llvm-project/clang/lib/Basic/TargetInfo.cpp

491 lines
15 KiB
C++
Raw Normal View History

//===--- TargetInfo.cpp - Information about Target machine ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TargetInfo and TargetInfoImpl interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ErrorHandling.h"
#include <cctype>
2008-04-06 12:02:29 +08:00
#include <cstdlib>
using namespace clang;
static const LangAS::Map DefaultAddrSpaceMap = { 0 };
// TargetInfo Constructor.
TargetInfo::TargetInfo(const std::string &T) : Triple(T) {
// Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or
// SPARC. These should be overridden by concrete targets as needed.
BigEndian = true;
TLSSupported = true;
NoAsmVariants = false;
PointerWidth = PointerAlign = 32;
BoolWidth = BoolAlign = 8;
IntWidth = IntAlign = 32;
LongWidth = LongAlign = 32;
LongLongWidth = LongLongAlign = 64;
SuitableAlign = 64;
HalfWidth = 16;
HalfAlign = 16;
FloatWidth = 32;
FloatAlign = 32;
2008-04-19 01:17:24 +08:00
DoubleWidth = 64;
DoubleAlign = 64;
LongDoubleWidth = 64;
LongDoubleAlign = 64;
LargeArrayMinWidth = 0;
LargeArrayAlign = 0;
MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
SizeType = UnsignedLong;
PtrDiffType = SignedLong;
IntMaxType = SignedLongLong;
UIntMaxType = UnsignedLongLong;
IntPtrType = SignedLong;
WCharType = SignedInt;
WIntType = SignedInt;
Char16Type = UnsignedShort;
Char32Type = UnsignedInt;
Int64Type = SignedLongLong;
SigAtomicType = SignedInt;
UseBitFieldTypeAlignment = true;
UseZeroLengthBitfieldAlignment = false;
ZeroLengthBitfieldBoundary = 0;
HalfFormat = &llvm::APFloat::IEEEhalf;
FloatFormat = &llvm::APFloat::IEEEsingle;
DoubleFormat = &llvm::APFloat::IEEEdouble;
LongDoubleFormat = &llvm::APFloat::IEEEdouble;
DescriptionString = "E-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-"
"i64:64:64-f32:32:32-f64:64:64-n32";
UserLabelPrefix = "_";
MCountName = "mcount";
RegParmMax = 0;
SSERegParmMax = 0;
HasAlignMac68kSupport = false;
// Default to no types using fpret.
RealTypeUsesObjCFPRet = 0;
// Default to not using fp2ret for __Complex long double
ComplexLongDoubleUsesFP2Ret = false;
// Default to using the Itanium ABI.
CXXABI = CXXABI_Itanium;
// Default to an empty address space map.
AddrSpaceMap = &DefaultAddrSpaceMap;
Implement a new 'availability' attribute, that allows one to specify which versions of an OS provide a certain facility. For example, void foo() __attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6))); says that the function "foo" was introduced in 10.2, deprecated in 10.4, and completely obsoleted in 10.6. This attribute ties in with the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that we want to deploy back to Mac OS X 10.1). There are several concrete behaviors that this attribute enables, as illustrated with the function foo() above: - If we choose a deployment target >= Mac OS X 10.4, uses of "foo" will result in a deprecation warning, as if we had placed attribute((deprecated)) on it (but with a better diagnostic) - If we choose a deployment target >= Mac OS X 10.6, uses of "foo" will result in an "unavailable" warning (in C)/error (in C++), as if we had placed attribute((unavailable)) on it - If we choose a deployment target prior to 10.2, foo() is weak-imported (if it is a kind of entity that can be weak imported), as if we had placed the weak_import attribute on it. Naturally, there can be multiple availability attributes on a declaration, for different platforms; only the current platform matters when checking availability attributes. The only platforms this attribute currently works for are "ios" and "macosx", since we already have -mxxxx-version-min flags for them and we have experience there with macro tricks translating down to the deprecated/unavailable/weak_import attributes. The end goal is to open this up to other platforms, and even extension to other "platforms" that are really libraries (say, through a #pragma clang define_system), but that hasn't yet been designed and we may want to shake out more issues with this narrower problem first. Addresses <rdar://problem/6690412>. As a drive-by bug-fix, if an entity is both deprecated and unavailable, we only emit the "unavailable" diagnostic. llvm-svn: 128127
2011-03-23 08:50:03 +08:00
// Default to an unknown platform name.
PlatformName = "unknown";
PlatformMinVersion = VersionTuple();
}
// Out of line virtual dtor for TargetInfo.
TargetInfo::~TargetInfo() {}
/// getTypeName - Return the user string for the specified integer type enum.
/// For example, SignedShort -> "short".
const char *TargetInfo::getTypeName(IntType T) {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedShort: return "short";
case UnsignedShort: return "unsigned short";
case SignedInt: return "int";
case UnsignedInt: return "unsigned int";
case SignedLong: return "long int";
case UnsignedLong: return "long unsigned int";
case SignedLongLong: return "long long int";
case UnsignedLongLong: return "long long unsigned int";
}
}
/// getTypeConstantSuffix - Return the constant suffix for the specified
/// integer type enum. For example, SignedLong -> "L".
const char *TargetInfo::getTypeConstantSuffix(IntType T) {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedShort:
case SignedInt: return "";
case SignedLong: return "L";
case SignedLongLong: return "LL";
case UnsignedShort:
case UnsignedInt: return "U";
case UnsignedLong: return "UL";
case UnsignedLongLong: return "ULL";
}
}
2010-10-18 15:10:59 +08:00
/// getTypeWidth - Return the width (in bits) of the specified integer type
/// enum. For example, SignedInt -> getIntWidth().
unsigned TargetInfo::getTypeWidth(IntType T) const {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedShort:
case UnsignedShort: return getShortWidth();
case SignedInt:
case UnsignedInt: return getIntWidth();
case SignedLong:
case UnsignedLong: return getLongWidth();
case SignedLongLong:
case UnsignedLongLong: return getLongLongWidth();
};
}
2010-10-18 15:10:59 +08:00
/// getTypeAlign - Return the alignment (in bits) of the specified integer type
/// enum. For example, SignedInt -> getIntAlign().
unsigned TargetInfo::getTypeAlign(IntType T) const {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedShort:
case UnsignedShort: return getShortAlign();
case SignedInt:
case UnsignedInt: return getIntAlign();
case SignedLong:
case UnsignedLong: return getLongAlign();
case SignedLongLong:
case UnsignedLongLong: return getLongLongAlign();
};
}
/// isTypeSigned - Return whether an integer types is signed. Returns true if
/// the type is signed; false otherwise.
bool TargetInfo::isTypeSigned(IntType T) {
switch (T) {
default: llvm_unreachable("not an integer!");
case SignedShort:
case SignedInt:
case SignedLong:
2010-10-18 15:10:59 +08:00
case SignedLongLong:
return true;
case UnsignedShort:
case UnsignedInt:
case UnsignedLong:
2010-10-18 15:10:59 +08:00
case UnsignedLongLong:
return false;
};
}
/// setForcedLangOptions - Set forced language options.
/// Apply changes to the target information with respect to certain
/// language options which change the target configuration.
void TargetInfo::setForcedLangOptions(LangOptions &Opts) {
if (Opts.NoBitFieldTypeAlign)
UseBitFieldTypeAlignment = false;
if (Opts.ShortWChar)
WCharType = UnsignedShort;
}
//===----------------------------------------------------------------------===//
static StringRef removeGCCRegisterPrefix(StringRef Name) {
if (Name[0] == '%' || Name[0] == '#')
Name = Name.substr(1);
2010-10-18 15:10:59 +08:00
return Name;
}
/// isValidClobber - Returns whether the passed in string is
/// a valid clobber in an inline asm statement. This is used by
/// Sema.
bool TargetInfo::isValidClobber(StringRef Name) const {
return (isValidGCCRegisterName(Name) ||
Name == "memory" || Name == "cc");
}
/// isValidGCCRegisterName - Returns whether the passed in string
/// is a valid register name according to GCC. This is used by Sema for
/// inline asm statements.
bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
if (Name.empty())
return false;
2010-10-18 15:10:59 +08:00
const char * const *Names;
unsigned NumNames;
// Get rid of any register prefix.
Name = removeGCCRegisterPrefix(Name);
getGCCRegNames(Names, NumNames);
// If we have a number it maps to an entry in the register name array.
if (isdigit(Name[0])) {
int n;
if (!Name.getAsInteger(0, n))
return n >= 0 && (unsigned)n < NumNames;
}
// Check register names.
for (unsigned i = 0; i < NumNames; i++) {
if (Name == Names[i])
return true;
}
// Check any additional names that we have.
const AddlRegName *AddlNames;
unsigned NumAddlNames;
getGCCAddlRegNames(AddlNames, NumAddlNames);
for (unsigned i = 0; i < NumAddlNames; i++)
for (unsigned j = 0; j < llvm::array_lengthof(AddlNames[i].Names); j++) {
if (!AddlNames[i].Names[j])
break;
// Make sure the register that the additional name is for is within
// the bounds of the register names from above.
if (AddlNames[i].Names[j] == Name && AddlNames[i].RegNum < NumNames)
return true;
}
// Now check aliases.
const GCCRegAlias *Aliases;
unsigned NumAliases;
getGCCRegAliases(Aliases, NumAliases);
for (unsigned i = 0; i < NumAliases; i++) {
for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) {
if (!Aliases[i].Aliases[j])
break;
if (Aliases[i].Aliases[j] == Name)
return true;
}
}
return false;
}
StringRef
TargetInfo::getNormalizedGCCRegisterName(StringRef Name) const {
assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
// Get rid of any register prefix.
Name = removeGCCRegisterPrefix(Name);
const char * const *Names;
unsigned NumNames;
getGCCRegNames(Names, NumNames);
// First, check if we have a number.
if (isdigit(Name[0])) {
int n;
if (!Name.getAsInteger(0, n)) {
assert(n >= 0 && (unsigned)n < NumNames &&
"Out of bounds register number!");
return Names[n];
}
}
// Check any additional names that we have.
const AddlRegName *AddlNames;
unsigned NumAddlNames;
getGCCAddlRegNames(AddlNames, NumAddlNames);
for (unsigned i = 0; i < NumAddlNames; i++)
for (unsigned j = 0; j < llvm::array_lengthof(AddlNames[i].Names); j++) {
if (!AddlNames[i].Names[j])
break;
// Make sure the register that the additional name is for is within
// the bounds of the register names from above.
if (AddlNames[i].Names[j] == Name && AddlNames[i].RegNum < NumNames)
return Name;
}
// Now check aliases.
const GCCRegAlias *Aliases;
unsigned NumAliases;
getGCCRegAliases(Aliases, NumAliases);
for (unsigned i = 0; i < NumAliases; i++) {
for (unsigned j = 0 ; j < llvm::array_lengthof(Aliases[i].Aliases); j++) {
if (!Aliases[i].Aliases[j])
break;
if (Aliases[i].Aliases[j] == Name)
return Aliases[i].Register;
}
}
return Name;
}
bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
const char *Name = Info.getConstraintStr().c_str();
// An output constraint must start with '=' or '+'
if (*Name != '=' && *Name != '+')
return false;
if (*Name == '+')
Info.setIsReadWrite();
Name++;
while (*Name) {
switch (*Name) {
default:
if (!validateAsmConstraint(Name, Info)) {
// FIXME: We temporarily return false
// so we can add more constraints as we hit it.
// Eventually, an unknown constraint should just be treated as 'g'.
return false;
}
case '&': // early clobber.
break;
case '%': // commutative.
// FIXME: Check that there is a another register after this one.
break;
case 'r': // general register.
Info.setAllowsRegister();
break;
case 'm': // memory operand.
case 'o': // offsetable memory operand.
case 'V': // non-offsetable memory operand.
case '<': // autodecrement memory operand.
case '>': // autoincrement memory operand.
Info.setAllowsMemory();
break;
case 'g': // general register, memory operand or immediate integer.
case 'X': // any operand.
Info.setAllowsRegister();
Info.setAllowsMemory();
break;
case ',': // multiple alternative constraint. Pass it.
// Handle additional optional '=' or '+' modifiers.
if (Name[1] == '=' || Name[1] == '+')
Name++;
break;
case '?': // Disparage slightly code.
case '!': // Disparage severely.
break; // Pass them.
}
Name++;
}
return true;
}
bool TargetInfo::resolveSymbolicName(const char *&Name,
ConstraintInfo *OutputConstraints,
unsigned NumOutputs,
unsigned &Index) const {
assert(*Name == '[' && "Symbolic name did not start with '['");
Name++;
const char *Start = Name;
while (*Name && *Name != ']')
Name++;
if (!*Name) {
// Missing ']'
return false;
}
std::string SymbolicName(Start, Name - Start);
for (Index = 0; Index != NumOutputs; ++Index)
if (SymbolicName == OutputConstraints[Index].getName())
return true;
return false;
}
bool TargetInfo::validateInputConstraint(ConstraintInfo *OutputConstraints,
unsigned NumOutputs,
ConstraintInfo &Info) const {
const char *Name = Info.ConstraintStr.c_str();
while (*Name) {
switch (*Name) {
default:
// Check if we have a matching constraint
if (*Name >= '0' && *Name <= '9') {
unsigned i = *Name - '0';
// Check if matching constraint is out of bounds.
if (i >= NumOutputs)
return false;
// A number must refer to an output only operand.
if (OutputConstraints[i].isReadWrite())
return false;
// If the constraint is already tied, it must be tied to the
// same operand referenced to by the number.
if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
return false;
// The constraint should have the same info as the respective
// output constraint.
Info.setTiedOperand(i, OutputConstraints[i]);
} else if (!validateAsmConstraint(Name, Info)) {
// FIXME: This error return is in place temporarily so we can
// add more constraints as we hit it. Eventually, an unknown
// constraint should just be treated as 'g'.
return false;
}
break;
case '[': {
unsigned Index = 0;
if (!resolveSymbolicName(Name, OutputConstraints, NumOutputs, Index))
return false;
// If the constraint is already tied, it must be tied to the
// same operand referenced to by the number.
if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
return false;
Info.setTiedOperand(Index, OutputConstraints[Index]);
break;
}
case '%': // commutative
// FIXME: Fail if % is used with the last operand.
break;
case 'i': // immediate integer.
case 'n': // immediate integer with a known value.
break;
case 'I': // Various constant constraints with target-specific meanings.
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'O':
case 'P':
break;
case 'r': // general register.
Info.setAllowsRegister();
break;
case 'm': // memory operand.
case 'o': // offsettable memory operand.
case 'V': // non-offsettable memory operand.
case '<': // autodecrement memory operand.
case '>': // autoincrement memory operand.
Info.setAllowsMemory();
break;
case 'g': // general register, memory operand or immediate integer.
case 'X': // any operand.
Info.setAllowsRegister();
Info.setAllowsMemory();
break;
case 'E': // immediate floating point.
case 'F': // immediate floating point.
case 'p': // address operand.
break;
case ',': // multiple alternative constraint. Ignore comma.
break;
case '?': // Disparage slightly code.
case '!': // Disparage severely.
break; // Pass them.
}
Name++;
}
return true;
}