_NEAREST (0x0000U)
#define _MM_ROUND_DOWN (0x2000U)
#define _MM_ROUND_UP (0x4000U)
#define _MM_ROUND_TOWARD_ZERO (0x6000U)
#define _MM_ROUND_MASK (0x6000U)
#define _MM_FLUSH_ZERO_MASK (0x8000U)
#define _MM_FLUSH_ZERO_ON (0x8000U)
#define _MM_FLUSH_ZERO_OFF (0x0000U)
2008-12-22 13:42:03 +08:00
#define _MM_GET_EXCEPTION_MASK() (_mm_getcsr() & _MM_MASK_MASK)
#define _MM_GET_EXCEPTION_STATE() (_mm_getcsr() & _MM_EXCEPT_MASK)
#define _MM_GET_FLUSH_ZERO_MODE() (_mm_getcsr() & _MM_FLUSH_ZERO_MASK)
2008-12-22 13:42:03 +08:00
#define _MM_GET_ROUNDING_MODE() (_mm_getcsr() & _MM_ROUND_MASK)
#define _MM_SET_EXCEPTION_MASK(x) (_mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | (x)))
2008-12-22 13:42:03 +08:00
#define _MM_SET_EXCEPTION_STATE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | (x)))
#define _MM_SET_FLUSH_ZERO_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | (x)))
2008-12-22 13:42:03 +08:00
#define _MM_SET_ROUNDING_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | (x)))
#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
do { \
__m128 tmp3, tmp2, tmp1, tmp0; \
tmp0 = _mm_unpacklo_ps((row0), (row1)); \
tmp2 = _mm_unpacklo_ps((row2), (row3)); \
tmp1 = _mm_unpackhi_ps((row0), (row1)); \
tmp3 = _mm_unpackhi_ps((row2), (row3)); \
(row0) = _mm_movelh_ps(tmp0, tmp2); \
(row1) = _mm_movehl_ps(tmp2, tmp0); \
(row2) = _mm_movelh_ps(tmp1, tmp3); \
(row3) = _mm_movehl_ps(tmp3, tmp1); \
2008-12-22 13:42:03 +08:00
} while (0)
/* Aliases for compatibility. */
#define _m_pextrw _mm_extract_pi16
#define _m_pinsrw _mm_insert_pi16
#define _m_pmaxsw _mm_max_pi16
#define _m_pmaxub _mm_max_pu8
#define _m_pminsw _mm_min_pi16
#define _m_pminub _mm_min_pu8
#define _m_pmovmskb _mm_movemask_pi8
#define _m_pmulhuw _mm_mulhi_pu16
#define _m_pshufw _mm_shuffle_pi16
#define _m_maskmovq _mm_maskmove_si64
#define _m_pavgb _mm_avg_pu8
#define _m_pavgw _mm_avg_pu16
#define _m_psadbw _mm_sad_pu8
#define _m_ _mm_
#define _m_ _mm_
#undef __DEFAULT_FN_ATTRS
#undef __DEFAULT_FN_ATTRS_MMX
/* Ugly hack for backwards-compatibility (compatible with gcc) */
#if defined(__SSE2__) && !__building_module(_Builtin_intrinsics)
#include <emmintrin.h>
#endif
#endif /* __XMMINTRIN_H */