2017-12-07 00:40:37 +08:00
|
|
|
//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "HexagonISelLowering.h"
|
|
|
|
#include "HexagonRegisterInfo.h"
|
|
|
|
#include "HexagonSubtarget.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
|
|
|
|
const SDLoc &dl, SelectionDAG &DAG) const {
|
|
|
|
SmallVector<SDValue,4> IntOps;
|
|
|
|
IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
|
|
|
|
for (const SDValue &Op : Ops)
|
|
|
|
IntOps.push_back(Op);
|
|
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
|
|
|
|
}
|
|
|
|
|
|
|
|
MVT
|
|
|
|
HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
|
|
|
|
assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
|
|
|
|
|
|
|
|
MVT ElemTy = Tys.first.getVectorElementType();
|
|
|
|
return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
|
|
|
|
Tys.second.getVectorNumElements());
|
|
|
|
}
|
|
|
|
|
|
|
|
HexagonTargetLowering::TypePair
|
|
|
|
HexagonTargetLowering::typeSplit(MVT VecTy) const {
|
|
|
|
assert(VecTy.isVector());
|
|
|
|
unsigned NumElem = VecTy.getVectorNumElements();
|
|
|
|
assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
|
|
|
|
MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
|
|
|
|
return { HalfTy, HalfTy };
|
|
|
|
}
|
|
|
|
|
|
|
|
MVT
|
|
|
|
HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
|
|
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
|
|
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
|
|
|
|
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
|
|
|
|
}
|
|
|
|
|
|
|
|
MVT
|
|
|
|
HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
|
|
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
|
|
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
|
|
|
|
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
|
|
|
|
SelectionDAG &DAG) const {
|
|
|
|
if (ty(Vec).getVectorElementType() == ElemTy)
|
|
|
|
return Vec;
|
|
|
|
MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
|
|
|
|
return DAG.getBitcast(CastTy, Vec);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
|
|
|
|
SelectionDAG &DAG) const {
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
|
|
|
|
Ops.second, Ops.first);
|
|
|
|
}
|
|
|
|
|
|
|
|
HexagonTargetLowering::VectorPair
|
|
|
|
HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
|
|
|
|
SelectionDAG &DAG) const {
|
|
|
|
TypePair Tys = typeSplit(ty(Vec));
|
|
|
|
return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
|
|
|
|
SelectionDAG &DAG) const {
|
|
|
|
if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
|
|
|
|
ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
|
|
|
|
|
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
|
|
if (ElemWidth == 8)
|
|
|
|
return ElemIdx;
|
|
|
|
|
|
|
|
unsigned L = Log2_32(ElemWidth/8);
|
|
|
|
const SDLoc &dl(ElemIdx);
|
|
|
|
return DAG.getNode(ISD::SHL, dl, MVT::i32,
|
|
|
|
{ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
|
|
|
|
SelectionDAG &DAG) const {
|
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
|
|
assert(ElemWidth >= 8 && ElemWidth <= 32);
|
|
|
|
if (ElemWidth == 32)
|
|
|
|
return Idx;
|
|
|
|
|
|
|
|
if (ty(Idx) != MVT::i32)
|
|
|
|
Idx = DAG.getBitcast(MVT::i32, Idx);
|
|
|
|
const SDLoc &dl(Idx);
|
|
|
|
SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
|
|
|
|
SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
|
|
|
|
return SubIdx;
|
|
|
|
}
|
|
|
|
|
2017-12-08 01:37:28 +08:00
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
|
|
|
|
SDValue Op1, ArrayRef<int> Mask,
|
|
|
|
SelectionDAG &DAG) const {
|
|
|
|
MVT OpTy = ty(Op0);
|
|
|
|
assert(OpTy == ty(Op1));
|
|
|
|
|
|
|
|
MVT ElemTy = OpTy.getVectorElementType();
|
|
|
|
if (ElemTy == MVT::i8)
|
|
|
|
return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
|
|
|
|
assert(ElemTy.getSizeInBits() >= 8);
|
|
|
|
|
|
|
|
MVT ResTy = tyVector(OpTy, MVT::i8);
|
|
|
|
unsigned ElemSize = ElemTy.getSizeInBits() / 8;
|
|
|
|
|
|
|
|
SmallVector<int,128> ByteMask;
|
|
|
|
for (int M : Mask) {
|
|
|
|
if (M < 0) {
|
|
|
|
for (unsigned I = 0; I != ElemSize; ++I)
|
|
|
|
ByteMask.push_back(-1);
|
|
|
|
} else {
|
|
|
|
int NewM = M*ElemSize;
|
|
|
|
for (unsigned I = 0; I != ElemSize; ++I)
|
|
|
|
ByteMask.push_back(NewM+I);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(ResTy.getVectorNumElements() == ByteMask.size());
|
|
|
|
return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
|
|
|
|
opCastElem(Op1, MVT::i8, DAG), ByteMask);
|
|
|
|
}
|
|
|
|
|
2017-12-07 00:40:37 +08:00
|
|
|
SDValue
|
2018-01-24 01:53:59 +08:00
|
|
|
HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
|
|
|
|
const SDLoc &dl, MVT VecTy,
|
|
|
|
SelectionDAG &DAG) const {
|
2017-12-21 04:49:43 +08:00
|
|
|
unsigned VecLen = Values.size();
|
2017-12-07 00:40:37 +08:00
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
2017-12-21 04:49:43 +08:00
|
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
2017-12-07 00:40:37 +08:00
|
|
|
|
2017-12-21 04:49:43 +08:00
|
|
|
unsigned ElemSize = ElemWidth / 8;
|
|
|
|
assert(ElemSize*VecLen == HwLen);
|
2017-12-07 00:40:37 +08:00
|
|
|
SmallVector<SDValue,32> Words;
|
|
|
|
|
|
|
|
if (VecTy.getVectorElementType() != MVT::i32) {
|
|
|
|
assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
|
|
|
|
unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
|
|
|
|
MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
|
2017-12-21 04:49:43 +08:00
|
|
|
for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
|
|
|
|
SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
|
2017-12-07 00:40:37 +08:00
|
|
|
Words.push_back(DAG.getBitcast(MVT::i32, W));
|
|
|
|
}
|
|
|
|
} else {
|
2017-12-21 04:49:43 +08:00
|
|
|
Words.assign(Values.begin(), Values.end());
|
2017-12-07 00:40:37 +08:00
|
|
|
}
|
|
|
|
|
2018-01-24 01:53:59 +08:00
|
|
|
unsigned NumWords = Words.size();
|
2018-02-01 00:52:15 +08:00
|
|
|
bool IsSplat = true, IsUndef = true;
|
2018-01-24 01:53:59 +08:00
|
|
|
SDValue SplatV;
|
|
|
|
for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
|
|
|
|
if (isUndef(Words[i]))
|
|
|
|
continue;
|
2018-02-01 00:52:15 +08:00
|
|
|
IsUndef = false;
|
2018-01-24 01:53:59 +08:00
|
|
|
if (!SplatV.getNode())
|
|
|
|
SplatV = Words[i];
|
|
|
|
else if (SplatV != Words[i])
|
|
|
|
IsSplat = false;
|
|
|
|
}
|
2018-02-01 00:52:15 +08:00
|
|
|
if (IsUndef)
|
|
|
|
return DAG.getUNDEF(VecTy);
|
2018-01-24 01:53:59 +08:00
|
|
|
if (IsSplat) {
|
|
|
|
assert(SplatV.getNode());
|
2018-01-27 05:54:56 +08:00
|
|
|
auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
|
|
|
|
if (IdxN && IdxN->isNullValue())
|
|
|
|
return getZero(dl, VecTy, DAG);
|
|
|
|
MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
|
|
|
|
SDValue SV = DAG.getNode(HexagonISD::VSPLAT, dl, WordTy, SplatV);
|
|
|
|
return DAG.getBitcast(VecTy, SV);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Delay recognizing constant vectors until here, so that we can generate
|
|
|
|
// a vsplat.
|
|
|
|
SmallVector<ConstantInt*, 128> Consts(VecLen);
|
|
|
|
bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
|
|
|
|
if (AllConst) {
|
|
|
|
ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
|
|
|
|
(Constant**)Consts.end());
|
|
|
|
Constant *CV = ConstantVector::get(Tmp);
|
|
|
|
unsigned Align = HwLen;
|
|
|
|
SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
|
|
|
|
return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
|
|
|
|
MachinePointerInfo::getConstantPool(MF), Align);
|
2018-01-24 01:53:59 +08:00
|
|
|
}
|
|
|
|
|
2017-12-07 00:40:37 +08:00
|
|
|
// Construct two halves in parallel, then or them together.
|
|
|
|
assert(4*Words.size() == Subtarget.getVectorLength());
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
|
|
|
|
SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
|
2017-12-07 00:40:37 +08:00
|
|
|
SDValue S = DAG.getConstant(4, dl, MVT::i32);
|
|
|
|
for (unsigned i = 0; i != NumWords/2; ++i) {
|
|
|
|
SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
|
|
|
|
{HalfV0, Words[i]});
|
|
|
|
SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
|
|
|
|
{HalfV1, Words[i+NumWords/2]});
|
|
|
|
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
|
|
|
|
HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
|
|
|
|
}
|
|
|
|
|
|
|
|
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
|
|
|
|
{HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
|
|
|
|
SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
|
|
|
|
return DstV;
|
|
|
|
}
|
|
|
|
|
2018-01-24 01:53:59 +08:00
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
|
|
|
|
unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
|
|
|
|
MVT PredTy = ty(PredV);
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
|
|
|
|
|
|
|
|
if (Subtarget.isHVXVectorType(PredTy, true)) {
|
|
|
|
// Move the vector predicate SubV to a vector register, and scale it
|
|
|
|
// down to match the representation (bytes per type element) that VecV
|
|
|
|
// uses. The scaling down will pick every 2nd or 4th (every Scale-th
|
2018-01-26 16:15:29 +08:00
|
|
|
// in general) element and put them at the front of the resulting
|
2018-01-24 01:53:59 +08:00
|
|
|
// vector. This subvector will then be inserted into the Q2V of VecV.
|
|
|
|
// To avoid having an operation that generates an illegal type (short
|
|
|
|
// vector), generate a full size vector.
|
|
|
|
//
|
|
|
|
SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
|
|
|
|
SmallVector<int,128> Mask(HwLen);
|
|
|
|
// Scale = BitBytes(PredV) / Given BitBytes.
|
|
|
|
unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
|
|
|
|
unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
|
|
|
|
|
|
|
|
for (unsigned i = 0; i != HwLen; ++i) {
|
|
|
|
unsigned Num = i % Scale;
|
|
|
|
unsigned Off = i / Scale;
|
|
|
|
Mask[BlockLen*Num + Off] = i;
|
|
|
|
}
|
|
|
|
SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
|
|
|
|
if (!ZeroFill)
|
|
|
|
return S;
|
|
|
|
// Fill the bytes beyond BlockLen with 0s.
|
|
|
|
MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
|
|
|
|
{DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
|
2018-01-24 01:53:59 +08:00
|
|
|
SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
|
|
|
|
return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure that this is a valid scalar predicate.
|
|
|
|
assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
|
|
|
|
|
|
|
|
unsigned Bytes = 8 / PredTy.getVectorNumElements();
|
|
|
|
SmallVector<SDValue,4> Words[2];
|
|
|
|
unsigned IdxW = 0;
|
|
|
|
|
|
|
|
auto Lo32 = [&DAG, &dl] (SDValue P) {
|
|
|
|
return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
|
|
|
|
};
|
|
|
|
auto Hi32 = [&DAG, &dl] (SDValue P) {
|
|
|
|
return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
|
|
|
|
};
|
|
|
|
|
|
|
|
SDValue W0 = isUndef(PredV)
|
|
|
|
? DAG.getUNDEF(MVT::i64)
|
|
|
|
: DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
|
|
|
|
Words[IdxW].push_back(Hi32(W0));
|
|
|
|
Words[IdxW].push_back(Lo32(W0));
|
|
|
|
|
|
|
|
while (Bytes < BitBytes) {
|
|
|
|
IdxW ^= 1;
|
|
|
|
Words[IdxW].clear();
|
|
|
|
|
|
|
|
if (Bytes < 4) {
|
|
|
|
for (const SDValue &W : Words[IdxW ^ 1]) {
|
|
|
|
SDValue T = expandPredicate(W, dl, DAG);
|
|
|
|
Words[IdxW].push_back(Hi32(T));
|
|
|
|
Words[IdxW].push_back(Lo32(T));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (const SDValue &W : Words[IdxW ^ 1]) {
|
|
|
|
Words[IdxW].push_back(W);
|
|
|
|
Words[IdxW].push_back(W);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Bytes *= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(Bytes == BitBytes);
|
|
|
|
|
|
|
|
SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
|
|
|
|
SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
|
|
|
|
for (const SDValue &W : Words[IdxW]) {
|
|
|
|
Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
|
|
|
|
Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
|
|
|
|
}
|
|
|
|
|
|
|
|
return Vec;
|
|
|
|
}
|
|
|
|
|
2017-12-21 04:49:43 +08:00
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
|
|
|
|
const SDLoc &dl, MVT VecTy,
|
|
|
|
SelectionDAG &DAG) const {
|
|
|
|
// Construct a vector V of bytes, such that a comparison V >u 0 would
|
|
|
|
// produce the required vector predicate.
|
|
|
|
unsigned VecLen = Values.size();
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
assert(VecLen <= HwLen || VecLen == 8*HwLen);
|
|
|
|
SmallVector<SDValue,128> Bytes;
|
|
|
|
|
|
|
|
if (VecLen <= HwLen) {
|
|
|
|
// In the hardware, each bit of a vector predicate corresponds to a byte
|
|
|
|
// of a vector register. Calculate how many bytes does a bit of VecTy
|
|
|
|
// correspond to.
|
|
|
|
assert(HwLen % VecLen == 0);
|
|
|
|
unsigned BitBytes = HwLen / VecLen;
|
|
|
|
for (SDValue V : Values) {
|
|
|
|
SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
|
|
|
|
: DAG.getConstant(0, dl, MVT::i8);
|
|
|
|
for (unsigned B = 0; B != BitBytes; ++B)
|
|
|
|
Bytes.push_back(Ext);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// There are as many i1 values, as there are bits in a vector register.
|
|
|
|
// Divide the values into groups of 8 and check that each group consists
|
|
|
|
// of the same value (ignoring undefs).
|
|
|
|
for (unsigned I = 0; I != VecLen; I += 8) {
|
|
|
|
unsigned B = 0;
|
|
|
|
// Find the first non-undef value in this group.
|
|
|
|
for (; B != 8; ++B) {
|
|
|
|
if (!Values[I+B].isUndef())
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
SDValue F = Values[I+B];
|
|
|
|
SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
|
|
|
|
: DAG.getConstant(0, dl, MVT::i8);
|
|
|
|
Bytes.push_back(Ext);
|
|
|
|
// Verify that the rest of values in the group are the same as the
|
|
|
|
// first.
|
|
|
|
for (; B != 8; ++B)
|
|
|
|
assert(Values[I+B].isUndef() || Values[I+B] == F);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
|
2018-01-24 01:53:59 +08:00
|
|
|
SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
|
|
|
|
return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
|
2017-12-21 04:49:43 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
2018-01-24 01:53:59 +08:00
|
|
|
HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
|
|
|
|
const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
|
2017-12-07 00:40:37 +08:00
|
|
|
MVT ElemTy = ty(VecV).getVectorElementType();
|
2018-01-24 01:53:59 +08:00
|
|
|
|
2017-12-07 00:40:37 +08:00
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
2017-12-15 02:35:24 +08:00
|
|
|
assert(ElemWidth >= 8 && ElemWidth <= 32);
|
2017-12-07 03:22:19 +08:00
|
|
|
(void)ElemWidth;
|
2017-12-07 00:40:37 +08:00
|
|
|
|
|
|
|
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
|
|
|
|
SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
|
|
|
|
{VecV, ByteIdx});
|
|
|
|
if (ElemTy == MVT::i32)
|
|
|
|
return ExWord;
|
|
|
|
|
|
|
|
// Have an extracted word, need to extract the smaller element out of it.
|
|
|
|
// 1. Extract the bits of (the original) IdxV that correspond to the index
|
|
|
|
// of the desired element in the 32-bit word.
|
|
|
|
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
|
|
|
|
// 2. Extract the element from the word.
|
|
|
|
SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
|
|
|
|
return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
2018-01-24 01:53:59 +08:00
|
|
|
HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
|
|
|
|
const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
|
|
|
|
// Implement other return types if necessary.
|
|
|
|
assert(ResTy == MVT::i1);
|
|
|
|
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
|
|
|
|
SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
|
|
|
|
|
|
|
|
unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
|
|
|
|
SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
|
|
|
|
IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
|
|
|
|
|
|
|
|
SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
|
|
|
|
SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
|
2018-02-01 05:17:03 +08:00
|
|
|
return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
|
2018-01-24 01:53:59 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
|
|
|
|
SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
|
2017-12-07 00:40:37 +08:00
|
|
|
MVT ElemTy = ty(VecV).getVectorElementType();
|
2018-01-24 01:53:59 +08:00
|
|
|
|
2017-12-07 00:40:37 +08:00
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
2017-12-15 02:35:24 +08:00
|
|
|
assert(ElemWidth >= 8 && ElemWidth <= 32);
|
2017-12-07 03:22:19 +08:00
|
|
|
(void)ElemWidth;
|
2017-12-07 00:40:37 +08:00
|
|
|
|
|
|
|
auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
|
|
|
|
SDValue ByteIdxV) {
|
|
|
|
MVT VecTy = ty(VecV);
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
|
|
{ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
|
|
|
|
SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
|
|
|
|
SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
|
|
|
|
SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
2018-01-24 01:53:59 +08:00
|
|
|
{DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
|
2017-12-07 00:40:37 +08:00
|
|
|
SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
|
|
|
|
return TorV;
|
|
|
|
};
|
|
|
|
|
|
|
|
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
|
|
|
|
if (ElemTy == MVT::i32)
|
|
|
|
return InsertWord(VecV, ValV, ByteIdx);
|
|
|
|
|
|
|
|
// If this is not inserting a 32-bit word, convert it into such a thing.
|
|
|
|
// 1. Extract the existing word from the target vector.
|
|
|
|
SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
|
|
|
|
{ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
|
2018-01-24 01:53:59 +08:00
|
|
|
SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
|
|
|
|
dl, MVT::i32, DAG);
|
2017-12-07 00:40:37 +08:00
|
|
|
|
|
|
|
// 2. Treating the extracted word as a 32-bit vector, insert the given
|
|
|
|
// value into it.
|
|
|
|
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
|
|
|
|
MVT SubVecTy = tyVector(ty(Ext), ElemTy);
|
|
|
|
SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
|
2017-12-11 22:46:06 +08:00
|
|
|
ValV, SubIdx, dl, ElemTy, DAG);
|
2017-12-07 00:40:37 +08:00
|
|
|
|
|
|
|
// 3. Insert the 32-bit word back into the original vector.
|
|
|
|
return InsertWord(VecV, Ins, ByteIdx);
|
|
|
|
}
|
|
|
|
|
2018-01-24 01:53:59 +08:00
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
|
|
|
|
SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
|
|
|
|
SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
|
|
|
|
|
|
|
|
unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
|
|
|
|
SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
|
|
|
|
IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
|
|
|
|
ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
|
|
|
|
|
|
|
|
SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
|
|
|
|
return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
|
|
|
|
const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
|
|
|
|
MVT VecTy = ty(VecV);
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
|
|
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
|
|
|
|
|
|
// If the source vector is a vector pair, get the single vector containing
|
|
|
|
// the subvector of interest. The subvector will never overlap two single
|
|
|
|
// vectors.
|
|
|
|
if (VecTy.getSizeInBits() == 16*HwLen) {
|
|
|
|
unsigned SubIdx;
|
|
|
|
if (Idx * ElemWidth >= 8*HwLen) {
|
|
|
|
SubIdx = Hexagon::vsub_hi;
|
|
|
|
Idx -= VecTy.getVectorNumElements() / 2;
|
|
|
|
} else {
|
|
|
|
SubIdx = Hexagon::vsub_lo;
|
|
|
|
}
|
|
|
|
VecTy = typeSplit(VecTy).first;
|
|
|
|
VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
|
|
|
|
if (VecTy == ResTy)
|
|
|
|
return VecV;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The only meaningful subvectors of a single HVX vector are those that
|
|
|
|
// fit in a scalar register.
|
|
|
|
assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
|
|
|
|
|
|
|
|
MVT WordTy = tyVector(VecTy, MVT::i32);
|
|
|
|
SDValue WordVec = DAG.getBitcast(WordTy, VecV);
|
|
|
|
unsigned WordIdx = (Idx*ElemWidth) / 32;
|
|
|
|
|
|
|
|
SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
|
|
|
|
SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
|
|
|
|
if (ResTy.getSizeInBits() == 32)
|
|
|
|
return DAG.getBitcast(ResTy, W0);
|
|
|
|
|
|
|
|
SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
|
|
|
|
SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
|
|
|
|
SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
|
|
|
|
return DAG.getBitcast(ResTy, WW);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
|
|
|
|
const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
|
|
|
|
MVT VecTy = ty(VecV);
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
|
|
|
|
SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
|
|
|
|
// IdxV is required to be a constant.
|
|
|
|
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
|
|
|
|
|
|
|
|
unsigned ResLen = ResTy.getVectorNumElements();
|
|
|
|
unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
|
|
|
|
unsigned Offset = Idx * BitBytes;
|
|
|
|
SDValue Undef = DAG.getUNDEF(ByteTy);
|
|
|
|
SmallVector<int,128> Mask;
|
|
|
|
|
|
|
|
if (Subtarget.isHVXVectorType(ResTy, true)) {
|
|
|
|
// Converting between two vector predicates. Since the result is shorter
|
|
|
|
// than the source, it will correspond to a vector predicate with the
|
|
|
|
// relevant bits replicated. The replication count is the ratio of the
|
|
|
|
// source and target vector lengths.
|
|
|
|
unsigned Rep = VecTy.getVectorNumElements() / ResLen;
|
|
|
|
assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
|
|
|
|
for (unsigned i = 0; i != HwLen/Rep; ++i) {
|
|
|
|
for (unsigned j = 0; j != Rep; ++j)
|
|
|
|
Mask.push_back(i + Offset);
|
|
|
|
}
|
|
|
|
SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
|
|
|
|
return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Converting between a vector predicate and a scalar predicate. In the
|
|
|
|
// vector predicate, a group of BitBytes bits will correspond to a single
|
|
|
|
// i1 element of the source vector type. Those bits will all have the same
|
|
|
|
// value. The same will be true for ByteVec, where each byte corresponds
|
|
|
|
// to a bit in the vector predicate.
|
|
|
|
// The algorithm is to traverse the ByteVec, going over the i1 values from
|
|
|
|
// the source vector, and generate the corresponding representation in an
|
|
|
|
// 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
|
|
|
|
// elements so that the interesting 8 bytes will be in the low end of the
|
|
|
|
// vector.
|
|
|
|
unsigned Rep = 8 / ResLen;
|
|
|
|
// Make sure the output fill the entire vector register, so repeat the
|
|
|
|
// 8-byte groups as many times as necessary.
|
|
|
|
for (unsigned r = 0; r != HwLen/ResLen; ++r) {
|
|
|
|
// This will generate the indexes of the 8 interesting bytes.
|
|
|
|
for (unsigned i = 0; i != ResLen; ++i) {
|
|
|
|
for (unsigned j = 0; j != Rep; ++j)
|
|
|
|
Mask.push_back(Offset + i*BitBytes);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue Zero = getZero(dl, MVT::i32, DAG);
|
|
|
|
SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
|
|
|
|
// Combine the two low words from ShuffV into a v8i8, and byte-compare
|
|
|
|
// them against 0.
|
|
|
|
SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
|
|
|
|
SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
|
|
|
|
{ShuffV, DAG.getConstant(4, dl, MVT::i32)});
|
|
|
|
SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
|
2018-02-01 05:17:03 +08:00
|
|
|
return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
|
|
|
|
{Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
|
2018-01-24 01:53:59 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
|
|
|
|
SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
|
|
|
|
MVT VecTy = ty(VecV);
|
|
|
|
MVT SubTy = ty(SubV);
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
|
|
|
|
|
|
bool IsPair = VecTy.getSizeInBits() == 16*HwLen;
|
|
|
|
MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
|
|
|
|
// The two single vectors that VecV consists of, if it's a pair.
|
|
|
|
SDValue V0, V1;
|
|
|
|
SDValue SingleV = VecV;
|
|
|
|
SDValue PickHi;
|
|
|
|
|
|
|
|
if (IsPair) {
|
|
|
|
V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
|
|
|
|
V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
|
|
|
|
|
|
|
|
SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
|
|
|
|
dl, MVT::i32);
|
|
|
|
PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
|
|
|
|
if (SubTy.getSizeInBits() == 8*HwLen) {
|
|
|
|
if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
|
|
|
|
unsigned Idx = CN->getZExtValue();
|
|
|
|
assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
|
|
|
|
unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
|
|
|
|
return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
|
|
|
|
}
|
|
|
|
// If IdxV is not a constant, generate the two variants: with the
|
|
|
|
// SubV as the high and as the low subregister, and select the right
|
|
|
|
// pair based on the IdxV.
|
|
|
|
SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
|
|
|
|
SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
|
|
|
|
return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
|
|
|
|
}
|
|
|
|
// The subvector being inserted must be entirely contained in one of
|
|
|
|
// the vectors V0 or V1. Set SingleV to the correct one, and update
|
|
|
|
// IdxV to be the index relative to the beginning of that vector.
|
|
|
|
SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
|
|
|
|
IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
|
|
|
|
SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The only meaningful subvectors of a single HVX vector are those that
|
|
|
|
// fit in a scalar register.
|
|
|
|
assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
|
|
|
|
// Convert IdxV to be index in bytes.
|
|
|
|
auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
|
|
|
|
if (!IdxN || !IdxN->isNullValue()) {
|
|
|
|
IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
|
|
|
|
DAG.getConstant(ElemWidth/8, dl, MVT::i32));
|
|
|
|
SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
|
|
|
|
}
|
|
|
|
// When inserting a single word, the rotation back to the original position
|
|
|
|
// would be by HwLen-Idx, but if two words are inserted, it will need to be
|
|
|
|
// by (HwLen-4)-Idx.
|
|
|
|
unsigned RolBase = HwLen;
|
|
|
|
if (VecTy.getSizeInBits() == 32) {
|
|
|
|
SDValue V = DAG.getBitcast(MVT::i32, SubV);
|
|
|
|
SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
|
|
|
|
} else {
|
|
|
|
SDValue V = DAG.getBitcast(MVT::i64, SubV);
|
|
|
|
SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
|
|
|
|
SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
|
|
|
|
SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
|
|
|
|
SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
|
|
|
|
DAG.getConstant(4, dl, MVT::i32));
|
|
|
|
SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
|
|
|
|
RolBase = HwLen-4;
|
|
|
|
}
|
|
|
|
// If the vector wasn't ror'ed, don't ror it back.
|
|
|
|
if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
|
|
|
|
SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
|
|
DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
|
|
|
|
SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (IsPair) {
|
|
|
|
SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
|
|
|
|
SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
|
|
|
|
return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
|
|
|
|
}
|
|
|
|
return SingleV;
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
|
|
|
|
SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
|
|
|
|
MVT VecTy = ty(VecV);
|
|
|
|
MVT SubTy = ty(SubV);
|
|
|
|
assert(Subtarget.isHVXVectorType(VecTy, true));
|
|
|
|
// VecV is an HVX vector predicate. SubV may be either an HVX vector
|
|
|
|
// predicate as well, or it can be a scalar predicate.
|
|
|
|
|
|
|
|
unsigned VecLen = VecTy.getVectorNumElements();
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
assert(HwLen % VecLen == 0 && "Unexpected vector type");
|
|
|
|
|
|
|
|
unsigned Scale = VecLen / SubTy.getVectorNumElements();
|
|
|
|
unsigned BitBytes = HwLen / VecLen;
|
|
|
|
unsigned BlockLen = HwLen / Scale;
|
|
|
|
|
|
|
|
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
|
|
|
|
SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
|
|
|
|
SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
|
|
|
|
SDValue ByteIdx;
|
|
|
|
|
|
|
|
auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
|
|
|
|
if (!IdxN || !IdxN->isNullValue()) {
|
|
|
|
ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
|
|
|
|
DAG.getConstant(BitBytes, dl, MVT::i32));
|
|
|
|
ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ByteVec is the target vector VecV rotated in such a way that the
|
|
|
|
// subvector should be inserted at index 0. Generate a predicate mask
|
|
|
|
// and use vmux to do the insertion.
|
|
|
|
MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
|
|
|
|
{DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
|
|
|
|
ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
|
2018-01-24 01:53:59 +08:00
|
|
|
// Rotate ByteVec back, and convert to a vector predicate.
|
|
|
|
if (!IdxN || !IdxN->isNullValue()) {
|
|
|
|
SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
|
|
|
|
SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
|
|
|
|
ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
|
|
|
|
}
|
|
|
|
return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
|
|
|
|
MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
|
|
|
|
// Sign- and any-extending of a vector predicate to a vector register is
|
|
|
|
// equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
|
|
|
|
// a vector of 1s (where the 1s are of type matching the vector type).
|
|
|
|
assert(Subtarget.isHVXVectorType(ResTy));
|
|
|
|
if (!ZeroExt)
|
|
|
|
return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
|
|
|
|
|
|
|
|
assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
|
|
|
|
SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
|
|
|
|
DAG.getConstant(1, dl, MVT::i32));
|
|
|
|
SDValue False = getZero(dl, ResTy, DAG);
|
|
|
|
return DAG.getSelect(dl, ResTy, VecV, True, False);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
|
|
|
|
const {
|
|
|
|
const SDLoc &dl(Op);
|
|
|
|
MVT VecTy = ty(Op);
|
|
|
|
|
|
|
|
unsigned Size = Op.getNumOperands();
|
|
|
|
SmallVector<SDValue,128> Ops;
|
|
|
|
for (unsigned i = 0; i != Size; ++i)
|
|
|
|
Ops.push_back(Op.getOperand(i));
|
|
|
|
|
|
|
|
if (VecTy.getVectorElementType() == MVT::i1)
|
|
|
|
return buildHvxVectorPred(Ops, dl, VecTy, DAG);
|
|
|
|
|
|
|
|
if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
|
|
|
|
ArrayRef<SDValue> A(Ops);
|
|
|
|
MVT SingleTy = typeSplit(VecTy).first;
|
|
|
|
SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
|
|
|
|
SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return buildHvxVectorReg(Ops, dl, VecTy, DAG);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
|
|
|
|
const {
|
|
|
|
// This should only be called for vectors of i1. The "scalar" vector
|
|
|
|
// concatenation does not need special lowering (assuming that only
|
|
|
|
// two vectors are concatenated at a time).
|
|
|
|
MVT VecTy = ty(Op);
|
|
|
|
assert(VecTy.getVectorElementType() == MVT::i1);
|
|
|
|
|
|
|
|
const SDLoc &dl(Op);
|
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
unsigned NumOp = Op.getNumOperands();
|
|
|
|
assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
|
2018-01-24 02:16:52 +08:00
|
|
|
(void)NumOp;
|
2018-01-24 01:53:59 +08:00
|
|
|
|
|
|
|
// Count how many bytes (in a vector register) each bit in VecTy
|
|
|
|
// corresponds to.
|
|
|
|
unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
|
|
|
|
|
|
|
|
SmallVector<SDValue,8> Prefixes;
|
|
|
|
for (SDValue V : Op.getNode()->op_values()) {
|
|
|
|
SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
|
|
|
|
Prefixes.push_back(P);
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
|
|
|
|
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
|
|
|
|
SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
|
|
|
|
SDValue Res = getZero(dl, ByteTy, DAG);
|
|
|
|
for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
|
|
|
|
Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
|
|
|
|
Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
|
|
|
|
}
|
|
|
|
return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
|
|
|
|
const {
|
|
|
|
// Change the type of the extracted element to i32.
|
|
|
|
SDValue VecV = Op.getOperand(0);
|
|
|
|
MVT ElemTy = ty(VecV).getVectorElementType();
|
|
|
|
const SDLoc &dl(Op);
|
|
|
|
SDValue IdxV = Op.getOperand(1);
|
|
|
|
if (ElemTy == MVT::i1)
|
|
|
|
return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
|
|
|
|
|
|
|
|
return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
|
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
|
|
|
|
const {
|
|
|
|
const SDLoc &dl(Op);
|
|
|
|
SDValue VecV = Op.getOperand(0);
|
|
|
|
SDValue ValV = Op.getOperand(1);
|
|
|
|
SDValue IdxV = Op.getOperand(2);
|
|
|
|
MVT ElemTy = ty(VecV).getVectorElementType();
|
|
|
|
if (ElemTy == MVT::i1)
|
|
|
|
return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
|
|
|
|
|
|
|
|
return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
|
|
|
|
}
|
|
|
|
|
2017-12-07 00:40:37 +08:00
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
|
|
|
|
const {
|
|
|
|
SDValue SrcV = Op.getOperand(0);
|
|
|
|
MVT SrcTy = ty(SrcV);
|
2018-01-24 01:53:59 +08:00
|
|
|
MVT DstTy = ty(Op);
|
2017-12-07 00:40:37 +08:00
|
|
|
SDValue IdxV = Op.getOperand(1);
|
|
|
|
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
|
2018-01-24 01:53:59 +08:00
|
|
|
assert(Idx % DstTy.getVectorNumElements() == 0);
|
|
|
|
(void)Idx;
|
2017-12-07 00:40:37 +08:00
|
|
|
const SDLoc &dl(Op);
|
2018-01-24 01:53:59 +08:00
|
|
|
|
|
|
|
MVT ElemTy = SrcTy.getVectorElementType();
|
|
|
|
if (ElemTy == MVT::i1)
|
|
|
|
return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
|
|
|
|
|
|
|
|
return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
|
2017-12-07 00:40:37 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
|
|
|
|
const {
|
2018-01-24 01:53:59 +08:00
|
|
|
// Idx does not need to be a constant.
|
|
|
|
SDValue VecV = Op.getOperand(0);
|
|
|
|
SDValue ValV = Op.getOperand(1);
|
2017-12-07 00:40:37 +08:00
|
|
|
SDValue IdxV = Op.getOperand(2);
|
|
|
|
|
|
|
|
const SDLoc &dl(Op);
|
2018-01-24 01:53:59 +08:00
|
|
|
MVT VecTy = ty(VecV);
|
|
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
|
|
if (ElemTy == MVT::i1)
|
|
|
|
return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
|
|
|
|
|
|
|
|
return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
|
2017-12-07 00:40:37 +08:00
|
|
|
}
|
2017-12-08 01:37:28 +08:00
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
MVT ResTy = ty(Op);
|
2018-01-16 02:43:55 +08:00
|
|
|
assert(ResTy.isVector());
|
2017-12-08 01:37:28 +08:00
|
|
|
const SDLoc &dl(Op);
|
|
|
|
SmallVector<int,256> ShuffMask;
|
|
|
|
|
|
|
|
MVT ElemTy = ResTy.getVectorElementType();
|
|
|
|
unsigned VecLen = ResTy.getVectorNumElements();
|
|
|
|
SDValue Vs = Op.getOperand(0);
|
|
|
|
SDValue Vt = Op.getOperand(1);
|
|
|
|
|
|
|
|
switch (ElemTy.SimpleTy) {
|
2018-02-05 23:40:06 +08:00
|
|
|
case MVT::i8: {
|
2017-12-08 01:37:28 +08:00
|
|
|
// For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
|
|
|
|
// V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
|
|
|
|
// where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
|
|
|
|
MVT ExtTy = typeExtElem(ResTy, 2);
|
|
|
|
unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
|
|
|
|
: Hexagon::V6_vmpyhv;
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
|
2017-12-08 01:37:28 +08:00
|
|
|
|
|
|
|
// Discard high halves of the resulting values, collect the low halves.
|
|
|
|
for (unsigned I = 0; I < VecLen; I += 2) {
|
|
|
|
ShuffMask.push_back(I); // Pick even element.
|
|
|
|
ShuffMask.push_back(I+VecLen); // Pick odd element.
|
|
|
|
}
|
|
|
|
VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
|
2018-01-06 04:45:34 +08:00
|
|
|
SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
|
|
|
|
return DAG.getBitcast(ResTy, BS);
|
2017-12-08 01:37:28 +08:00
|
|
|
}
|
2018-02-05 23:40:06 +08:00
|
|
|
case MVT::i16:
|
|
|
|
// For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
|
|
|
|
// (There is also V6_vmpyhv, which behaves in an analogous way to
|
|
|
|
// V6_vmpybv.)
|
|
|
|
return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
|
2017-12-08 01:37:28 +08:00
|
|
|
case MVT::i32: {
|
|
|
|
// Use the following sequence for signed word multiply:
|
|
|
|
// T0 = V6_vmpyiowh Vs, Vt
|
|
|
|
// T1 = V6_vaslw T0, 16
|
|
|
|
// T2 = V6_vmpyiewuh_acc T1, Vs, Vt
|
|
|
|
SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
|
|
|
|
SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
|
|
|
|
SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
|
|
|
|
{T1, Vs, Vt}, DAG);
|
2017-12-08 01:37:28 +08:00
|
|
|
return T2;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return SDValue();
|
|
|
|
}
|
2017-12-15 05:28:48 +08:00
|
|
|
|
2018-01-16 02:43:55 +08:00
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
MVT ResTy = ty(Op);
|
|
|
|
assert(ResTy.isVector());
|
|
|
|
const SDLoc &dl(Op);
|
|
|
|
SmallVector<int,256> ShuffMask;
|
|
|
|
|
|
|
|
MVT ElemTy = ResTy.getVectorElementType();
|
|
|
|
unsigned VecLen = ResTy.getVectorNumElements();
|
|
|
|
SDValue Vs = Op.getOperand(0);
|
|
|
|
SDValue Vt = Op.getOperand(1);
|
|
|
|
bool IsSigned = Op.getOpcode() == ISD::MULHS;
|
|
|
|
|
|
|
|
if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
|
|
|
|
// For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
|
|
|
|
// V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
|
|
|
|
// where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
|
|
|
|
// For i16, use V6_vmpyhv, which behaves in an analogous way to
|
|
|
|
// V6_vmpybv: results Lo and Hi are products of even/odd elements
|
|
|
|
// respectively.
|
|
|
|
MVT ExtTy = typeExtElem(ResTy, 2);
|
|
|
|
unsigned MpyOpc = ElemTy == MVT::i8
|
|
|
|
? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
|
|
|
|
: (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
|
|
|
|
// Discard low halves of the resulting values, collect the high halves.
|
|
|
|
for (unsigned I = 0; I < VecLen; I += 2) {
|
|
|
|
ShuffMask.push_back(I+1); // Pick even element.
|
|
|
|
ShuffMask.push_back(I+VecLen+1); // Pick odd element.
|
|
|
|
}
|
|
|
|
VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
|
|
|
|
SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
|
|
|
|
return DAG.getBitcast(ResTy, BS);
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(ElemTy == MVT::i32);
|
|
|
|
SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
|
|
|
|
|
|
|
|
if (IsSigned) {
|
|
|
|
// mulhs(Vs,Vt) =
|
|
|
|
// = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
|
|
|
|
// = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
|
|
|
|
// + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
|
|
|
|
// = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
|
|
|
|
// + Lo(Vs) *us Vt] >> 32
|
|
|
|
// The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
|
|
|
|
// anything, so it cannot produce any carry over to higher bits),
|
|
|
|
// so everything in [] can be shifted by 16 without loss of precision.
|
|
|
|
// = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
|
|
|
|
// = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
|
|
|
|
// Denote Hi(Vs) = Vs':
|
|
|
|
// = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
|
|
|
|
// = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// Get Vs':
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
|
|
|
|
SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
|
|
|
|
{T0, S0, Vt}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// Shift by 16:
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// Get Vs'*Hi(Vt):
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// Add:
|
|
|
|
SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
|
|
|
|
return T3;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Unsigned mulhw. (Would expansion using signed mulhw be better?)
|
|
|
|
|
|
|
|
auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
|
|
|
|
return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
|
|
|
|
};
|
|
|
|
auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
|
|
|
|
return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
|
|
|
|
};
|
|
|
|
|
|
|
|
MVT PairTy = typeJoin({ResTy, ResTy});
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
|
|
|
|
{DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// Multiply-unsigned halfwords:
|
|
|
|
// LoVec = Vs.uh[2i] * Vt.uh[2i],
|
|
|
|
// HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// The low halves in the LoVec of the pair can be discarded. They are
|
|
|
|
// not added to anything (in the full-precision product), so they cannot
|
|
|
|
// produce a carry into the higher bits.
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// Swap low and high halves in Vt, and do the halfword multiplication
|
|
|
|
// to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
|
|
|
|
SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
|
|
|
|
// These products are words, but cannot be added directly because the
|
|
|
|
// sums could overflow. Add these products, by halfwords, where each sum
|
|
|
|
// of a pair of halfwords gives a word.
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
|
|
|
|
{LoVec(T2), HiVec(T2)}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
// Add the high halfwords from the products of the low halfwords.
|
|
|
|
SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
|
2018-01-16 02:43:55 +08:00
|
|
|
SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
|
|
|
|
SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
|
|
|
|
return T7;
|
|
|
|
}
|
|
|
|
|
2017-12-15 05:28:48 +08:00
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
MVT VecTy = ty(Op.getOperand(0));
|
|
|
|
assert(VecTy == ty(Op.getOperand(1)));
|
2018-02-01 04:46:55 +08:00
|
|
|
unsigned HwLen = Subtarget.getVectorLength();
|
|
|
|
const SDLoc &dl(Op);
|
2017-12-15 05:28:48 +08:00
|
|
|
|
|
|
|
SDValue Cmp = Op.getOperand(2);
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
|
2018-02-01 04:46:55 +08:00
|
|
|
|
|
|
|
if (VecTy.getSizeInBits() == 16*HwLen) {
|
|
|
|
VectorPair P0 = opSplit(Op.getOperand(0), dl, DAG);
|
|
|
|
VectorPair P1 = opSplit(Op.getOperand(1), dl, DAG);
|
|
|
|
MVT HalfTy = typeSplit(VecTy).first;
|
|
|
|
|
|
|
|
SDValue V0 = DAG.getSetCC(dl, HalfTy, P0.first, P1.first, CC);
|
|
|
|
SDValue V1 = DAG.getSetCC(dl, HalfTy, P0.second, P1.second, CC);
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ty(Op), V1, V0);
|
|
|
|
}
|
|
|
|
|
2017-12-15 05:28:48 +08:00
|
|
|
bool Negate = false, Swap = false;
|
|
|
|
|
|
|
|
// HVX has instructions for SETEQ, SETGT, SETUGT. The other comparisons
|
|
|
|
// can be arranged as operand-swapped/negated versions of these. Since
|
|
|
|
// the generated code will have the original CC expressed as
|
|
|
|
// (negate (swap-op NewCmp)),
|
|
|
|
// the condition code for the NewCmp should be calculated from the original
|
|
|
|
// CC by applying these operations in the reverse order.
|
2017-12-21 04:49:43 +08:00
|
|
|
//
|
|
|
|
// This could also be done through setCondCodeAction, but for negation it
|
|
|
|
// uses a xor with a vector of -1s, which it obtains from BUILD_VECTOR.
|
|
|
|
// That is far too expensive for what can be done with a single instruction.
|
2017-12-15 05:28:48 +08:00
|
|
|
|
|
|
|
switch (CC) {
|
|
|
|
case ISD::SETNE: // !eq
|
|
|
|
case ISD::SETLE: // !gt
|
|
|
|
case ISD::SETGE: // !lt
|
|
|
|
case ISD::SETULE: // !ugt
|
|
|
|
case ISD::SETUGE: // !ult
|
|
|
|
CC = ISD::getSetCCInverse(CC, true);
|
|
|
|
Negate = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (CC) {
|
|
|
|
case ISD::SETLT: // swap gt
|
|
|
|
case ISD::SETULT: // swap ugt
|
|
|
|
CC = ISD::getSetCCSwappedOperands(CC);
|
|
|
|
Swap = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(CC == ISD::SETEQ || CC == ISD::SETGT || CC == ISD::SETUGT);
|
|
|
|
|
|
|
|
MVT ElemTy = VecTy.getVectorElementType();
|
|
|
|
unsigned ElemWidth = ElemTy.getSizeInBits();
|
|
|
|
assert(isPowerOf2_32(ElemWidth));
|
|
|
|
|
|
|
|
auto getIdx = [] (unsigned Code) {
|
|
|
|
static const unsigned Idx[] = { ISD::SETEQ, ISD::SETGT, ISD::SETUGT };
|
|
|
|
for (unsigned I = 0, E = array_lengthof(Idx); I != E; ++I)
|
|
|
|
if (Code == Idx[I])
|
|
|
|
return I;
|
|
|
|
llvm_unreachable("Unhandled CondCode");
|
|
|
|
};
|
|
|
|
|
|
|
|
static unsigned OpcTable[3][3] = {
|
|
|
|
// SETEQ SETGT, SETUGT
|
|
|
|
/* Byte */ { Hexagon::V6_veqb, Hexagon::V6_vgtb, Hexagon::V6_vgtub },
|
|
|
|
/* Half */ { Hexagon::V6_veqh, Hexagon::V6_vgth, Hexagon::V6_vgtuh },
|
|
|
|
/* Word */ { Hexagon::V6_veqw, Hexagon::V6_vgtw, Hexagon::V6_vgtuw }
|
|
|
|
};
|
|
|
|
|
|
|
|
unsigned CmpOpc = OpcTable[Log2_32(ElemWidth)-3][getIdx(CC)];
|
|
|
|
|
|
|
|
MVT ResTy = ty(Op);
|
|
|
|
SDValue OpL = Swap ? Op.getOperand(1) : Op.getOperand(0);
|
|
|
|
SDValue OpR = Swap ? Op.getOperand(0) : Op.getOperand(1);
|
2018-02-01 05:17:03 +08:00
|
|
|
SDValue CmpV = getInstr(CmpOpc, dl, ResTy, {OpL, OpR}, DAG);
|
|
|
|
return Negate ? getInstr(Hexagon::V6_pred_not, dl, ResTy, {CmpV}, DAG)
|
2017-12-15 05:28:48 +08:00
|
|
|
: CmpV;
|
|
|
|
}
|
2017-12-19 02:32:27 +08:00
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
// Sign- and zero-extends are legal.
|
|
|
|
assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
|
|
|
|
return DAG.getZeroExtendVectorInReg(Op.getOperand(0), SDLoc(Op), ty(Op));
|
|
|
|
}
|
2018-02-01 04:49:24 +08:00
|
|
|
|
|
|
|
SDValue
|
|
|
|
HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
|
|
|
|
return Op;
|
|
|
|
}
|
|
|
|
|