llvm-project/mlir/lib/Transforms/PipelineDataTransfer.cpp

385 lines
15 KiB
C++
Raw Normal View History

Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
//===- PipelineDataTransfer.cpp --- Pass for pipelining data movement ---*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to pipeline data transfers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Passes.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/StandardOps/Ops.h"
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "affine-pipeline-data-transfer"
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
using namespace mlir;
namespace {
struct PipelineDataTransfer : public FunctionPass<PipelineDataTransfer> {
void runOnFunction() override;
void runOnAffineForOp(AffineForOp forOp);
std::vector<AffineForOp> forOps;
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
};
} // end anonymous namespace
/// Creates a pass to pipeline explicit movement of data across levels of the
/// memory hierarchy.
FunctionPassBase *mlir::createPipelineDataTransferPass() {
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
return new PipelineDataTransfer();
}
// Returns the position of the tag memref operand given a DMA operation.
// Temporary utility: will be replaced when DmaStart/DmaFinish abstract op's are
// added. TODO(b/117228571)
static unsigned getTagMemRefPos(Operation &dmaInst) {
assert(dmaInst.isa<DmaStartOp>() || dmaInst.isa<DmaWaitOp>());
if (dmaInst.isa<DmaStartOp>()) {
// Second to last operand.
return dmaInst.getNumOperands() - 2;
}
// First operand for a dma finish operation.
return 0;
}
/// Doubles the buffer of the supplied memref on the specified 'affine.for'
/// operation by adding a leading dimension of size two to the memref.
/// Replaces all uses of the old memref by the new one while indexing the newly
/// added dimension by the loop IV of the specified 'affine.for' operation
/// modulo 2. Returns false if such a replacement cannot be performed.
static bool doubleBuffer(Value *oldMemRef, AffineForOp forOp) {
auto *forBody = forOp.getBody();
FuncBuilder bInner(forBody, forBody->begin());
bInner.setInsertionPoint(forBody, forBody->begin());
// Doubles the shape with a leading dimension extent of 2.
auto doubleShape = [&](MemRefType oldMemRefType) -> MemRefType {
// Add the leading dimension in the shape for the double buffer.
ArrayRef<int64_t> oldShape = oldMemRefType.getShape();
SmallVector<int64_t, 4> newShape(1 + oldMemRefType.getRank());
newShape[0] = 2;
std::copy(oldShape.begin(), oldShape.end(), newShape.begin() + 1);
auto newMemRefType =
bInner.getMemRefType(newShape, oldMemRefType.getElementType(), {},
oldMemRefType.getMemorySpace());
return newMemRefType;
};
auto oldMemRefType = oldMemRef->getType().cast<MemRefType>();
auto newMemRefType = doubleShape(oldMemRefType);
// The double buffer is allocated right before 'forInst'.
auto *forInst = forOp.getOperation();
FuncBuilder bOuter(forInst);
// Put together alloc operands for any dynamic dimensions of the memref.
SmallVector<Value *, 4> allocOperands;
unsigned dynamicDimCount = 0;
for (auto dimSize : oldMemRefType.getShape()) {
if (dimSize == -1)
allocOperands.push_back(bOuter.create<DimOp>(forInst->getLoc(), oldMemRef,
dynamicDimCount++));
}
// Create and place the alloc right before the 'affine.for' operation.
Value *newMemRef =
bOuter.create<AllocOp>(forInst->getLoc(), newMemRefType, allocOperands);
// Create 'iv mod 2' value to index the leading dimension.
auto d0 = bInner.getAffineDimExpr(0);
int64_t step = forOp.getStep();
auto modTwoMap = bInner.getAffineMap(/*dimCount=*/1, /*symbolCount=*/0,
{d0.floorDiv(step) % 2}, {});
auto ivModTwoOp = bInner.create<AffineApplyOp>(forOp.getLoc(), modTwoMap,
forOp.getInductionVar());
// replaceAllMemRefUsesWith will always succeed unless the forOp body has
// non-deferencing uses of the memref (dealloc's are fine though).
if (!replaceAllMemRefUsesWith(oldMemRef, newMemRef,
/*extraIndices=*/{ivModTwoOp},
/*indexRemap=*/AffineMap(),
/*extraOperands=*/{},
/*domInstFilter=*/&*forOp.getBody()->begin())) {
LLVM_DEBUG(
forOp.emitError("memref replacement for double buffering failed"));
ivModTwoOp.erase();
return false;
}
// Insert the dealloc op right after the for loop.
bOuter.setInsertionPoint(forInst->getBlock(),
std::next(Block::iterator(forInst)));
bOuter.create<DeallocOp>(forInst->getLoc(), newMemRef);
return true;
}
/// Returns success if the IR is in a valid state.
void PipelineDataTransfer::runOnFunction() {
// Do a post order walk so that inner loop DMAs are processed first. This is
// necessary since 'affine.for' operations nested within would otherwise
// become invalid (erased) when the outer loop is pipelined (the pipelined one
// gets deleted and replaced by a prologue, a new steady-state loop and an
// epilogue).
forOps.clear();
getFunction().walk<AffineForOp>(
[&](AffineForOp forOp) { forOps.push_back(forOp); });
for (auto forOp : forOps)
runOnAffineForOp(forOp);
}
// Check if tags of the dma start op and dma wait op match.
static bool checkTagMatch(DmaStartOp startOp, DmaWaitOp waitOp) {
if (startOp.getTagMemRef() != waitOp.getTagMemRef())
return false;
auto startIndices = startOp.getTagIndices();
auto waitIndices = waitOp.getTagIndices();
// Both of these have the same number of indices since they correspond to the
// same tag memref.
for (auto it = startIndices.begin(), wIt = waitIndices.begin(),
e = startIndices.end();
it != e; ++it, ++wIt) {
// Keep it simple for now, just checking if indices match.
// TODO(mlir-team): this would in general need to check if there is no
// intervening write writing to the same tag location, i.e., memory last
// write/data flow analysis. This is however sufficient/powerful enough for
// now since the DMA generation pass or the input for it will always have
// start/wait with matching tags (same SSA operand indices).
if (*it != *wIt)
return false;
}
return true;
}
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
// Identify matching DMA start/finish operations to overlap computation with.
static void findMatchingStartFinishInsts(
AffineForOp forOp,
SmallVectorImpl<std::pair<Operation *, Operation *>> &startWaitPairs) {
// Collect outgoing DMA operations - needed to check for dependences below.
SmallVector<DmaStartOp, 4> outgoingDmaOps;
for (auto &op : *forOp.getBody()) {
auto dmaStartOp = dyn_cast<DmaStartOp>(op);
if (dmaStartOp && dmaStartOp.isSrcMemorySpaceFaster())
outgoingDmaOps.push_back(dmaStartOp);
}
SmallVector<Operation *, 4> dmaStartInsts, dmaFinishInsts;
for (auto &op : *forOp.getBody()) {
// Collect DMA finish operations.
if (op.isa<DmaWaitOp>()) {
dmaFinishInsts.push_back(&op);
continue;
}
auto dmaStartOp = dyn_cast<DmaStartOp>(op);
if (!dmaStartOp)
continue;
// Only DMAs incoming into higher memory spaces are pipelined for now.
// TODO(bondhugula): handle outgoing DMA pipelining.
if (!dmaStartOp.isDestMemorySpaceFaster())
continue;
// Check for dependence with outgoing DMAs. Doing this conservatively.
// TODO(andydavis,bondhugula): use the dependence analysis to check for
// dependences between an incoming and outgoing DMA in the same iteration.
auto it = outgoingDmaOps.begin();
for (; it != outgoingDmaOps.end(); ++it) {
if (it->getDstMemRef() == dmaStartOp.getSrcMemRef())
break;
}
if (it != outgoingDmaOps.end())
continue;
// We only double buffer if the buffer is not live out of loop.
auto *memref = dmaStartOp.getOperand(dmaStartOp.getFasterMemPos());
bool escapingUses = false;
for (const auto &use : memref->getUses()) {
// We can double buffer regardless of dealloc's outside the loop.
if (use.getOwner()->isa<DeallocOp>())
continue;
if (!forOp.getBody()->findAncestorInstInBlock(*use.getOwner())) {
LLVM_DEBUG(llvm::dbgs()
<< "can't pipeline: buffer is live out of loop\n";);
escapingUses = true;
break;
}
}
if (!escapingUses)
dmaStartInsts.push_back(&op);
}
// For each start operation, we look for a matching finish operation.
for (auto *dmaStartInst : dmaStartInsts) {
for (auto *dmaFinishInst : dmaFinishInsts) {
if (checkTagMatch(cast<DmaStartOp>(dmaStartInst),
cast<DmaWaitOp>(dmaFinishInst))) {
startWaitPairs.push_back({dmaStartInst, dmaFinishInst});
break;
}
}
}
}
/// Overlap DMA transfers with computation in this loop. If successful,
/// 'forOp' is deleted, and a prologue, a new pipelined loop, and epilogue are
/// inserted right before where it was.
void PipelineDataTransfer::runOnAffineForOp(AffineForOp forOp) {
auto mayBeConstTripCount = getConstantTripCount(forOp);
if (!mayBeConstTripCount.hasValue()) {
LLVM_DEBUG(
forOp.emitRemark("won't pipeline due to unknown trip count loop"));
return;
}
SmallVector<std::pair<Operation *, Operation *>, 4> startWaitPairs;
findMatchingStartFinishInsts(forOp, startWaitPairs);
if (startWaitPairs.empty()) {
LLVM_DEBUG(forOp.emitRemark("No dma start/finish pairs\n"));
return;
}
// Double the buffers for the higher memory space memref's.
// Identify memref's to replace by scanning through all DMA start
// operations. A DMA start operation has two memref's - the one from the
// higher level of memory hierarchy is the one to double buffer.
// TODO(bondhugula): check whether double-buffering is even necessary.
// TODO(bondhugula): make this work with different layouts: assuming here that
// the dimension we are adding here for the double buffering is the outermost
// dimension.
for (auto &pair : startWaitPairs) {
auto *dmaStartInst = pair.first;
Value *oldMemRef = dmaStartInst->getOperand(
cast<DmaStartOp>(dmaStartInst).getFasterMemPos());
if (!doubleBuffer(oldMemRef, forOp)) {
// Normally, double buffering should not fail because we already checked
// that there are no uses outside.
LLVM_DEBUG(llvm::dbgs() << "double buffering failed for: \n";);
LLVM_DEBUG(dmaStartInst->dump());
// IR still in a valid state.
return;
}
// If the old memref has no more uses, remove its 'dead' alloc if it was
// alloc'ed. (note: DMA buffers are rarely function live-in; but a 'dim'
// operation could have been used on it if it was dynamically shaped in
// order to create the double buffer above.)
// '-canonicalize' does this in a more general way, but we'll anyway do the
// simple/common case so that the output / test cases looks clear.
if (auto *allocInst = oldMemRef->getDefiningOp()) {
if (oldMemRef->use_empty()) {
allocInst->erase();
} else if (oldMemRef->hasOneUse()) {
auto *singleUse = oldMemRef->use_begin()->getOwner();
if (singleUse->isa<DeallocOp>()) {
singleUse->erase();
oldMemRef->getDefiningOp()->erase();
}
}
}
}
// Double the buffers for tag memrefs.
for (auto &pair : startWaitPairs) {
auto *dmaFinishInst = pair.second;
Value *oldTagMemRef =
dmaFinishInst->getOperand(getTagMemRefPos(*dmaFinishInst));
if (!doubleBuffer(oldTagMemRef, forOp)) {
LLVM_DEBUG(llvm::dbgs() << "tag double buffering failed\n";);
return;
}
// If the old tag has no more uses, remove its 'dead' alloc if it was
// alloc'ed.
if (oldTagMemRef->use_empty())
if (auto *allocInst = oldTagMemRef->getDefiningOp())
allocInst->erase();
}
// Double buffering would have invalidated all the old DMA start/wait insts.
startWaitPairs.clear();
findMatchingStartFinishInsts(forOp, startWaitPairs);
// Store shift for operation for later lookup for AffineApplyOp's.
DenseMap<Operation *, unsigned> instShiftMap;
for (auto &pair : startWaitPairs) {
auto *dmaStartInst = pair.first;
assert(dmaStartInst->isa<DmaStartOp>());
instShiftMap[dmaStartInst] = 0;
// Set shifts for DMA start op's affine operand computation slices to 0.
SmallVector<AffineApplyOp, 4> sliceOps;
mlir::createAffineComputationSlice(dmaStartInst, &sliceOps);
if (!sliceOps.empty()) {
for (auto sliceOp : sliceOps) {
instShiftMap[sliceOp.getOperation()] = 0;
}
} else {
// If a slice wasn't created, the reachable affine.apply op's from its
// operands are the ones that go with it.
SmallVector<Operation *, 4> affineApplyInsts;
SmallVector<Value *, 4> operands(dmaStartInst->getOperands());
getReachableAffineApplyOps(operands, affineApplyInsts);
for (auto *op : affineApplyInsts) {
instShiftMap[op] = 0;
}
}
}
// Everything else (including compute ops and dma finish) are shifted by one.
for (auto &op : *forOp.getBody()) {
if (instShiftMap.find(&op) == instShiftMap.end()) {
instShiftMap[&op] = 1;
}
}
// Get shifts stored in map.
std::vector<uint64_t> shifts(forOp.getBody()->getOperations().size());
unsigned s = 0;
for (auto &op : *forOp.getBody()) {
assert(instShiftMap.find(&op) != instShiftMap.end());
shifts[s++] = instShiftMap[&op];
// Tagging operations with shifts for debugging purposes.
LLVM_DEBUG({
FuncBuilder b(&op);
op.setAttr("shift", b.getI64IntegerAttr(shifts[s - 1]));
});
}
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
if (!isInstwiseShiftValid(forOp, shifts)) {
// Violates dependences.
LLVM_DEBUG(llvm::dbgs() << "Shifts invalid - unexpected\n";);
return;
}
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
if (failed(instBodySkew(forOp, shifts))) {
LLVM_DEBUG(llvm::dbgs() << "op body skewing failed - unexpected\n";);
return;
}
Introduce loop body skewing / loop pipelining / loop shifting utility. - loopBodySkew shifts statements of a loop body by stmt-wise delays, and is typically meant to be used to: - allow overlap of non-blocking start/wait until completion operations with other computation - allow shifting of statements (for better register reuse/locality/parallelism) - software pipelining (when applied to the innermost loop) - an additional argument specifies whether to unroll the prologue and epilogue. - add method to check SSA dominance preservation. - add a fake loop pipeline pass to test this utility. Sample input/output are below. While on this, fix/add following: - fix minor bug in getAddMulPureAffineExpr - add additional builder methods for common affine map cases - fix const_operand_iterator's for ForStmt, etc. When there is no such thing as 'const MLValue', the iterator shouldn't be returning const MLValue's. Returning MLValue is const correct. Sample input/output examples: 1) Simplest case: shift second statement by one. Input: for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint } Output: #map0 = (d0) -> (d0 - 1) mlfunc @loop_nest_simple1() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint for %i0 = 1 to 7 { %1 = "foo"(%i0) : (affineint) -> affineint %2 = affine_apply #map0(%i0) %3 = "bar"(%2) : (affineint) -> affineint } %4 = affine_apply #map0(%c8) %5 = "bar"(%4) : (affineint) -> affineint return } 2) DMA overlap: shift dma.wait and compute by one. Input for %i = 0 to 7 { %pingpong = affine_apply (d0) -> (d0 mod 2) (%i) "dma.enqueue"(%pingpong) : (affineint) -> affineint %pongping = affine_apply (d0) -> (d0 mod 2) (%i) "dma.wait"(%pongping) : (affineint) -> affineint "compute1"(%pongping) : (affineint) -> affineint } Output #map0 = (d0) -> (d0 mod 2) #map1 = (d0) -> (d0 - 1) #map2 = ()[s0] -> (s0 + 7) mlfunc @loop_nest_dma() { %c8 = constant 8 : affineint %c0 = constant 0 : affineint %0 = affine_apply #map0(%c0) %1 = "dma.enqueue"(%0) : (affineint) -> affineint for %i0 = 1 to 7 { %2 = affine_apply #map0(%i0) %3 = "dma.enqueue"(%2) : (affineint) -> affineint %4 = affine_apply #map1(%i0) %5 = affine_apply #map0(%4) %6 = "dma.wait"(%5) : (affineint) -> affineint %7 = "compute1"(%5) : (affineint) -> affineint } %8 = affine_apply #map1(%c8) %9 = affine_apply #map0(%8) %10 = "dma.wait"(%9) : (affineint) -> affineint %11 = "compute1"(%9) : (affineint) -> affineint return } 3) With arbitrary affine bound maps: Shift last two statements by two. Input: for %i = %N to ()[s0] -> (s0 + 7)()[%N] { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foo_bar"(%i) : (affineint) -> (affineint) "bar_foo"(%i) : (affineint) -> (affineint) } Output #map0 = ()[s0] -> (s0 + 1) #map1 = ()[s0] -> (s0 + 2) #map2 = ()[s0] -> (s0 + 7) #map3 = (d0) -> (d0 - 2) #map4 = ()[s0] -> (s0 + 8) #map5 = ()[s0] -> (s0 + 9) for %i0 = %arg0 to #map0()[%arg0] { %0 = "foo"(%i0) : (affineint) -> affineint %1 = "bar"(%i0) : (affineint) -> affineint } for %i1 = #map1()[%arg0] to #map2()[%arg0] { %2 = "foo"(%i1) : (affineint) -> affineint %3 = "bar"(%i1) : (affineint) -> affineint %4 = affine_apply #map3(%i1) %5 = "foo_bar"(%4) : (affineint) -> affineint %6 = "bar_foo"(%4) : (affineint) -> affineint } for %i2 = #map4()[%arg0] to #map5()[%arg0] { %7 = affine_apply #map3(%i2) %8 = "foo_bar"(%7) : (affineint) -> affineint %9 = "bar_foo"(%7) : (affineint) -> affineint } 4) Shift one by zero, second by one, third by two for %i = 0 to 7 { %y = "foo"(%i) : (affineint) -> affineint %x = "bar"(%i) : (affineint) -> affineint %z = "foobar"(%i) : (affineint) -> affineint } #map0 = (d0) -> (d0 - 1) #map1 = (d0) -> (d0 - 2) #map2 = ()[s0] -> (s0 + 7) %c9 = constant 9 : affineint %c8 = constant 8 : affineint %c1 = constant 1 : affineint %c0 = constant 0 : affineint %0 = "foo"(%c0) : (affineint) -> affineint %1 = "foo"(%c1) : (affineint) -> affineint %2 = affine_apply #map0(%c1) %3 = "bar"(%2) : (affineint) -> affineint for %i0 = 2 to 7 { %4 = "foo"(%i0) : (affineint) -> affineint %5 = affine_apply #map0(%i0) %6 = "bar"(%5) : (affineint) -> affineint %7 = affine_apply #map1(%i0) %8 = "foobar"(%7) : (affineint) -> affineint } %9 = affine_apply #map0(%c8) %10 = "bar"(%9) : (affineint) -> affineint %11 = affine_apply #map1(%c8) %12 = "foobar"(%11) : (affineint) -> affineint %13 = affine_apply #map1(%c9) %14 = "foobar"(%13) : (affineint) -> affineint 5) SSA dominance violated; no shifting if a shift is specified for the second statement. for %i = 0 to 7 { %x = "foo"(%i) : (affineint) -> affineint "bar"(%x) : (affineint) -> affineint } PiperOrigin-RevId: 214975731
2018-09-29 03:17:26 +08:00
}
static PassRegistration<PipelineDataTransfer> pass(
"affine-pipeline-data-transfer",
"Pipeline non-blocking data transfers between explicitly managed levels of "
"the memory hierarchy");