llvm-project/llvm/lib/Analysis/DebugInfo.cpp

1292 lines
42 KiB
C++
Raw Normal View History

//===--- DebugInfo.cpp - Debug Information Helper Classes -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the helper classes used to build and interpret debug
// information in LLVM IR form.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/DebugLoc.h"
#include "llvm/Support/Streams.h"
using namespace llvm;
using namespace llvm::dwarf;
//===----------------------------------------------------------------------===//
// DIDescriptor
//===----------------------------------------------------------------------===//
/// ValidDebugInfo - Return true if V represents valid debug info value.
bool DIDescriptor::ValidDebugInfo(Value *V, CodeGenOpt::Level OptLevel) {
if (!V)
return false;
GlobalVariable *GV = dyn_cast<GlobalVariable>(V->stripPointerCasts());
if (!GV)
return false;
if (!GV->hasInternalLinkage () && !GV->hasLinkOnceLinkage())
return false;
DIDescriptor DI(GV);
// Check current version. Allow Version6 for now.
unsigned Version = DI.getVersion();
if (Version != LLVMDebugVersion && Version != LLVMDebugVersion6)
return false;
unsigned Tag = DI.getTag();
switch (Tag) {
case DW_TAG_variable:
assert(DIVariable(GV).Verify() && "Invalid DebugInfo value");
break;
case DW_TAG_compile_unit:
assert(DICompileUnit(GV).Verify() && "Invalid DebugInfo value");
break;
case DW_TAG_subprogram:
assert(DISubprogram(GV).Verify() && "Invalid DebugInfo value");
break;
case DW_TAG_lexical_block:
// FIXME: This interfers with the quality of generated code during
// optimization.
if (OptLevel != CodeGenOpt::None)
return false;
// FALLTHROUGH
default:
break;
}
return true;
}
DIDescriptor::DIDescriptor(GlobalVariable *GV, unsigned RequiredTag) {
DbgGV = GV;
// If this is non-null, check to see if the Tag matches. If not, set to null.
if (GV && getTag() != RequiredTag)
DbgGV = 0;
}
const std::string &
DIDescriptor::getStringField(unsigned Elt, std::string &Result) const {
if (DbgGV == 0) {
Result.clear();
return Result;
}
Constant *C = DbgGV->getInitializer();
if (C == 0 || Elt >= C->getNumOperands()) {
Result.clear();
return Result;
}
// Fills in the string if it succeeds
if (!GetConstantStringInfo(C->getOperand(Elt), Result))
Result.clear();
return Result;
}
uint64_t DIDescriptor::getUInt64Field(unsigned Elt) const {
if (DbgGV == 0) return 0;
if (!DbgGV->hasInitializer()) return 0;
Constant *C = DbgGV->getInitializer();
if (C == 0 || Elt >= C->getNumOperands())
return 0;
if (ConstantInt *CI = dyn_cast<ConstantInt>(C->getOperand(Elt)))
return CI->getZExtValue();
return 0;
}
DIDescriptor DIDescriptor::getDescriptorField(unsigned Elt) const {
if (DbgGV == 0) return DIDescriptor();
Constant *C = DbgGV->getInitializer();
if (C == 0 || Elt >= C->getNumOperands())
return DIDescriptor();
C = C->getOperand(Elt);
return DIDescriptor(dyn_cast<GlobalVariable>(C->stripPointerCasts()));
}
GlobalVariable *DIDescriptor::getGlobalVariableField(unsigned Elt) const {
if (DbgGV == 0) return 0;
Constant *C = DbgGV->getInitializer();
if (C == 0 || Elt >= C->getNumOperands())
return 0;
C = C->getOperand(Elt);
return dyn_cast<GlobalVariable>(C->stripPointerCasts());
}
//===----------------------------------------------------------------------===//
// Simple Descriptor Constructors and other Methods
//===----------------------------------------------------------------------===//
// Needed by DIVariable::getType().
DIType::DIType(GlobalVariable *GV) : DIDescriptor(GV) {
if (!GV) return;
unsigned tag = getTag();
if (tag != dwarf::DW_TAG_base_type && !DIDerivedType::isDerivedType(tag) &&
!DICompositeType::isCompositeType(tag))
DbgGV = 0;
}
/// isDerivedType - Return true if the specified tag is legal for
/// DIDerivedType.
bool DIType::isDerivedType(unsigned Tag) {
switch (Tag) {
case dwarf::DW_TAG_typedef:
case dwarf::DW_TAG_pointer_type:
case dwarf::DW_TAG_reference_type:
case dwarf::DW_TAG_const_type:
case dwarf::DW_TAG_volatile_type:
case dwarf::DW_TAG_restrict_type:
case dwarf::DW_TAG_member:
case dwarf::DW_TAG_inheritance:
return true;
default:
// FIXME: Even though it doesn't make sense, CompositeTypes are current
// modelled as DerivedTypes, this should return true for them as well.
return false;
}
}
/// isCompositeType - Return true if the specified tag is legal for
/// DICompositeType.
bool DIType::isCompositeType(unsigned TAG) {
switch (TAG) {
case dwarf::DW_TAG_array_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_union_type:
case dwarf::DW_TAG_enumeration_type:
case dwarf::DW_TAG_vector_type:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_class_type:
return true;
default:
return false;
}
}
/// isVariable - Return true if the specified tag is legal for DIVariable.
bool DIVariable::isVariable(unsigned Tag) {
switch (Tag) {
case dwarf::DW_TAG_auto_variable:
case dwarf::DW_TAG_arg_variable:
case dwarf::DW_TAG_return_variable:
return true;
default:
return false;
}
}
unsigned DIArray::getNumElements() const {
assert (DbgGV && "Invalid DIArray");
Constant *C = DbgGV->getInitializer();
assert (C && "Invalid DIArray initializer");
return C->getNumOperands();
}
/// replaceAllUsesWith - Replace all uses of debug info referenced by
/// this descriptor. After this completes, the current debug info value
/// is erased.
void DIDerivedType::replaceAllUsesWith(DIDescriptor &D) {
if (isNull())
return;
2009-07-23 02:56:16 +08:00
assert (!D.isNull() && "Can not replace with null");
getGV()->replaceAllUsesWith(D.getGV());
getGV()->eraseFromParent();
}
2009-01-20 07:21:49 +08:00
/// Verify - Verify that a compile unit is well formed.
bool DICompileUnit::Verify() const {
if (isNull())
return false;
std::string Res;
if (getFilename(Res).empty())
return false;
2009-01-20 07:21:49 +08:00
// It is possible that directory and produce string is empty.
return true;
2009-01-20 07:21:49 +08:00
}
/// Verify - Verify that a type descriptor is well formed.
bool DIType::Verify() const {
if (isNull())
return false;
if (getContext().isNull())
return false;
DICompileUnit CU = getCompileUnit();
if (!CU.isNull() && !CU.Verify())
return false;
return true;
}
/// Verify - Verify that a composite type descriptor is well formed.
bool DICompositeType::Verify() const {
if (isNull())
return false;
if (getContext().isNull())
return false;
DICompileUnit CU = getCompileUnit();
if (!CU.isNull() && !CU.Verify())
return false;
return true;
}
/// Verify - Verify that a subprogram descriptor is well formed.
bool DISubprogram::Verify() const {
if (isNull())
return false;
if (getContext().isNull())
return false;
DICompileUnit CU = getCompileUnit();
if (!CU.Verify())
return false;
DICompositeType Ty = getType();
if (!Ty.isNull() && !Ty.Verify())
return false;
return true;
}
/// Verify - Verify that a global variable descriptor is well formed.
bool DIGlobalVariable::Verify() const {
if (isNull())
return false;
if (getContext().isNull())
return false;
DICompileUnit CU = getCompileUnit();
if (!CU.isNull() && !CU.Verify())
2009-01-20 07:21:49 +08:00
return false;
DIType Ty = getType();
if (!Ty.Verify())
return false;
if (!getGlobal())
return false;
return true;
}
/// Verify - Verify that a variable descriptor is well formed.
bool DIVariable::Verify() const {
if (isNull())
return false;
if (getContext().isNull())
return false;
DIType Ty = getType();
if (!Ty.Verify())
return false;
return true;
}
/// getOriginalTypeSize - If this type is derived from a base type then
/// return base type size.
uint64_t DIDerivedType::getOriginalTypeSize() const {
if (getTag() != dwarf::DW_TAG_member)
return getSizeInBits();
DIType BT = getTypeDerivedFrom();
if (BT.getTag() != dwarf::DW_TAG_base_type)
return getSizeInBits();
return BT.getSizeInBits();
}
2009-01-20 07:21:49 +08:00
/// describes - Return true if this subprogram provides debugging
/// information for the function F.
bool DISubprogram::describes(const Function *F) {
assert (F && "Invalid function");
std::string Name;
getLinkageName(Name);
if (Name.empty())
getName(Name);
if (F->getName() == Name)
return true;
return false;
}
//===----------------------------------------------------------------------===//
// DIDescriptor: dump routines for all descriptors.
//===----------------------------------------------------------------------===//
/// dump - Print descriptor.
void DIDescriptor::dump() const {
cerr << "[" << dwarf::TagString(getTag()) << "] ";
cerr << std::hex << "[GV:" << DbgGV << "]" << std::dec;
}
/// dump - Print compile unit.
void DICompileUnit::dump() const {
if (getLanguage())
cerr << " [" << dwarf::LanguageString(getLanguage()) << "] ";
std::string Res1, Res2;
cerr << " [" << getDirectory(Res1) << "/" << getFilename(Res2) << " ]";
}
/// dump - Print type.
void DIType::dump() const {
if (isNull()) return;
std::string Res;
if (!getName(Res).empty())
cerr << " [" << Res << "] ";
unsigned Tag = getTag();
cerr << " [" << dwarf::TagString(Tag) << "] ";
// TODO : Print context
getCompileUnit().dump();
cerr << " ["
<< getLineNumber() << ", "
<< getSizeInBits() << ", "
<< getAlignInBits() << ", "
<< getOffsetInBits()
<< "] ";
if (isPrivate())
cerr << " [private] ";
else if (isProtected())
cerr << " [protected] ";
if (isForwardDecl())
cerr << " [fwd] ";
if (isBasicType(Tag))
DIBasicType(DbgGV).dump();
else if (isDerivedType(Tag))
DIDerivedType(DbgGV).dump();
else if (isCompositeType(Tag))
DICompositeType(DbgGV).dump();
else {
cerr << "Invalid DIType\n";
return;
}
cerr << "\n";
}
/// dump - Print basic type.
void DIBasicType::dump() const {
cerr << " [" << dwarf::AttributeEncodingString(getEncoding()) << "] ";
}
/// dump - Print derived type.
void DIDerivedType::dump() const {
cerr << "\n\t Derived From: "; getTypeDerivedFrom().dump();
}
/// dump - Print composite type.
void DICompositeType::dump() const {
DIArray A = getTypeArray();
if (A.isNull())
return;
cerr << " [" << A.getNumElements() << " elements]";
}
/// dump - Print global.
void DIGlobal::dump() const {
std::string Res;
if (!getName(Res).empty())
cerr << " [" << Res << "] ";
unsigned Tag = getTag();
cerr << " [" << dwarf::TagString(Tag) << "] ";
// TODO : Print context
getCompileUnit().dump();
cerr << " [" << getLineNumber() << "] ";
if (isLocalToUnit())
cerr << " [local] ";
if (isDefinition())
cerr << " [def] ";
if (isGlobalVariable(Tag))
DIGlobalVariable(DbgGV).dump();
cerr << "\n";
}
/// dump - Print subprogram.
void DISubprogram::dump() const {
DIGlobal::dump();
}
/// dump - Print global variable.
void DIGlobalVariable::dump() const {
cerr << " ["; getGlobal()->dump(); cerr << "] ";
}
/// dump - Print variable.
void DIVariable::dump() const {
std::string Res;
if (!getName(Res).empty())
cerr << " [" << Res << "] ";
getCompileUnit().dump();
cerr << " [" << getLineNumber() << "] ";
getType().dump();
cerr << "\n";
}
//===----------------------------------------------------------------------===//
// DIFactory: Basic Helpers
//===----------------------------------------------------------------------===//
DIFactory::DIFactory(Module &m)
: M(m), VMContext(M.getContext()), StopPointFn(0), FuncStartFn(0),
RegionStartFn(0), RegionEndFn(0),
DeclareFn(0) {
EmptyStructPtr = VMContext.getPointerTypeUnqual(VMContext.getStructType());
}
/// getCastToEmpty - Return this descriptor as a Constant* with type '{}*'.
/// This is only valid when the descriptor is non-null.
Constant *DIFactory::getCastToEmpty(DIDescriptor D) {
if (D.isNull()) return VMContext.getNullValue(EmptyStructPtr);
return VMContext.getConstantExprBitCast(D.getGV(), EmptyStructPtr);
}
Constant *DIFactory::GetTagConstant(unsigned TAG) {
assert((TAG & LLVMDebugVersionMask) == 0 &&
"Tag too large for debug encoding!");
return ConstantInt::get(Type::Int32Ty, TAG | LLVMDebugVersion);
}
Constant *DIFactory::GetStringConstant(const std::string &String) {
// Check string cache for previous edition.
Constant *&Slot = StringCache[String];
// Return Constant if previously defined.
if (Slot) return Slot;
const PointerType *DestTy = VMContext.getPointerTypeUnqual(Type::Int8Ty);
// If empty string then use a i8* null instead.
if (String.empty())
return Slot = VMContext.getConstantPointerNull(DestTy);
// Construct string as an llvm constant.
Constant *ConstStr = ConstantArray::get(String);
// Otherwise create and return a new string global.
GlobalVariable *StrGV = new GlobalVariable(M, ConstStr->getType(), true,
GlobalVariable::InternalLinkage,
ConstStr, ".str");
StrGV->setSection("llvm.metadata");
return Slot = VMContext.getConstantExprBitCast(StrGV, DestTy);
}
//===----------------------------------------------------------------------===//
// DIFactory: Primary Constructors
//===----------------------------------------------------------------------===//
/// GetOrCreateArray - Create an descriptor for an array of descriptors.
/// This implicitly uniques the arrays created.
DIArray DIFactory::GetOrCreateArray(DIDescriptor *Tys, unsigned NumTys) {
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0; i != NumTys; ++i)
Elts.push_back(getCastToEmpty(Tys[i]));
Constant *Init = ConstantArray::get(VMContext.getArrayType(EmptyStructPtr,
Elts.size()),
Elts.data(), Elts.size());
// If we already have this array, just return the uniqued version.
DIDescriptor &Entry = SimpleConstantCache[Init];
if (!Entry.isNull()) return DIArray(Entry.getGV());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::InternalLinkage,
Init, "llvm.dbg.array");
GV->setSection("llvm.metadata");
Entry = DIDescriptor(GV);
return DIArray(GV);
}
/// GetOrCreateSubrange - Create a descriptor for a value range. This
/// implicitly uniques the values returned.
DISubrange DIFactory::GetOrCreateSubrange(int64_t Lo, int64_t Hi) {
Constant *Elts[] = {
GetTagConstant(dwarf::DW_TAG_subrange_type),
ConstantInt::get(Type::Int64Ty, Lo),
ConstantInt::get(Type::Int64Ty, Hi)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
// If we already have this range, just return the uniqued version.
DIDescriptor &Entry = SimpleConstantCache[Init];
if (!Entry.isNull()) return DISubrange(Entry.getGV());
M.addTypeName("llvm.dbg.subrange.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::InternalLinkage,
Init, "llvm.dbg.subrange");
GV->setSection("llvm.metadata");
Entry = DIDescriptor(GV);
return DISubrange(GV);
}
/// CreateCompileUnit - Create a new descriptor for the specified compile
/// unit. Note that this does not unique compile units within the module.
DICompileUnit DIFactory::CreateCompileUnit(unsigned LangID,
const std::string &Filename,
const std::string &Directory,
const std::string &Producer,
Each input file is encoded as a separate compile unit in LLVM debugging information output. However, many target specific tool chains prefer to encode only one compile unit in an object file. In this situation, the LLVM code generator will include debugging information entities in the compile unit that is marked as main compile unit. The code generator accepts maximum one main compile unit per module. If a module does not contain any main compile unit then the code generator will emit multiple compile units in the output object file. [Part 1] Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit. Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here. Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit. [Part 2] Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs. --- This is Part 1. llvm-svn: 63400
2009-01-31 02:20:31 +08:00
bool isMain,
bool isOptimized,
const char *Flags,
unsigned RunTimeVer) {
Constant *Elts[] = {
GetTagConstant(dwarf::DW_TAG_compile_unit),
VMContext.getNullValue(EmptyStructPtr),
ConstantInt::get(Type::Int32Ty, LangID),
GetStringConstant(Filename),
GetStringConstant(Directory),
GetStringConstant(Producer),
ConstantInt::get(Type::Int1Ty, isMain),
ConstantInt::get(Type::Int1Ty, isOptimized),
GetStringConstant(Flags),
ConstantInt::get(Type::Int32Ty, RunTimeVer)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.compile_unit.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::LinkOnceAnyLinkage,
Init, "llvm.dbg.compile_unit");
GV->setSection("llvm.metadata");
return DICompileUnit(GV);
}
/// CreateEnumerator - Create a single enumerator value.
DIEnumerator DIFactory::CreateEnumerator(const std::string &Name, uint64_t Val){
Constant *Elts[] = {
GetTagConstant(dwarf::DW_TAG_enumerator),
GetStringConstant(Name),
ConstantInt::get(Type::Int64Ty, Val)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.enumerator.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::InternalLinkage,
Init, "llvm.dbg.enumerator");
GV->setSection("llvm.metadata");
return DIEnumerator(GV);
}
/// CreateBasicType - Create a basic type like int, float, etc.
DIBasicType DIFactory::CreateBasicType(DIDescriptor Context,
const std::string &Name,
DICompileUnit CompileUnit,
unsigned LineNumber,
uint64_t SizeInBits,
uint64_t AlignInBits,
uint64_t OffsetInBits, unsigned Flags,
Each input file is encoded as a separate compile unit in LLVM debugging information output. However, many target specific tool chains prefer to encode only one compile unit in an object file. In this situation, the LLVM code generator will include debugging information entities in the compile unit that is marked as main compile unit. The code generator accepts maximum one main compile unit per module. If a module does not contain any main compile unit then the code generator will emit multiple compile units in the output object file. [Part 1] Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit. Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here. Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit. [Part 2] Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs. --- This is Part 1. llvm-svn: 63400
2009-01-31 02:20:31 +08:00
unsigned Encoding) {
Constant *Elts[] = {
GetTagConstant(dwarf::DW_TAG_base_type),
getCastToEmpty(Context),
GetStringConstant(Name),
getCastToEmpty(CompileUnit),
ConstantInt::get(Type::Int32Ty, LineNumber),
ConstantInt::get(Type::Int64Ty, SizeInBits),
ConstantInt::get(Type::Int64Ty, AlignInBits),
ConstantInt::get(Type::Int64Ty, OffsetInBits),
ConstantInt::get(Type::Int32Ty, Flags),
ConstantInt::get(Type::Int32Ty, Encoding)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.basictype.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::InternalLinkage,
Init, "llvm.dbg.basictype");
GV->setSection("llvm.metadata");
return DIBasicType(GV);
}
/// CreateDerivedType - Create a derived type like const qualified type,
/// pointer, typedef, etc.
DIDerivedType DIFactory::CreateDerivedType(unsigned Tag,
DIDescriptor Context,
const std::string &Name,
DICompileUnit CompileUnit,
unsigned LineNumber,
uint64_t SizeInBits,
uint64_t AlignInBits,
uint64_t OffsetInBits,
unsigned Flags,
Each input file is encoded as a separate compile unit in LLVM debugging information output. However, many target specific tool chains prefer to encode only one compile unit in an object file. In this situation, the LLVM code generator will include debugging information entities in the compile unit that is marked as main compile unit. The code generator accepts maximum one main compile unit per module. If a module does not contain any main compile unit then the code generator will emit multiple compile units in the output object file. [Part 1] Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit. Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here. Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit. [Part 2] Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs. --- This is Part 1. llvm-svn: 63400
2009-01-31 02:20:31 +08:00
DIType DerivedFrom) {
Constant *Elts[] = {
GetTagConstant(Tag),
getCastToEmpty(Context),
GetStringConstant(Name),
getCastToEmpty(CompileUnit),
ConstantInt::get(Type::Int32Ty, LineNumber),
ConstantInt::get(Type::Int64Ty, SizeInBits),
ConstantInt::get(Type::Int64Ty, AlignInBits),
ConstantInt::get(Type::Int64Ty, OffsetInBits),
ConstantInt::get(Type::Int32Ty, Flags),
Each input file is encoded as a separate compile unit in LLVM debugging information output. However, many target specific tool chains prefer to encode only one compile unit in an object file. In this situation, the LLVM code generator will include debugging information entities in the compile unit that is marked as main compile unit. The code generator accepts maximum one main compile unit per module. If a module does not contain any main compile unit then the code generator will emit multiple compile units in the output object file. [Part 1] Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit. Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here. Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit. [Part 2] Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs. --- This is Part 1. llvm-svn: 63400
2009-01-31 02:20:31 +08:00
getCastToEmpty(DerivedFrom)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.derivedtype.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::InternalLinkage,
Init, "llvm.dbg.derivedtype");
GV->setSection("llvm.metadata");
return DIDerivedType(GV);
}
/// CreateCompositeType - Create a composite type like array, struct, etc.
DICompositeType DIFactory::CreateCompositeType(unsigned Tag,
DIDescriptor Context,
const std::string &Name,
DICompileUnit CompileUnit,
unsigned LineNumber,
uint64_t SizeInBits,
uint64_t AlignInBits,
uint64_t OffsetInBits,
unsigned Flags,
DIType DerivedFrom,
DIArray Elements,
unsigned RuntimeLang) {
Constant *Elts[] = {
GetTagConstant(Tag),
getCastToEmpty(Context),
GetStringConstant(Name),
getCastToEmpty(CompileUnit),
ConstantInt::get(Type::Int32Ty, LineNumber),
ConstantInt::get(Type::Int64Ty, SizeInBits),
ConstantInt::get(Type::Int64Ty, AlignInBits),
ConstantInt::get(Type::Int64Ty, OffsetInBits),
ConstantInt::get(Type::Int32Ty, Flags),
getCastToEmpty(DerivedFrom),
getCastToEmpty(Elements),
ConstantInt::get(Type::Int32Ty, RuntimeLang)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.composite.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::InternalLinkage,
Init, "llvm.dbg.composite");
GV->setSection("llvm.metadata");
return DICompositeType(GV);
}
/// CreateSubprogram - Create a new descriptor for the specified subprogram.
/// See comments in DISubprogram for descriptions of these fields. This
/// method does not unique the generated descriptors.
DISubprogram DIFactory::CreateSubprogram(DIDescriptor Context,
const std::string &Name,
const std::string &DisplayName,
const std::string &LinkageName,
DICompileUnit CompileUnit,
unsigned LineNo, DIType Type,
bool isLocalToUnit,
Each input file is encoded as a separate compile unit in LLVM debugging information output. However, many target specific tool chains prefer to encode only one compile unit in an object file. In this situation, the LLVM code generator will include debugging information entities in the compile unit that is marked as main compile unit. The code generator accepts maximum one main compile unit per module. If a module does not contain any main compile unit then the code generator will emit multiple compile units in the output object file. [Part 1] Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit. Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here. Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit. [Part 2] Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs. --- This is Part 1. llvm-svn: 63400
2009-01-31 02:20:31 +08:00
bool isDefinition) {
Constant *Elts[] = {
GetTagConstant(dwarf::DW_TAG_subprogram),
VMContext.getNullValue(EmptyStructPtr),
getCastToEmpty(Context),
GetStringConstant(Name),
GetStringConstant(DisplayName),
GetStringConstant(LinkageName),
getCastToEmpty(CompileUnit),
ConstantInt::get(Type::Int32Ty, LineNo),
getCastToEmpty(Type),
ConstantInt::get(Type::Int1Ty, isLocalToUnit),
ConstantInt::get(Type::Int1Ty, isDefinition)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.subprogram.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::LinkOnceAnyLinkage,
Init, "llvm.dbg.subprogram");
GV->setSection("llvm.metadata");
return DISubprogram(GV);
}
/// CreateGlobalVariable - Create a new descriptor for the specified global.
DIGlobalVariable
DIFactory::CreateGlobalVariable(DIDescriptor Context, const std::string &Name,
const std::string &DisplayName,
const std::string &LinkageName,
DICompileUnit CompileUnit,
unsigned LineNo, DIType Type,bool isLocalToUnit,
Each input file is encoded as a separate compile unit in LLVM debugging information output. However, many target specific tool chains prefer to encode only one compile unit in an object file. In this situation, the LLVM code generator will include debugging information entities in the compile unit that is marked as main compile unit. The code generator accepts maximum one main compile unit per module. If a module does not contain any main compile unit then the code generator will emit multiple compile units in the output object file. [Part 1] Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit. Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here. Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit. [Part 2] Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs. --- This is Part 1. llvm-svn: 63400
2009-01-31 02:20:31 +08:00
bool isDefinition, llvm::GlobalVariable *Val) {
Constant *Elts[] = {
GetTagConstant(dwarf::DW_TAG_variable),
VMContext.getNullValue(EmptyStructPtr),
getCastToEmpty(Context),
GetStringConstant(Name),
GetStringConstant(DisplayName),
GetStringConstant(LinkageName),
getCastToEmpty(CompileUnit),
ConstantInt::get(Type::Int32Ty, LineNo),
getCastToEmpty(Type),
ConstantInt::get(Type::Int1Ty, isLocalToUnit),
ConstantInt::get(Type::Int1Ty, isDefinition),
VMContext.getConstantExprBitCast(Val, EmptyStructPtr)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.global_variable.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::LinkOnceAnyLinkage,
Init, "llvm.dbg.global_variable");
GV->setSection("llvm.metadata");
return DIGlobalVariable(GV);
}
/// CreateVariable - Create a new descriptor for the specified variable.
DIVariable DIFactory::CreateVariable(unsigned Tag, DIDescriptor Context,
const std::string &Name,
DICompileUnit CompileUnit, unsigned LineNo,
Each input file is encoded as a separate compile unit in LLVM debugging information output. However, many target specific tool chains prefer to encode only one compile unit in an object file. In this situation, the LLVM code generator will include debugging information entities in the compile unit that is marked as main compile unit. The code generator accepts maximum one main compile unit per module. If a module does not contain any main compile unit then the code generator will emit multiple compile units in the output object file. [Part 1] Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit. Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here. Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit. [Part 2] Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs. --- This is Part 1. llvm-svn: 63400
2009-01-31 02:20:31 +08:00
DIType Type) {
Constant *Elts[] = {
GetTagConstant(Tag),
getCastToEmpty(Context),
GetStringConstant(Name),
getCastToEmpty(CompileUnit),
ConstantInt::get(Type::Int32Ty, LineNo),
Each input file is encoded as a separate compile unit in LLVM debugging information output. However, many target specific tool chains prefer to encode only one compile unit in an object file. In this situation, the LLVM code generator will include debugging information entities in the compile unit that is marked as main compile unit. The code generator accepts maximum one main compile unit per module. If a module does not contain any main compile unit then the code generator will emit multiple compile units in the output object file. [Part 1] Update DebugInfo APIs to accept optional boolean value while creating DICompileUnit to mark the unit as "main" unit. By defaults all units are considered non-main. Update SourceLevelDebugging.html to document "main" compile unit. Update DebugInfo APIs to not accept and encode separate source file/directory entries while creating various llvm.dbg.* entities. There was a recent, yet to be documented, change to include this additional information so no documentation changes are required here. Update DwarfDebug to handle "main" compile unit. If "main" compile unit is seen then all DIEs are inserted into "main" compile unit. All other compile units are used to find source location for llvm.dbg.* values. If there is not any "main" compile unit then create unique compile unit DIEs for each llvm.dbg.compile_unit. [Part 2] Create separate llvm.dbg.compile_unit for each input file. Mark compile unit create for main_input_filename as "main" compile unit. Use appropriate compile unit, based on source location information collected from the tree node, while creating llvm.dbg.* values using DebugInfo APIs. --- This is Part 1. llvm-svn: 63400
2009-01-31 02:20:31 +08:00
getCastToEmpty(Type)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.variable.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::InternalLinkage,
Init, "llvm.dbg.variable");
GV->setSection("llvm.metadata");
return DIVariable(GV);
}
/// CreateBlock - This creates a descriptor for a lexical block with the
/// specified parent VMContext.
DIBlock DIFactory::CreateBlock(DIDescriptor Context) {
Constant *Elts[] = {
GetTagConstant(dwarf::DW_TAG_lexical_block),
getCastToEmpty(Context)
};
Constant *Init = ConstantStruct::get(Elts, sizeof(Elts)/sizeof(Elts[0]));
M.addTypeName("llvm.dbg.block.type", Init->getType());
GlobalVariable *GV = new GlobalVariable(M, Init->getType(), true,
GlobalValue::InternalLinkage,
Init, "llvm.dbg.block");
GV->setSection("llvm.metadata");
return DIBlock(GV);
}
//===----------------------------------------------------------------------===//
// DIFactory: Routines for inserting code into a function
//===----------------------------------------------------------------------===//
/// InsertStopPoint - Create a new llvm.dbg.stoppoint intrinsic invocation,
/// inserting it at the end of the specified basic block.
void DIFactory::InsertStopPoint(DICompileUnit CU, unsigned LineNo,
unsigned ColNo, BasicBlock *BB) {
// Lazily construct llvm.dbg.stoppoint function.
if (!StopPointFn)
StopPointFn = llvm::Intrinsic::getDeclaration(&M,
llvm::Intrinsic::dbg_stoppoint);
// Invoke llvm.dbg.stoppoint
Value *Args[] = {
ConstantInt::get(llvm::Type::Int32Ty, LineNo),
ConstantInt::get(llvm::Type::Int32Ty, ColNo),
getCastToEmpty(CU)
};
CallInst::Create(StopPointFn, Args, Args+3, "", BB);
}
/// InsertSubprogramStart - Create a new llvm.dbg.func.start intrinsic to
/// mark the start of the specified subprogram.
void DIFactory::InsertSubprogramStart(DISubprogram SP, BasicBlock *BB) {
// Lazily construct llvm.dbg.func.start.
if (!FuncStartFn)
FuncStartFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_func_start);
// Call llvm.dbg.func.start which also implicitly sets a stoppoint.
CallInst::Create(FuncStartFn, getCastToEmpty(SP), "", BB);
}
/// InsertRegionStart - Insert a new llvm.dbg.region.start intrinsic call to
/// mark the start of a region for the specified scoping descriptor.
void DIFactory::InsertRegionStart(DIDescriptor D, BasicBlock *BB) {
// Lazily construct llvm.dbg.region.start function.
if (!RegionStartFn)
RegionStartFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_region_start);
// Call llvm.dbg.func.start.
CallInst::Create(RegionStartFn, getCastToEmpty(D), "", BB);
}
/// InsertRegionEnd - Insert a new llvm.dbg.region.end intrinsic call to
/// mark the end of a region for the specified scoping descriptor.
void DIFactory::InsertRegionEnd(DIDescriptor D, BasicBlock *BB) {
// Lazily construct llvm.dbg.region.end function.
if (!RegionEndFn)
RegionEndFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_region_end);
// Call llvm.dbg.region.end.
CallInst::Create(RegionEndFn, getCastToEmpty(D), "", BB);
}
/// InsertDeclare - Insert a new llvm.dbg.declare intrinsic call.
void DIFactory::InsertDeclare(Value *Storage, DIVariable D, BasicBlock *BB) {
// Cast the storage to a {}* for the call to llvm.dbg.declare.
Storage = new BitCastInst(Storage, EmptyStructPtr, "", BB);
if (!DeclareFn)
DeclareFn = Intrinsic::getDeclaration(&M, Intrinsic::dbg_declare);
Value *Args[] = { Storage, getCastToEmpty(D) };
CallInst::Create(DeclareFn, Args, Args+2, "", BB);
}
//===----------------------------------------------------------------------===//
// DebugInfoEnumerator implementations.
//===----------------------------------------------------------------------===//
/// enumerateModule - Enumerate entire module and collect debug info.
void DebugInfoEnumerator::enumerateModule(Module &M) {
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
for (Function::iterator FI = (*I).begin(), FE = (*I).end(); FI != FE; ++FI)
for (BasicBlock::iterator BI = (*FI).begin(), BE = (*FI).end(); BI != BE;
++BI) {
if (DbgStopPointInst *SPI = dyn_cast<DbgStopPointInst>(BI))
enumerateStopPoint(SPI);
else if (DbgFuncStartInst *FSI = dyn_cast<DbgFuncStartInst>(BI))
enumerateFuncStart(FSI);
}
for (Module::global_iterator GVI = M.global_begin(), GVE = M.global_end();
GVI != GVE; ++GVI) {
GlobalVariable *GV = GVI;
if (!GV->hasName() || !GV->isConstant()
|| strcmp(GV->getName().data(), "llvm.dbg.global_variable")
|| !GV->hasInitializer())
continue;
DIGlobalVariable DIG(GV);
if (addGlobalVariable(DIG)) {
addCompileUnit(DIG.getCompileUnit());
enumerateType(DIG.getType());
}
}
}
/// enumerateType - Enumerate DIType.
void DebugInfoEnumerator::enumerateType(DIType DT) {
if (DT.isNull())
return;
if (!NodesSeen.insert(DT.getGV()))
return;
addCompileUnit(DT.getCompileUnit());
if (DT.isCompositeType(DT.getTag())) {
DICompositeType DCT(DT.getGV());
enumerateType(DCT.getTypeDerivedFrom());
DIArray DA = DCT.getTypeArray();
if (!DA.isNull())
for (unsigned i = 0, e = DA.getNumElements(); i != e; ++i) {
DIDescriptor D = DA.getElement(i);
DIType TypeE = DIType(D.getGV());
if (!TypeE.isNull())
enumerateType(TypeE);
else
enumerateSubprogram(DISubprogram(D.getGV()));
}
} else if (DT.isDerivedType(DT.getTag())) {
DIDerivedType DDT(DT.getGV());
if (!DDT.isNull())
enumerateType(DDT.getTypeDerivedFrom());
}
}
/// enumerateSubprogram - Enumberate DISubprogram.
void DebugInfoEnumerator::enumerateSubprogram(DISubprogram SP) {
if (!addSubprogram(SP))
return;
addCompileUnit(SP.getCompileUnit());
enumerateType(SP.getType());
}
/// enumerateStopPoint - Enumerate DbgStopPointInst.
void DebugInfoEnumerator::enumerateStopPoint(DbgStopPointInst *SPI) {
GlobalVariable *Context = dyn_cast<GlobalVariable>(SPI->getContext());
addCompileUnit(DICompileUnit(Context));
}
/// enumerateFuncStart - Enumberate DbgFuncStartInst.
void DebugInfoEnumerator::enumerateFuncStart(DbgFuncStartInst *FSI) {
GlobalVariable *SP = dyn_cast<GlobalVariable>(FSI->getSubprogram());
enumerateSubprogram(DISubprogram(SP));
}
/// addCompileUnit - Add compile unit into CUs.
bool DebugInfoEnumerator::addCompileUnit(DICompileUnit CU) {
if (CU.isNull())
return false;
if (!NodesSeen.insert(CU.getGV()))
return false;
CUs.push_back(CU.getGV());
return true;
}
/// addGlobalVariable - Add global variable into GVs.
bool DebugInfoEnumerator::addGlobalVariable(DIGlobalVariable DIG) {
if (DIG.isNull())
return false;
if (!NodesSeen.insert(DIG.getGV()))
return false;
GVs.push_back(DIG.getGV());
return true;
}
// addSubprogram - Add subprgoram into SPs.
bool DebugInfoEnumerator::addSubprogram(DISubprogram SP) {
if (SP.isNull())
return false;
if (!NodesSeen.insert(SP.getGV()))
return false;
SPs.push_back(SP.getGV());
return true;
}
namespace llvm {
/// findStopPoint - Find the stoppoint coressponding to this instruction, that
/// is the stoppoint that dominates this instruction.
const DbgStopPointInst *findStopPoint(const Instruction *Inst) {
if (const DbgStopPointInst *DSI = dyn_cast<DbgStopPointInst>(Inst))
return DSI;
const BasicBlock *BB = Inst->getParent();
BasicBlock::const_iterator I = Inst, B;
while (BB) {
B = BB->begin();
// A BB consisting only of a terminator can't have a stoppoint.
while (I != B) {
--I;
if (const DbgStopPointInst *DSI = dyn_cast<DbgStopPointInst>(I))
return DSI;
}
// This BB didn't have a stoppoint: if there is only one predecessor, look
// for a stoppoint there. We could use getIDom(), but that would require
// dominator info.
BB = I->getParent()->getUniquePredecessor();
if (BB)
I = BB->getTerminator();
}
return 0;
}
/// findBBStopPoint - Find the stoppoint corresponding to first real
/// (non-debug intrinsic) instruction in this Basic Block, and return the
/// stoppoint for it.
const DbgStopPointInst *findBBStopPoint(const BasicBlock *BB) {
for(BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (const DbgStopPointInst *DSI = dyn_cast<DbgStopPointInst>(I))
return DSI;
// Fallback to looking for stoppoint of unique predecessor. Useful if this
// BB contains no stoppoints, but unique predecessor does.
BB = BB->getUniquePredecessor();
if (BB)
return findStopPoint(BB->getTerminator());
return 0;
}
Value *findDbgGlobalDeclare(GlobalVariable *V) {
const Module *M = V->getParent();
LLVMContext& Context = M->getContext();
const Type *Ty = M->getTypeByName("llvm.dbg.global_variable.type");
if (!Ty) return 0;
Ty = Context.getPointerType(Ty, 0);
Value *Val = V->stripPointerCasts();
for (Value::use_iterator I = Val->use_begin(), E = Val->use_end();
I != E; ++I) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I)) {
if (CE->getOpcode() == Instruction::BitCast) {
Value *VV = CE;
while (VV->hasOneUse())
VV = *VV->use_begin();
if (VV->getType() == Ty)
return VV;
}
}
}
if (Val->getType() == Ty)
return Val;
return 0;
}
/// Finds the llvm.dbg.declare intrinsic corresponding to this value if any.
/// It looks through pointer casts too.
const DbgDeclareInst *findDbgDeclare(const Value *V, bool stripCasts) {
if (stripCasts) {
V = V->stripPointerCasts();
// Look for the bitcast.
for (Value::use_const_iterator I = V->use_begin(), E =V->use_end();
I != E; ++I)
if (isa<BitCastInst>(I))
return findDbgDeclare(*I, false);
return 0;
}
// Find llvm.dbg.declare among uses of the instruction.
for (Value::use_const_iterator I = V->use_begin(), E =V->use_end();
I != E; ++I)
if (const DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I))
return DDI;
return 0;
}
bool getLocationInfo(const Value *V, std::string &DisplayName,
std::string &Type, unsigned &LineNo, std::string &File,
std::string &Dir) {
DICompileUnit Unit;
DIType TypeD;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(const_cast<Value*>(V))) {
Value *DIGV = findDbgGlobalDeclare(GV);
if (!DIGV) return false;
DIGlobalVariable Var(cast<GlobalVariable>(DIGV));
Var.getDisplayName(DisplayName);
LineNo = Var.getLineNumber();
Unit = Var.getCompileUnit();
TypeD = Var.getType();
} else {
const DbgDeclareInst *DDI = findDbgDeclare(V);
if (!DDI) return false;
DIVariable Var(cast<GlobalVariable>(DDI->getVariable()));
Var.getName(DisplayName);
LineNo = Var.getLineNumber();
Unit = Var.getCompileUnit();
TypeD = Var.getType();
}
TypeD.getName(Type);
Unit.getFilename(File);
Unit.getDirectory(Dir);
return true;
}
/// CollectDebugInfoAnchors - Collect debugging information anchors.
void CollectDebugInfoAnchors(Module &M,
SmallVector<GlobalVariable *, 2> &CUs,
SmallVector<GlobalVariable *, 4> &GVs,
SmallVector<GlobalVariable *, 4> &SPs) {
for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
GVI != E; GVI++) {
GlobalVariable *GV = GVI;
if (GV->hasName() && GV->getName().startswith("llvm.dbg")
&& GV->isConstant() && GV->hasInitializer()) {
DICompileUnit C(GV);
if (C.isNull() == false) {
CUs.push_back(GV);
continue;
}
DIGlobalVariable G(GV);
if (G.isNull() == false) {
GVs.push_back(GV);
continue;
}
DISubprogram S(GV);
if (S.isNull() == false) {
SPs.push_back(GV);
continue;
}
}
}
}
/// isValidDebugInfoIntrinsic - Return true if SPI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgStopPointInst &SPI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(SPI.getContext(), OptLev);
}
/// isValidDebugInfoIntrinsic - Return true if FSI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgFuncStartInst &FSI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(FSI.getSubprogram(), OptLev);
}
/// isValidDebugInfoIntrinsic - Return true if RSI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgRegionStartInst &RSI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(RSI.getContext(), OptLev);
}
/// isValidDebugInfoIntrinsic - Return true if REI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgRegionEndInst &REI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(REI.getContext(), OptLev);
}
/// isValidDebugInfoIntrinsic - Return true if DI is a valid debug
/// info intrinsic.
bool isValidDebugInfoIntrinsic(DbgDeclareInst &DI,
CodeGenOpt::Level OptLev) {
return DIDescriptor::ValidDebugInfo(DI.getVariable(), OptLev);
}
/// ExtractDebugLocation - Extract debug location information
/// from llvm.dbg.stoppoint intrinsic.
DebugLoc ExtractDebugLocation(DbgStopPointInst &SPI,
DebugLocTracker &DebugLocInfo) {
DebugLoc DL;
Value *Context = SPI.getContext();
// If this location is already tracked then use it.
DebugLocTuple Tuple(cast<GlobalVariable>(Context), SPI.getLine(),
SPI.getColumn());
DenseMap<DebugLocTuple, unsigned>::iterator II
= DebugLocInfo.DebugIdMap.find(Tuple);
if (II != DebugLocInfo.DebugIdMap.end())
return DebugLoc::get(II->second);
// Add a new location entry.
unsigned Id = DebugLocInfo.DebugLocations.size();
DebugLocInfo.DebugLocations.push_back(Tuple);
DebugLocInfo.DebugIdMap[Tuple] = Id;
return DebugLoc::get(Id);
}
/// ExtractDebugLocation - Extract debug location information
/// from llvm.dbg.func_start intrinsic.
DebugLoc ExtractDebugLocation(DbgFuncStartInst &FSI,
DebugLocTracker &DebugLocInfo) {
DebugLoc DL;
Value *SP = FSI.getSubprogram();
DISubprogram Subprogram(cast<GlobalVariable>(SP));
unsigned Line = Subprogram.getLineNumber();
DICompileUnit CU(Subprogram.getCompileUnit());
// If this location is already tracked then use it.
DebugLocTuple Tuple(CU.getGV(), Line, /* Column */ 0);
DenseMap<DebugLocTuple, unsigned>::iterator II
= DebugLocInfo.DebugIdMap.find(Tuple);
if (II != DebugLocInfo.DebugIdMap.end())
return DebugLoc::get(II->second);
// Add a new location entry.
unsigned Id = DebugLocInfo.DebugLocations.size();
DebugLocInfo.DebugLocations.push_back(Tuple);
DebugLocInfo.DebugIdMap[Tuple] = Id;
return DebugLoc::get(Id);
}
/// isInlinedFnStart - Return true if FSI is starting an inlined function.
bool isInlinedFnStart(DbgFuncStartInst &FSI, const Function *CurrentFn) {
DISubprogram Subprogram(cast<GlobalVariable>(FSI.getSubprogram()));
if (Subprogram.describes(CurrentFn))
return false;
return true;
}
/// isInlinedFnEnd - Return true if REI is ending an inlined function.
bool isInlinedFnEnd(DbgRegionEndInst &REI, const Function *CurrentFn) {
DISubprogram Subprogram(cast<GlobalVariable>(REI.getContext()));
if (Subprogram.isNull() || Subprogram.describes(CurrentFn))
return false;
return true;
}
}